Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conditioning of the Microorganism
2.2. Physical–Chemical Characterization and Preparation of Substrates
2.3. Enzymatic Extraction of Fermented Sample
2.4. Enzyme Activity Test
2.5. Effect of pH on Enzyme Production
2.6. Effect of Temperature on Enzyme Production
2.7. Statistical Analysis
3. Results
3.1. Characterization of Agro-Industrial Wastes
3.2. Growth of Y. lipolytica in the Substrates
3.3. Effect of pH on Enzyme Production
3.4. Effect of Temperature on Enzyme Production
4. Discussion
4.1. Characterization of Agro-Industrial Wastes
4.2. Effect of pH, Temperature, and Fermentation Time on Enzymatic Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.S.; Devi, P.S.; Nair, A.S. A review on microbial proteases. Int. J. Adv. Res. 2016, 4, 2048–2053. [Google Scholar] [CrossRef] [PubMed]
- Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech. 2021, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, C.; Sumantha, A.; Szakacs, G.; Pandey, A. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 2005, 40, 2689–2694. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Palsaniya, P.; Mishra, R.; Beejawat, N.; Sethi, S.; Gupta, B.L. Optimization of alkaline protease production from bacteria isolated from soil. J. Microbiol. Biotechnol. Res. 2012, 2, 695–701. [Google Scholar]
- Sathishkumar, R.; Ananthan, G.; Arun, J. Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatal. Agric. Biotechnol. 2015, 4, 214–220. [Google Scholar] [CrossRef]
- Panda, M.K.; Sahu, M.K.; Tayung, K. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran. J. Microbiol. 2013, 5, 159. [Google Scholar] [PubMed]
- Hamza, T.A. Bacterial protease enzyme: Safe and good alternative for industrial and commercial use. Int. J. Chem. Biomol. Sci. 2017, 3, 1–10. [Google Scholar]
- Singh, P.; Rani, A.; Chaudhary, N. Isolation and characterization of protease producing Bacillus sp. from soil. Int. J. Pharma Sci. Res. 2015, 6, 633–639. [Google Scholar]
- Gustavsson, J. Global Food Losses and Food Waste—Extent, Causes and Prevention; Food and Agricultural Organisation: Rome, Italy, 2011; pp. 2–37. Available online: https://www.fao.org/3/i2697e/i2697e.pdf (accessed on 30 June 2023).
- Mattey, P.; Robayo, R.; Díaz, J.; Delvasto, S.; Monzó, J. Aplicación de ceniza de cascarilla de arroz obtenida de un proceso agroindustrial para la fabricación de bloques en concreto no estructurales. Rev. Latinoam. Metal. Mater. 2015, 35, 285–294. [Google Scholar]
- Mahanta, N.; Gupta, A.; Khare, S.K. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PSA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol. 2008, 99, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Medronho, L.R.; Alves, T.L. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 2000, 71, 45–50. [Google Scholar]
- Orzúa, M.C.; Mussatto, S.I.; Contreras, J.C.; Rodríguez, R.; De la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef]
- López, A.R.; Luna, C.; Buenrostro, J.J.; Hernández, R.; Huerta, S.; Escalona, H.; Aguilar, C.N.; Prado, L.A. Effect of pH, temperature and protein and carbohydrates source in protease production by Yarrowia lipolytica in solid culture. Rev. Mex. Ing. Quím. 2016, 15, 57–67. [Google Scholar]
- Nascimento, F.V.D.; Lemes, A.C.; Castro, A.M.D.; Secchi, A.R.; Zarur Coelho, M.A. A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes 2022, 10, 381. [Google Scholar] [CrossRef]
- Grande, C. Valoración Biotecnológica de Residuos Agrícolas y Agroindustriales; Editorial Bonaventuriana: Antioquia, Colombia, 2016; p. 180. ISBN 978-958-8785-81-3. [Google Scholar]
- Soccol, C.R.; Ferreira da Costa, E.S.; Junior, L.A. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Gimenes, N.C.; Silveira, E.; Tambourgi, E.B. An overview of proteases: Production, downstream processes and industrial applications. Sep. Purif. Rev. 2019, 50, 223–243. [Google Scholar] [CrossRef]
- Saval, S. Aprovechamiento de residuos agroindustriales: Pasado, presente y futuro. BioTecnología 2012, 16, 14–16. [Google Scholar]
- De Azeredo, L.A.; Freire, D.M.; Soares, R.M.; Leite, S.G.; Coelho, R.R. Production and partial characterization of thermophilic proteases from Streptomyces sp. Isolated from Brazilian cerrado soil. Enzym. Microb. Technol. 2004, 34, 354–358. [Google Scholar] [CrossRef]
- Delabona, P.D.; Pirota, R.; Codima, C.A.; Tremacoldi, C.R.; Rodrigues, A.; Farinas, C.S. Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Ind. Crops Prod. 2013, 42, 236–242. [Google Scholar] [CrossRef]
- Aggelopoulos, T. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, S. Solid State Fermentation and Its Applications. In Bioprocessing for Value-Added Products from Renewable Resources; Yang, S.-T., Ed.; Elsevier: Columbus, OH, USA, 2007; Chapter 18; pp. 465–489. [Google Scholar]
- Ellaiah, P.; Srinivasulu, B.; Adinarayana, K. A review on microbial alkaline proteases. J. Sci. Ind. Res. 2002, 61, 690–704. [Google Scholar]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid–state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Sharma, K.M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial alkaline proteases: Optimization of production parameters and their properties. J. Genet. Eng. Biotechnol. 2017, 15, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Du, G.; Guo, W.; Chen, J. A temperature–shift strategy in batch microbial transglutaminase fermentation. Process Biochem. 2001, 36, 525–530. [Google Scholar] [CrossRef]
- Elias, M.; Wieczorek, G.; Rosenne, S.; Tawfik, D.S. The universality of enzymatic rate–temperature dependency. Trends Biochem. Sci. 2014, 39, 1–7. [Google Scholar] [CrossRef]
- Dos Santos Aguilar, J.G.; Sato, H.H. Microbial proteases: Production and application in obtaining protein Hydrolysates. Food Res. Int. 2018, 103, 253–262. [Google Scholar] [CrossRef]
- Spragg, J.C. Canola Meal NIR Calibration Implementation: A Report for AOF and Pork CRC. 2013. Available online: http://porkcrc.com.au/wp-content/uploads/2014/01/4B118-Final-Report-.pdf (accessed on 10 July 2014).
- Spragg, J.C.; Mailer, R.J. Canola Meal Value Chain Quality Improvement. A Final Report for AOF and Pork CRC. 2008. Available online: http://www.australianoilseeds.com/__data/assets/pdf_file/0011/5798/AOF_Stage_2_Protein_Meal_Report.pdf (accessed on 15 July 2014).
- Wanasundara, J.P.D.; Shahidi, F. Functional properties and amino-acid composition of solvent-extracted flaxseed meals. Food Chem. 1994, 49, 45–51. [Google Scholar] [CrossRef]
- Castell, A.G.; Cliplef, R.L. Evaluation of pea screenings and canola meal as a supplementary protein source in barley-based diets fed to growing-finishing pigs. Can. J. Anim. Sci. 1993, 73, 129–139. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Sales, J.C.; Nascimento, F.V.; Ribeiro, B.D.; Souza, C.E.; Lemes, A.C.; Coelho, M.A. Lipase Production by Yarrowia lipolytica in Solid-State Fermentation Using Amazon Fruit By-Products and Soybean Meal as Substrate. Catalysts 2023, 13, 289. [Google Scholar] [CrossRef]
- De Castro, R.J.S.; Nishide, T.G.; Sato, H.H. Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatal. Agric. Biotechnol. 2014, 3, 236–245. [Google Scholar] [CrossRef]
- Niyonzima, F.N.; More, S.S. Screening and optimization of cultural parameters for an alkaline protease production by Aspergillus terreus GR. Under submerged fermentation. Int. J. Pharm. Bio Sci. 2013, 4, 1016–1028. [Google Scholar]
- Farias, M.; Valoni, E.; Castro, A.; Coelho, M.A. Lipase production by Yarrowia lipolytica in solid state fermentation using different agro industrial residues. Chem. Eng. Trans. 2014, 38, 301–306. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- Ansorena, M. Substrates Properties and Characterization; MundiPrensa: Madrid, Spain, 1994; p. 172. [Google Scholar]
- AOAC. Protein (Crude) in Animal Feed, Forage (Plant Tissue), Grain, and Oilseeds. Block Digestion Method Using Copper Catalyst and Steam Distillation into Boric Acid; AOAC Official Method; AOAC: Washington, DC, USA, 2001; p. 3. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Robers, P.A.; Smith, F. Colorimetric method for the determination of sugars and related substances. Anal. Biochem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Abraham, J.; Gea, T.; Sánchez, A. Potential of the solid-state fermentation of soy fibre residues by native microbial populations for bench-scale alkaline protease production. Biochem. Eng. J. 2013, 13, 15–19. [Google Scholar] [CrossRef]
- Abraham, J.; Gea, T.; Komilis, D.; Sánchez, A. Reproducibility of solid-state fermentation at bench-scale: The case of protease production. Glob. Nest J. 2017, 19, 183–190. [Google Scholar]
- Johnvesly, B.; Virupakshi, S.; Patil, G.N.; Naik, G.R. Cellulase-Free Thermostable Alkaline Xylanase from Thermophilic and Alkalophilic Bacillus sp. JB-99. J. Microbiol. Biotechnol. 2002, 12, 153–156. [Google Scholar]
- Castro, A.M.; Castilho, L.R.; Freire, D.M. Performance of a fixed-bed solid-state fermentation bioreactor with forced aeration for the production of hydrolases by Aspergillus awamori. Biochem. Eng. J. 2015, 93, 303–308. [Google Scholar] [CrossRef]
- SAS Institute. Base SAS® 9.4 Procedures Guide: Statistical Procedures, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013; 550p. [Google Scholar]
- Wickramasuriya, S.S.; Yi, Y.J.; Yoo, J.; Kang, N.K.; Heo, J.M. A review of canola meal as an alternative feed ingredient for ducks. J. Anim. Sci. Technol. 2015, 57, 29. [Google Scholar] [CrossRef]
- Seneviratne, R.W.; Young, M.G.; Beltranena, E.; Goonewardene, L.A.; Newkirk, R.W.; Zijlstra, R.T. The nutritional value of expeller-pressed canola meal for growerfinisher pigs. J. Anim. Sci. 2010, 88, 2073–2083. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; Liu, W.; Chen, J.; Zeng, Z.; Liu, C. Properties of starch after extrusion: A review. Sta Rchstärke 2018, 70, 1700110. [Google Scholar] [CrossRef]
- Pryor, S.W.; Chang, S.K.C. Separation and Evaluation of Canola Meal and Protein for Industrial Bioproducts; An ASABE Section Meeting Presentation Paper Number: RRV-07116; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007; pp. 2–11. [Google Scholar] [CrossRef]
- Aider, M.; Barbana, C. Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—A practical and critical review. Trends Food Sci. Technol. 2011, 22, 21–39. [Google Scholar] [CrossRef]
- Ghodsvali, A.; Khodaparast, M.H.H.; Vosoughi, M.; Diosady, L.L. Preparation of canola protein materials using membrane technology and evaluation of meals functional properties. Food Res. Int. 2005, 38, 223–231. [Google Scholar] [CrossRef]
- Vaseghi, Z.; Najafpour, G.D.; Mohseni, S.; Mahjoub, S. Production of active lipase by Rhizopus oryzae from sugarcane bagasse: Solid state fermentation in a tray bioreactor. Int. J. Food Sci. Technol. 2013, 48, 283–289. [Google Scholar] [CrossRef]
- Rosas, D. Revalorización de algunos residuos agroindustriales y su potencial de aplicación a suelos agrícolas. Agro Product. 2018, 9, 18–23. [Google Scholar]
- Guo, X.; Tomonaga, T.; Yanagihara, Y.; Ota, Y. Screening for yeasts incorporating the exogenous eicosapentaenoic and docosahexaenoic acids from crude fish oil. J. Biosci. Bioeng. 1999, 87, 184–188. [Google Scholar] [CrossRef]
- Bell, J.M.; Keith, M.O. A survey of variation in the chemical composition of commercial canola meal produced in Western Canadian crushing plants. Can. J. Anim. Sci. 1991, 71, 469–480. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 679–697. [Google Scholar] [CrossRef]
- Rouilly, A.; Rigal, L. Agro-materials: A bibliographic review. J. Macromol. Sci. Part C 2002, 42, 441–479. [Google Scholar] [CrossRef]
- Freitas, A.C.; Farinas, C.S.; Castro, R.J.; Fontenele, M.A.; Pinto, G.A.; Egito, A.S. Canola Cake as a Potential Substrate for Proteolytic Enzymes Production by a Selected Strain of Aspergillus oryzae: Selection of Process Conditions and Product Characterization. ISRN Microbiol. 2013, 8, 369082. [Google Scholar] [CrossRef]
- Raghavarao, K.S.; Ranganathan, T.V.; Karanth, N.G. Some engineering aspects of solid-state fermentation. Bio-Chem. Eng. J. 2003, 13, 127–135. [Google Scholar] [CrossRef]
- Thanapimmetha, A.; Luadsongkram, A.; Titapiwatanakun, B.; Srinophakun, P. Value added waste of Jatropha curcas residue: Optimization of protease production in solid state fermentation by Taguchi DOE methodology. Ind. Crops Prod. 2012, 37, 1–5. [Google Scholar] [CrossRef]
- Coelho, M.A.; Amaral, P.F.; Belo, I. Yarrowia lipolytica: An Industrial Workhorse; Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex Research Center: Badajoz, Spain, 2010; Volume 2, pp. 930–944. [Google Scholar]
- Daniel, R.M.; Danson, M.J.; Eisenthal, R.; Lee, C.K.; Peterson, M.E. El efecto de la temperatura en la actividad enzimática: Nuevos conocimientos y sus implicaciones. Extremófilos 2008, 12, 51–59. [Google Scholar] [CrossRef]
- Germano, A.; Pandey, C.A.; Osaku, S.N.; Soccol, C.R. Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzym. Microb. Technol. 2003, 32, 246–251. [Google Scholar] [CrossRef]
- Hernandez, G.; Gutierrez, C.W. Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochem. 2011, 46, 2001–2006. [Google Scholar] [CrossRef]
- Morcelle, S.R.; Gomes, T.R.; Vairo, S.E. Caracterización bioquímica y estructural de proteasas. Enzimas Proteolíticas Veg. Super. Apl. Ind. 2009, 163–172. [Google Scholar]
- James, M.N. Catalytic pathway of aspartic peptidases. In Handbook of Proteolytic Enzymes, 2nd ed.; Beynon, R., Bond, J.S., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 12–18. [Google Scholar]
- Tunga, R.; Shrivastava, B.; Banerjee, R. Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus. Process Biochem. 2003, 38, 1553–1558. [Google Scholar] [CrossRef]
- Wang, R.; Law, R.C.; Webb, C. Protease production and conidiation by Aspergillus oryzae in flour fermentation. Process Biochem. 2005, 40, 217–227. [Google Scholar] [CrossRef]
- Sumantha, A.; Larroche, C.; Pandey, A. Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technol. Biotechnol. 2006, 44, 211–220. [Google Scholar]
- Hernandez, M.Z.H.; Araujo, O.J.; Noriega, R.Y.; Chavez, C.G.; Villa, T.L. The intracelular proteolytic system of Yarrowia lipolytica and characterization of an aminopeptidase. FEMS Microbiol. Lett. 2007, 268, 178–186. [Google Scholar] [CrossRef]
- Ikasari, L.; Mitchell, D.A. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzym. Microb. Technol. 1996, 19, 171–175. [Google Scholar] [CrossRef]
- Scopes, R.K. Enzyme Activity and Assays Encyclopedia of Life Sciences; Macmillan Publishers Ltd., Nature Publishing Group: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems; A Wiley-Interscience Publication; Department of Biochemistry and Biophysics, University of California: Davis, CA, USA, 1993; Available online: https://medschool.lsuhsc.edu/biochemistry/Enzyme%20Kinetics.pdf (accessed on 30 June 2023).
Component | Soybean Meal | Canola Meal | Cottonseed Meal | Sesame Meal |
---|---|---|---|---|
Total dry matter (TDM) | 90 ± 1.3 a | 90 ± 1.5 a | 92 ± 3.9 b | 97 ± 0.6 c |
Humidity | 9.9 ± 0.01 d | 9.8 ± 0.03 c | 9.4 ± 0.02 b | 9.1 ± 1.0 a |
Crude protein | 40.30 ± 1.8 c | 38.76 ± 1.5 b | 31.47 ± 1.4 a | 32.92 ± 1.0 a |
Crude fiber | 3.31 ± 1.8 a | 12.42 ± 0.8 b | 13.64 ± 0.5 b | 19.65 ± 0.1 c |
Ether extract | 1.12 ± 0.3 a | 1.59 ± 0.2 b | 2.25 ± 0.5 c | 13.84 ± 1.6 d |
Nitrogen-free extract | 38.5 ± 0.3 d | 36.9 ± 0.8 c | 28.9 ± 0.4 a | 31.4 ± 0.7 b |
Neutral detergent fiber (NDF) | 13.50 ± 3.2 a | 25.3 ± 0.50 c | 39 ± 0.1 d | 22.6 ± 0.4 b |
Ash | 8.02 ± 0.2 a | 9.45 ± 0.6 b | 8.81 ± 0.3 a | 8.35 ± 0.2 a |
Total sugars | 0.93 ± 0.01 c | 0.84 ± 0.2 b | 0.73 ± 0.03 a | 0.83 ± 0.1 b |
Water absorption index (WAI) (gel/g DM) | 4.35 ± 0.1 b | 4.24 ± 1.0 b | 3.14 ± 1.0 a | 3.05 ± 0.5 a |
Critical humidity point (CHP) | 17.5 ± 0.5 c | 23.3 ± 0.8 d | 16.6 ± 0.6 b | 13.6 ± 0.5 a |
Water activity (Aw) | 0.46 ± 0.02 b | 0.34 ± 0.03 a | 0.487 ± 0.1 b | 0.310 ± 0.3 a |
pH | 7.0 ± 0.15 d | 5.9 ± 1.42 a | 6.9 ± 0.31 b | 6.5 ± 0.23 b |
Apparent density, AD (g/mL) | 0.64 ± 0.0 c | 0.50 ± 0.0 b | 0.60 ± 0.1 c | 0.43 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Trujillo, J.; Mellado-Bosque, M.; Ascacio-Valdés, J.A.; Prado-Barragán, L.A.; Hernández-Herrera, J.A.; Aguilera-Carbó, A.F. Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation 2023, 9, 819. https://doi.org/10.3390/fermentation9090819
López-Trujillo J, Mellado-Bosque M, Ascacio-Valdés JA, Prado-Barragán LA, Hernández-Herrera JA, Aguilera-Carbó AF. Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation. 2023; 9(9):819. https://doi.org/10.3390/fermentation9090819
Chicago/Turabian StyleLópez-Trujillo, Juan, Miguel Mellado-Bosque, Juan Alberto Ascacio-Valdés, Lilia Arely Prado-Barragán, José Antonio Hernández-Herrera, and Antonio Francisco Aguilera-Carbó. 2023. "Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste" Fermentation 9, no. 9: 819. https://doi.org/10.3390/fermentation9090819
APA StyleLópez-Trujillo, J., Mellado-Bosque, M., Ascacio-Valdés, J. A., Prado-Barragán, L. A., Hernández-Herrera, J. A., & Aguilera-Carbó, A. F. (2023). Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation, 9(9), 819. https://doi.org/10.3390/fermentation9090819