Integrated Phenotypic Physiology and Transcriptome Analysis Revealed the Molecular Genetic Basis of Anthocyanin Accumulation in Purple Pak-Choi
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Determination of Pigment
2.3. RNA Extraction, cDNA Library Construction and Quality Control
2.4. Screening Differentially Expressed Genes
2.5. Enrichment Analysis of Differentially Expressed Genes GO and KEGG
2.6. Functional Annotation of Differentially Expressed Genes
2.7. Weighted Gene Co-Expression Network Analysis
2.8. Quantitative RT-qPCR Verification
3. Results
3.1. Observation of Leaf Color
3.2. Determination of Pigment Content in Leaves
3.3. Sequencing Results and Comparison Statistics
3.4. Identification of Differentially Expressed Genes
3.5. Clustering Analysis
3.6. GO Analysis and KEGG Enrichment Pathway Analysis
3.7. Transcription Factor Identification
3.8. Identification of WGCNA Modules of Genes Related to Anthocyanin Metabolism
3.9. RT-qPCR Verification
4. Discussion
4.1. Structural Genes and Transport Genes Affecting Anthocyanin Synthesis in Purple Pak-Choi
4.2. Transcription Factors Affecting Anthocyanin Accumulation in Purple Pak-Choi
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, K.; Han, K.T.; Dai, S.L. Mechanism of environmental factors regulating anthocyanin synthesis and coloration in plants. Chin. Bull. Bot. 2010, 45, 307–317. [Google Scholar]
- Du, D.N.; Zhang, C.; Gao, S.L. Effects of low temperature on flower color and anthocyanin synthesis of cut peony. J. Plant Genet. Resour. 2016, 17, 295–302. [Google Scholar]
- Zhang, B.B.; Cai, Z.X.; Shen, Z.J. Effects of light quality on leaf coloration of red-leaf peach. J. Fruit Trees 2013, 30, 602–607. [Google Scholar]
- Wang, F.; Wang, X.J.; Zhao, S.N. Regulation of light on anthocyanin biosynthesis in horticultural plants. China Agric. Sci. 2020, 53, 4904–4917. [Google Scholar]
- He, X.Z.; Li, Y.; Lawson, D.; Xie, D.Y. Metabolic engineer-ing of anthocyanins in dark tobacco varieties. Physiol. Plant 2017, 159, 2–12. [Google Scholar] [CrossRef]
- Lim, W.; Li, J. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell Tissue Organ Cult. 2016, 128, 113–124. [Google Scholar] [CrossRef]
- Zhang, S.J. Purple Red Gene Mapping and Candidate Gene Analysis in Chinese Cabbage; Chinese Academy of Agricultural Sciences: Beijing, China, 2014. [Google Scholar]
- Zhang, L.; Xu, B.; Wu, T.; Yang, Y.F.; Fan, L.X.; Wen, M.X.; Su, J.X. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genesin anthocyanin biosynthetic pathway. BMC Genomics. 2017, 18, 288. [Google Scholar]
- Zhang, Z.S.; Lin, J.W.; Wang, Z.P.; Yu, H.J.; Liu, D.L. Determination of anthocyanin content in black soybean skin from different producing areas by colorimetry. Food Res. Dev. 2012, 33, 143–145. [Google Scholar]
- Wang, X.K. Plant Physiological and Biochemical Test Principle and Technology; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Leng, N.; Dawson, J.A.; Thomson, J.A.; Ruotti, V.; Rissman, A.I.; Smits, B.M.G. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013, 29, 1035–1043. [Google Scholar] [CrossRef]
- Jiang, H.B.; Xia, L.F.; Tian, Y.P. Analysis of genes related to anthocyanin synthesis in purple bud tea plant based on transcriptome sequencing. J. Plant Genet. Resour. 2018, 19, 967–978. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Song, B.; Xu, H.; Chen, L.Z.; Fan, X.X.; Jing, Z.G.; Chen, S.; Xu, Z.G. Study of the Relationship between Leaf Color Formation and Anthocyanin Metabolism among Different Purple Pakchoi Lines. Molecules 2020, 25, 4809. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chen, G.P.; Dong, T.T.; Pan, Y.; Zhao, Z.P.; Tian, S.B.; Hu, Z.L. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis). Food Chem. 2014, 62, 12366–12376. [Google Scholar] [CrossRef]
- Zhou, H.; Lin, W.K.; Wang, H.L.; Gu, C.; Dare, A.P.; Espley, R.V.; He, H.P.; Allen, A.C.; Han, Y.P. Molecular genetics of blood-leshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J. 2015, 82, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.; Han, R.H.; Yu, J.W.; Zhu, M.K.; Zhang, Y.; Gong, Y.; Li, Z.Y. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis). Food Chem. 2019, 271, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.X.; Fang, J.H.; Zhao, R.K.; Liu, X.Y.; Yin, W.C.; Wang, Y.; Wang, X.H.; Wang, X.P.; Fang, Y.L. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). Hortic. Res. 2022, 9, uhac022. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, Y.C.; Yu, L.; Jiang, H.Y.; Guo, Z.W.; Xu, H.F.; Jiang, S.H.; Fang, H.C.; Zhang, J.; Su, M.Y.; et al. MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5. J. Agric. Food Chem. 2019, 67, 8783–8793. [Google Scholar] [CrossRef]
No | Gene ID | Gene Name | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|---|---|
1 | BraA04000661 | BrPAL | AGCAACATAACCAAGATG | TCTCAGATTCTCCTCAAG |
2 | BraA04002213 | BrC4H3 | TGAGGAAACGCTTGCAGT | GGCCTGAGGATAGGGATG |
3 | BraA05002651 | Br4CL4 | ATCTTTCCTCGCCGTGGTTT | CTCCGGCGAAATCTTAGGCT |
4 | BraA09004531 | BrF3H | ATTCATTGTCTCTAGTCATCTTC | CCGTGAGTAGTCTCTGTT |
5 | BraA10002265 | BrCHS | TATCCTGACTACTACTTC | CTCCTTTAGAAACTCTTC |
6 | BraA03005399 | BrANS | TCCTGATTCCATTGTGAT | TCCTAACCTTCTCCTTATTC |
7 | BraA06000554 | BrUFGT | GTAATGTATCCGTGGTTAG | GGTAGAGGTTAAGAGGTT |
8 | BraA08002374 | BrMYB44 | TTATGAGACGGAGAATGT | TACCTCTTCCTTCCTAAC |
9 | BraA09002835 | BrTT8 | AGACGAAGAAGAAGTAGA | CCTCCATTAGATTCATCAT |
10 | - | BrActin | GTTGCTATCCAGGCTGTTC | AGCGTGAGGAAGAGCATAAC |
Samples | Clean Reads | Clean Bases | GC Content (%) | ≥Q30 (%) |
---|---|---|---|---|
PQC-T1-1 | 26,549,215 | 7,928,202,428 | 48.92% | 92.83% |
PQC-T1-2 | 26,180,713 | 7,829,647,066 | 48.76% | 93.19% |
PQC-T1-3 | 34,780,519 | 10,381,289,642 | 48.64% | 93.28% |
PQC-T2-1 | 27,200,992 | 8,115,863,242 | 48.72% | 93.43% |
PQC-T2-2 | 26,021,139 | 7,764,834,504 | 48.67% | 93.38% |
PQC-T2-3 | 22,706,919 | 6,782,398,766 | 48.59% | 93.38% |
PQC-T3-1 | 22,221,865 | 6,636,130,982 | 48.23% | 92.71% |
PQC-T3-2 | 27,585,040 | 8,220,152,954 | 48.90% | 93.62% |
PQC-T3-3 | 28,884,210 | 8,615,366,610 | 48.63% | 93.46% |
HYYTC-T1-1 | 33,792,919 | 10,064,723,406 | 48.75% | 93.10% |
HYYTC-T1-2 | 27,771,004 | 8,285,974,048 | 48.88% | 93.08% |
HYYTC-T1-3 | 32,973,684 | 9,829,969,670 | 49.10% | 92.72% |
HYYTC-T2-1 | 27,844,329 | 8,323,582,204 | 48.66% | 93.43% |
HYYTC-T2-2 | 31,916,361 | 9,526,775,132 | 48.57% | 93.13% |
HYYTC-T2-3 | 32,197,152 | 9,602,692,572 | 49.28% | 93.10% |
HYYTC-T3-1 | 29,935,983 | 8,932,854,782 | 48.45% | 93.06% |
HYYTC-T3-2 | 28,258,874 | 8,433,086,514 | 48.74% | 93.16% |
HYYTC-T3-3 | 32,788,267 | 9,761,637,592 | 48.49% | 93.07% |
Gene ID | FPKM | HYYTC -T1 Vs PQC -T1 | HYYTC -T2 Vs PQC -T2 | HYYTC -T3 Vs PQC -T3 | Gene Annotation | |||||
---|---|---|---|---|---|---|---|---|---|---|
PQC -T1 | PQC -T2 | PQC -T3 | HYYTC -T1 | HYYTC -T2 | HYYTC -T3 | |||||
BraA04000661 | 30.43 | 42.55 | 137.89 | 3.74 | 11.90 | 23.96 | Up | Up | Up | BrPAL2.2 |
BraA04002213 | 11.58 | 11.90 | 68.38 | 4.13 | 5.83 | 24.98 | Up | Up | Up | BrC4H3 |
BraA03001710 | 33.88 | 36.42 | 164.03 | 2.87 | 4.41 | 11.99 | Up | Up | Up | BrC4H5 |
BraA05002651 | 1.17 | 1.28 | 3.43 | 12.08 | 10.99 | 17.32 | Down | Down | Down | Br4CL4 |
BraA08002920 | 25.22 | 12.86 | 25.15 | 8.83 | 5.78 | 5.52 | Up | Up | Up | BrCCoAOMT |
BraA09004531 | 108.59 | 85.32 | 306.09 | 18.84 | 23.84 | 96.13 | Up | Up | Up | BrF3H1 |
BraA10002265 | 55.68 | 43.29 | 299.84 | 8.87 | 9.53 | 108.21 | Up | Up | Up | BrCHS1 |
BraA03000633 | 14.07 | 14.17 | 139.38 | 0.70 | 1.72 | 14.58 | Up | Up | Up | BrCHS2 |
BraA09004891 | 10.96 | 18.55 | 86.07 | 1.42 | 1.94 | 8.72 | Up | Up | Up | BrCHI1 |
BraA09002044 | 160.86 | 115.98 | 443.50 | 5.45 | 7.75 | 7.46 | Up | Up | Up | BrDFR |
BraA01001444 | 109.91 | 85.16 | 393.62 | 3.57 | 5.76 | 36.51 | Up | Up | Up | BrANS1 |
BraA03005399 | 12.68 | 13.28 | 60.08 | 0.99 | 0.76 | 0.81 | Up | Up | Up | BrANS2 |
BraA10000963 | 21.80 | 16.19 | 50.35 | 0.60 | 0.66 | 1.34 | Up | Up | Up | BrUGT79B1.1 |
BraA06000554 | 55.17 | 40.02 | 132.54 | 1.41 | 1.96 | 4.30 | Up | Up | Up | BrUGT79B1.2 |
BraA01003440 | 17.90 | 21.31 | 39.02 | 1.80 | 3.30 | 0.94 | Up | Up | Up | BrTT12 |
BraA02000754 | 83.23 | 70.92 | 205.42 | 3.90 | 3.33 | 23.59 | Up | Up | Up | BrTT19.2 |
BraA10002029 | 22.01 | 19.89 | 80.82 | 0.44 | 0.88 | 0.56 | Up | Up | Up | BrTT19.1 |
BraA08004000 | 4.66 | 8.18 | 34.57 | 0.48 | 0.51 | 0.30 | Up | Up | Up | BrGSTF6 |
BraA08003959 | 59.03 | 38.90 | 149.81 | 1.72 | 1.26 | 4.69 | Up | Up | Up | Br3AT1 |
BraA09000406 | 26.01 | 17.14 | 74.53 | 0.50 | 0.59 | 0.38 | Up | Up | Up | Br5MAT |
Gene ID | FPKM | HYYTC -T1 Vs PQC -T1 | HYYTC -T2 Vs PQC -T2 | HYYTC -T3 Vs PQC -T3 | Gene Annotation | |||||
---|---|---|---|---|---|---|---|---|---|---|
PQC -T1 | PQC -T2 | PQC -T3 | HYYTC -T1 | HYYTC -T2 | HYYTC -T3 | |||||
BraA08002374 | 1.43 | 2.48 | 2.02 | 2.68 | 6.98 | 6.28 | Down | Down | Down | MYB44 |
BraA05004112 | 0.39 | 1.47 | 17.01 | 2.41 | 5.91 | 36.21 | Down | Down | Down | REVEILLE 8 |
BraA05001641 | 0.33 | 1.02 | 0.29 | 13.47 | 10.87 | 4.40 | Down | Down | Down | REVEILLE 2 |
BraA02002130 | 1.39 | 0.77 | 1.86 | 3.33 | 5.06 | 6.84 | Down | Down | Down | MYB1R1 |
BraA05003486 | 4.19 | 7.22 | 4.97 | 1.55 | 1.81 | 0.73 | Up | Up | Up | ABCG29 |
BraA10003119 | 3.05 | 1.97 | 2.87 | 0.04 | 0.15 | 0.29 | Up | Up | Up | FLA10 |
BraA08002359 | 1.83 | 10.69 | 2.05 | 0.60 | 0.90 | 0.24 | Up | Up | Up | GARP-G2-like |
BraA01004300 | 2.70 | 3.61 | 3.35 | 13.46 | 12.6 | 9.96 | Down | Down | Down | TRIHELIX |
BraA09002835 | 2.27 | 2.91 | 11.05 | 0.55 | 0.75 | 1.45 | Up | Up | Up | TT8 |
BraA01002210 | 10.20 | 15.05 | 11.72 | 2.97 | 4.44 | 2.44 | Up | Up | Up | bHLH3 |
BraA03006442 | 0.20 | 0 | 0.11 | 21.55 | 12.22 | 11.01 | Down | Down | Down | BEE 2 |
BraA09000011 | 0.33 | 0.19 | 0.78 | 1.13 | 1.77 | 4.05 | Down | Down | Down | UNE10 |
BraA07001006 | 0 | 0 | 0 | 1.48 | 1.49 | 2.34 | Down | Down | Down | C3H |
BraA07003043 | 0.79 | 0.77 | 1.95 | 3.21 | 5.40 | 7.33 | Down | Down | Down | C2H2 |
BraA02000673 | 0.19 | 1.09 | 7.61 | 1.70 | 3.55 | 22.18 | Down | Down | Down | C2C2-CO-like |
BraA04002035 | 1.51 | 3.18 | 4.07 | 0.44 | 0.13 | 1.04 | Up | Up | Up | C2H2 |
BraA09002226 | 0 | 0 | 0 | 28.04 | 24.80 | 28.55 | Down | Down | Down | NAC69 |
BraA03000407 | 0 | 0 | 0 | 5.17 | 5.02 | 5.83 | Down | Down | Down | NAC82 |
BraA07000730 | 1.44 | 1.05 | 1.26 | 9.42 | 6.79 | 5.31 | Down | Down | Down | NAC101 |
BraA02004460 | 12.68 | 11.73 | 19.29 | 4.94 | 4.55 | 7.41 | Up | Up | Up | MADS-MIKC |
BraA10001525 | 4.74 | 9.59 | 5.03 | 39.14 | 47.88 | 16.02 | Down | Down | Down | AP2/ERF-ERF |
BraA05004664 | 3.71 | 3.00 | 4.79 | 14.32 | 12.83 | 15.55 | Down | Down | Down | TCP |
BraA09002413 | 0.31 | 0.12 | 0.73 | 2.15 | 2.51 | 2.33 | Down | Down | Down | NF-YB |
BraA08001844 | 1.12 | 7.81 | 1.11 | 3.22 | 20.05 | 9.09 | Down | Down | Down | WRKY18 |
BraA03002344 | 0.20 | 0.07 | 0.03 | 7.21 | 7.87 | 2.27 | Down | Down | Down | bZIP34 |
BraA09005994 | 0.02 | 0 | 0.14 | 2.45 | 1.69 | 2.99 | Down | Down | Down | BES1 |
BraA04002319 | 3.07 | 7.84 | 71.47 | 23.13 | 41.41 | 149.16 | Down | Down | Down | DBB |
BraA08002660 | 0.17 | 0.05 | 0.37 | 0.94 | 0.72 | 1.68 | Down | Down | Down | HB-HD-ZIP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Huang, T.; Zhang, L.; Yang, X.; Zhang, W.; Chen, L.; Jing, Z.; Li, Y.; Yang, Q.; Xu, H.; et al. Integrated Phenotypic Physiology and Transcriptome Analysis Revealed the Molecular Genetic Basis of Anthocyanin Accumulation in Purple Pak-Choi. Horticulturae 2024, 10, 1018. https://doi.org/10.3390/horticulturae10101018
Yang Q, Huang T, Zhang L, Yang X, Zhang W, Chen L, Jing Z, Li Y, Yang Q, Xu H, et al. Integrated Phenotypic Physiology and Transcriptome Analysis Revealed the Molecular Genetic Basis of Anthocyanin Accumulation in Purple Pak-Choi. Horticulturae. 2024; 10(10):1018. https://doi.org/10.3390/horticulturae10101018
Chicago/Turabian StyleYang, Qinyu, Tao Huang, Li Zhang, Xiao Yang, Wenqi Zhang, Longzheng Chen, Zange Jing, Yuejian Li, Qichang Yang, Hai Xu, and et al. 2024. "Integrated Phenotypic Physiology and Transcriptome Analysis Revealed the Molecular Genetic Basis of Anthocyanin Accumulation in Purple Pak-Choi" Horticulturae 10, no. 10: 1018. https://doi.org/10.3390/horticulturae10101018
APA StyleYang, Q., Huang, T., Zhang, L., Yang, X., Zhang, W., Chen, L., Jing, Z., Li, Y., Yang, Q., Xu, H., & Song, B. (2024). Integrated Phenotypic Physiology and Transcriptome Analysis Revealed the Molecular Genetic Basis of Anthocyanin Accumulation in Purple Pak-Choi. Horticulturae, 10(10), 1018. https://doi.org/10.3390/horticulturae10101018