Non-Saccharomyces Yeast Strains, Aromatic Compounds and Sensory Analysis of Italy and Negra Criolla Pisco from the Moquegua Region of Peru
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Non-Saccharomyces Yeast from Italy and Negra Criolla Grape Varieties
2.2.1. Isolation and Culture
2.2.2. DNA Extraction, Amplification, and Sequencing
2.2.3. Phenotypic Characterization
Carbohydrate Fermentation
Polygalacturonase Activity
Ethanol Tolerance
Sulphite Production
Nitrogen Consumption
2.2.4. Pisco from Italy and Negra Criolla Grape Varieties
Production
Analysis of Volatile Compounds
Sensory Analysis
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Molecular Identification of Yeast Strains from the Skin Surface of Italy and Negra Criolla Grapes
3.2. Phenotypic Characterization of NSYSs Isolated from Italy and Negra Criolla Grape Varieties
3.2.1. Carbohydrate Fermentation
3.2.2. Polygalacturonase Activity
3.2.3. Ethanol Tolerance
3.2.4. Sulphite Production
3.2.5. Nitrogen Consumption
3.3. Aromatic and Sensory Characterization of Pisco Obtained from Italy and Negra Criolla Grape Varieties
3.3.1. Volatile Compounds
3.3.2. Sensory Analysis
3.3.3. Principal Component Analysis of Volatile Compounds and Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cacho, J.; Moncayo, L.; Palma, J.C.; Ferreira, V.; Culleré, L. Characterization of the aromatic profile of the Italia variety of Peruvian pisco by gas chromatography-olfactometry and gas chromatography coupled with flame ionization and mass spectrometry detection systems. Food Res. Int. 2012, 49, 117–125. [Google Scholar] [CrossRef]
- Cacho, J.; Moncayo, L.; Palma, J.C.; Ferreira, V.; Culleré, L. The impact of grape variety on the aromatic chemical composition of non-aromatic Peruvian pisco. Food Res. Int. 2013, 54, 373–381. [Google Scholar] [CrossRef]
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.Q.; Gao, X.T.; Lu, H.C.; Peng, W.T.; Chen, W.; Li, S.D.; Li, S.P.; Duan, C.Q.; Wang, J. Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Res. Int. 2020, 137, 109688. [Google Scholar] [CrossRef] [PubMed]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Indigenous yeasts: Emerging trends and challenges in winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Englezos, V.; Jolly, N.P.; Di Gianvito, P.; Rantsiou, K.; Cocolin, L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci. Technol. 2022, 127, 99–113. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Song, Y.; Zang, X.; Wang, G.; Pei, Y.; Song, Y.; Qin, Y.; Liu, Y. Yeast Diversity during Spontaneous Fermentations and Oenological Characterisation of Indigenous Saccharomyces cerevisiae for Potential as Wine Starter Cultures. Microorganisms 2022, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef]
- Comitini, F.; Agarbati, A.; Canonico, L.; Ciani, M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 7754. [Google Scholar] [CrossRef]
- Hu, L.; Wang, J.; Ji, X.; Liu, R.; Chen, F.; Zhang, X. Selection of non-Saccharomyces yeasts for orange wine fermentation based on their enological traits and volatile compounds formation. J. Food Sci. Technol. 2018, 55, 4001–4012. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, C.; Yan, Y.; Sun, X.; Ma, T.; Zhang, J.; Li, C.; Gou, C.; Yue, T.; Yuan, Y. Contribution of non-Saccharomyces yeasts to aroma-active compound production, phenolic composition and sensory profile in Chinese Vidal icewine. Food Biosci. 2022, 46, 101152. [Google Scholar] [CrossRef]
- Hu, L.; Liu, R.; Wang, X.; Zhang, X. The Sensory Quality Improvement of Citrus Wine through Co-Fermentations with Selected Non-Saccharomyces Yeast Strains and Saccharomyces cerevisiae. Microorganisms 2020, 8, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Chen, J.; Xiao, J.; Cheng, W.; Zheng, X.; Wang, B.; Shi, X. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China. Food Res. Int. 2019, 122, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Qiu, S.; Liu, C.; Zhang, L.; Wu, X.; Ma, L.; Li, J. Abiotic factors play important roles in complexity and characterization of aroma precursors in Vidal blanc grape. Food Res. Int. 2022, 162, 112015. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Garrity, G.; Berner, D.; Kreig, N.; Staley, J. Bergey’s Manual of Systematic Bacteriology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2, Part B. [Google Scholar]
- Golomb, B.L.; Morales, V.; Jung, A.; Yau, B.; Boundy-Mills, K.L.; Marco, M.L. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiol. 2013, 33, 97–106. [Google Scholar] [CrossRef]
- De la Torre-González, F.J.; Narváez-Zapata, J.A.; López-y-López, V.E.; Larralde-Corona, C.P. Ethanol tolerance is decreased by fructose in Saccharomyces and non-Saccharomyces yeasts. LWT Food Sci. Technol. 2016, 67, 1–7. [Google Scholar] [CrossRef]
- Sturm, M.E.; Arroyo-Lopez, F.N.; Garrido-Fernandez, A.; Querol, A.; Mercado, L.A.; Ramirez, M.L.; Combina, M. Probabilistic model for the spoilage wine yeast Dekkera bruxellensis as a function of pH, ethanol and free SO2 using time as a dummy variable. Int. J. Food Microbiol. 2014, 170, 83–90. [Google Scholar] [CrossRef]
- Sullivan, J.; Hollingworth, T.; Wekel, M.; Newton, R.; Larose, J. Determination of Sulfite in Food by Flow Injection Analysis. J. Assoc. Off. Anal. Chem. 1986, 69, 542–546. [Google Scholar]
- Fernandez-San Millan, A.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: Benefits for seedling development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef]
- Rabitti, N.S.; Cattaneo, C.; Appiani, M.; Proserpio, C.; Laureati, M. Describing the Sensory Complexity of Italian Wines: Application of the Rate-All-That-Apply (RATA) Method. Foods 2022, 11, 2417. [Google Scholar] [CrossRef]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Delac Salopek, D.; Horvat, I.; Hranilovic, A.; Plavsa, T.; Radeka, S.; Paskovic, I.; Lukic, I. Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods 2022, 11, 3088. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Li, J.; Chen, Y. Characterization of tolerance and multi-enzyme activities in non-Saccharomyces yeasts isolated from Vidal blanc icewine fermentation. J. Food Biochem. 2019, 43, e13027. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, I.; Walker, M.E.; Vallejo-Pascual, M.E.; Naharro-Carrasco, G.; Jiranek, V. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Sauri minority variety from an experimental vineyard near Leon. Sci. Rep. 2021, 11, 3748. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Agarbati, A.; Galli, E.; Comitini, F.; Ciani, M. Metschnikowia pulcherrima as biocontrol agent and wine aroma enhancer in combination with a native Saccharomyces cerevisiae. LWT 2023, 181, 114758. [Google Scholar] [CrossRef]
- Scansani, S.; van Wyk, N.; Nader, K.B.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pasch, L.; Pretorius, I.S.; von Wallbrunn, C.; et al. The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewurztraminer must. Int. J. Food Microbiol. 2022, 365, 109549. [Google Scholar] [CrossRef]
- Bezus, B.; de Ovalle, S.; González-Pombo, P.; Cavalitto, S.; Cavello, I. Production and characterization of a novel cold-active ß-glucosidase and its influence on aromatic precursors of Muscat wine. Food Biosci. 2023, 53, 102572. [Google Scholar] [CrossRef]
- Vicente, J.; Ruiz, J.; Tomasi, S.; de Celis, M.; Ruiz-de-Villa, C.; Gombau, J.; Rozes, N.; Zamora, F.; Santos, A.; Marquina, D.; et al. Impact of rare yeasts in Saccharomyces cerevisiae wine fermentation performance: Population prevalence and growth phenotype of Cyberlindnera fabianii, Kazachstania unispora, and Naganishia globosa. Food Microbiol. 2023, 110, 104189. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Yi, H.; Wang, B.; Xiao, J.; Zhou, X.; Jiankun, X.; Jiang, L.; Shi, X. Microbial community composition and its role in volatile compound formation during the spontaneous fermentation of ice wine made from Vidal grapes. Process Biochem. 2020, 92, 365–377. [Google Scholar] [CrossRef]
- Perpetuini, G.; Rossetti, A.P.; Battistelli, N.; Zulli, C.; Cichelli, A.; Arfelli, G.; Tofalo, R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res. Int. 2022, 158, 111577. [Google Scholar] [CrossRef] [PubMed]
- Merin, M.G.; Morata de Ambrosini, V.I. Kinetic and metabolic behaviour of the pectinolytic strain Aureobasidium pullulans GM-R-22 during pre-fermentative cold maceration and its effect on red wine quality. Int. J. Food Microbiol. 2018, 285, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Nadai, C.; Vendramini, C.; Carlot, M.; Andrighetto, C.; Giacomini, A.; Corich, V. Dynamics of Saccharomyces cerevisiae Strains Isolated from Vine Bark in Vineyard: Influence of Plant Age and Strain Presence during Grape must Spontaneous Fermentations. Fermentation 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Ludovico, P.; Leao, C. Sugar Metabolism in Yeasts: An Overview of Aerobic and Anaerobic Glucose Catabolism. In Biodiversity and Ecophysiology of Yeasts; The Yeast Handbook; Springer: Berlin/Heidelberg, Germany, 2006; Chapter 6; pp. 101–121. [Google Scholar]
- Castrillo, D.; Blanco, P. Characterization of Indigenous Non-Saccharomyces Yeast Strains with Potential Use in Winemaking. Front. Biosci. 2023, 15, 1. [Google Scholar] [CrossRef]
- Yin, X.; Li, J.; Shin, H.D.; Du, G.; Liu, L.; Chen, J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol. Adv. 2015, 33, 830–841. [Google Scholar] [CrossRef]
- James, A.; Yao, T.; Ke, H.; Wang, Y. Microbiota for production of wine with enhanced functional components. Food Sci. Hum. Wellness 2023, 12, 1481–1492. [Google Scholar] [CrossRef]
- Li, A.H.; Yuan, F.X.; Groenewald, M.; Bensch, K.; Yurkov, A.M.; Li, K.; Han, P.J.; Guo, L.D.; Aime, M.C.; Sampaio, J.P.; et al. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud. Mycol. 2020, 96, 17–140. [Google Scholar] [CrossRef]
- Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2012, 153, 243–259. [Google Scholar] [CrossRef]
- Onetto, C.A.; Borneman, A.R.; Schmidt, S.A. Investigating the effects of Aureobasidium pullulans on grape juice composition and fermentation. Food Microbiol. 2020, 90, 103451. [Google Scholar] [CrossRef]
- Watanabe, D.; Hashimoto, W. Accelerated Alcoholic Fermentation of Intact Grapes by Saccharomyces Cerevisiae in Symbiosis with Microbial Community Inhabiting Grape-skin. Commun. Biol. 2021; submitted. [Google Scholar] [CrossRef]
- Belda, I.; Conchillo, L.B.; Ruiz, J.; Navascues, E.; Marquina, D.; Santos, A. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 2016, 223, 1–8. [Google Scholar] [CrossRef]
- Graf, F.M.R.; Weber, H.E.; Buchhaupt, M. Investigation of non-Saccharomyces yeasts with intracellular beta-glycosidase activity for wine aroma modification. J. Food Sci. 2022, 87, 4868–4877. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Mangieri, N.; Maghradze, D.; Foschino, R.; Valdetara, F.; Cantoral, J.M.; Vigentini, I. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens. Front. Microbiol. 2017, 8, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzini, M.; Zapparoli, G. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity. Int. J. Food Microbiol. 2019, 289, 223–230. [Google Scholar] [CrossRef]
- Wang, X.; Schlatter, D.C.; Glawe, D.A.; Edwards, C.G.; Weller, D.M.; Paulitz, T.C.; Abatzoglou, J.T.; Okubara, P.A. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation. Int. J. Food Microbiol. 2021, 350, 109225. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Costa, L.; Soares, R.; Ayogu, P.; Teixeira, A.; Gerós, H. A catalogue of cultivable yeasts from the microbiota of grape berries cv. Vinhão and Loureiro. OENO One 2022, 56, 247–260. [Google Scholar] [CrossRef]
- Merin, M.G.; Martin, M.C.; Rantsiou, K.; Cocolin, L.; de Ambrosini, V.I. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape. Braz. J. Microbiol. 2015, 46, 815–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, C.; Lage, P.; Esteves, M.; Chambel, L.; Mendes-Faia, A.; Mendes-Ferreira, A. Molecular and Phenotypic Characterization of Metschnikowia pulcherrima Strains from Douro Wine Region. Fermentation 2018, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Sarabia, V.L.; Ballinas-Cesatti, C.B.; Melgar-Lalanne, G.; Cristiani-Urbina, E.; Morales-Barrera, L. Isolation, identification, and kinetic and thermodynamic characterization of a Pichia kudriavzevii yeast strain capable of fermentation. Food Bioprod. Process. 2022, 131, 109–124. [Google Scholar] [CrossRef]
- Lin, M.M.; Boss, P.K.; Walker, M.E.; Sumby, K.M.; Grbin, P.R.; Jiranek, V. Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 2020, 312, 108373. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Lepe, J.A.; Morata, A. New trends in yeast selection for winemaking. Trends Food Sci. Technol. 2012, 23, 39–50. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Sirisena, S.; Gan, R.; Fang, Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef]
- Pina, C.; Santos, C.; Couto, J.A.; Hogg, T. Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—Influence of different culture conditions. Food Microbiol. 2004, 21, 439–447. [Google Scholar] [CrossRef]
- Dahabieh, M.; Swanson, J.; Kinti, E.; Husnik, J. Hydrogen sulfide production by yeast during alcoholic fermentation: Mechanisms and mitigation. Wine Vitic. J. 2015, 30, 23–28. [Google Scholar]
- Donalies, U.E.; Stahl, U. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 2002, 19, 475–484. [Google Scholar] [CrossRef]
- Windholtz, S.; Redon, P.; Lacampagne, S.; Farris, L.; Lytra, G.; Cameleyre, M.; Barbe, J.-C.; Coulon, J.; Thibon, C.; Masneuf-Pomarède, I. Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT 2021, 149, 111781. [Google Scholar] [CrossRef]
- Beltran, G.; Rozès, N.; Mas, A.; Guillamón, J.M. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J. Microbiol. Biotechnol. 2006, 23, 809–815. [Google Scholar] [CrossRef]
- Anton-Diaz, M.J.; Suarez Valles, B.; Mangas-Alonso, J.J.; Fernandez-Garcia, O.; Picinelli-Lobo, A. Impact of different techniques involving contact with lees on the volatile composition of cider. Food Chem. 2016, 190, 1116–1122. [Google Scholar] [CrossRef]
- Lukic, I.; Banovic, M.; Persuric, D.; Radeka, S.; Sladonja, B. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography. J. Chromatogr. A 2006, 1101, 238–244. [Google Scholar] [CrossRef]
- Cortés, S.; Salgado, J.M.; Rodríguez, N.; Domínguez, J.M. The storage of grape marc: Limiting factor in the quality of the distillate. Food Control 2010, 21, 1545–1549. [Google Scholar] [CrossRef]
- Szambelan, K.; Nowak, J.; Szwengiel, A.; Jeleń, H. Quantitative and qualitative analysis of volatile compounds in sorghum distillates obtained under various hydrolysis and fermentation conditions. Ind. Crops Prod. 2020, 155, 112782. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, J.; Zhang, B.; Shen, C.; Yu, L.; Gong, C.; Xu, Y.; Tang, K. Identification, quantitation and organoleptic contributions of furan compounds in brandy. Food Chem. 2023, 412, 135543. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lee, S.J.; Lim, J.H.; Kim, B.K.; Park, K.J. Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses. Food Chem. 2014, 152, 624–632. [Google Scholar] [CrossRef] [PubMed]
Sample | Amplification | Purification | Sequencing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DNA Concentration (ng/µL) | A260/A280 | A260/A230 | DNA Concentration (ng/µL) | A260/A280 | A260/A230 | Yeast Strains | Amplified Product | E-Value | Per Ident | Accession | |
I | 1484.3 | 2.17 | 2.30 | 458.8 | 2.06 | 1.02 | Pichia terricola | 778 | 0 | 100% | NR_153294.1 |
I | 1139.0 | 1.92 | 1.44 | 479.0 | 2.03 | 1.03 | Metschnikowia pulcherrima | 697 | 0 | 100% | MN915122.1 |
I | 107.3 | 1.91 | 1.01 | 464.4 | 2.06 | 1.00 | Naganishia vaughanmartiniae | 932 | 0 | 100% | HM589363.1 |
NC | 172 | 1.78 | 1.72 | 479.4 | 2.02 | 1.00 | Vishniacozyma carnescens | 965 | 0 | 99.81% | OU989508.1 |
NC | 330.7 | 2.04 | 1.47 | 386.6 | 2.05 | 0.98 | Vishniacozyma heimaeyensis | 928 | 0 | 98.48% | JQ768937.1 |
NC | 78.9 | 2.02 | 1.11 | 461.9 | 2.04 | 1.01 | Aureobasidium pullulans | 1061 | 0 | 99.49% | MN752213.1 |
Isolated Non-Saccharomyces Yeast | Ethanol Tolerance 1 | Sulphite Production (mg/L) | Nitrogen Consumption (%) | |||
---|---|---|---|---|---|---|
8% v/v | 12% v/v | 16% v/v | YPG Broth | Must Grape | ||
Metschnikowia pulcherrima | ++ | ++ | ++ | 45.3 ± 5.2 b | 62.6 ± 8.1 a | 93.3 ± 4.7 a |
Pichia terricola | ++ | ++ | + | 51.5 ± 3.4 a | 59.4 ± 5.4 a | 95.8 ± 4.8 a |
Naganishia vaughanmartiniae | + | + | − | 49.1 ± 5.1 b | 60.5 ± 6.7 a | 90.8 ± 4.8 a |
Aureobasidium pullulans | + | + | − | 66.0 ± 5.8 a | 57.7 ± 6.2 a | 99.3 ± 5.0 a |
Vishniacozyma heimaeyensis | + | + | + | 58.1 ± 6.4 a | 63.2 ± 8.7 a | 94.8 ± 4.9 a |
Vishniacozyma carnescens | + | + | − | 62.8 ± 7.8 a | 60.8 ± 7.5 a | 94.8 ± 4.9 a |
Volatile Compounds (µg/L) | Pisco from Italy Grape Variety (n = 18) | Pisco from Negra Criolla Grape Variety | ||||||
---|---|---|---|---|---|---|---|---|
(n = 18) | ||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | |
1-hexanol(1-H) | 256.47 | 773.59 | 504.58 | 146 | 446.85 | 2784.5 | 1143.64 | 590.01 |
3-hexen-1-ol (3-H-ol) | 50.93 | 343.74 | 184.67 | 83.68 | 1.07 | 12.85 | 5.15 | 2.72 |
2-phenylethyl acetate (2-Pa) | 122.86 | 525.2 | 238.03 | 104.53 | 278.07 | 2923.13 | 847.1 | 561.88 |
Bencyl alcohol (Ba) | 6.67 | 75 | 33.07 | 21.52 | 6.67 | 112.24 | 35.24 | 24.04 |
Ethyl butanoate (Eb) | 4.65 | 95.63 | 35.5 | 23.39 | 13.29 | 81.33 | 32.59 | 14.82 |
Citronellol (C) | 138.67 | 352.34 | 226.04 | 71.13 | - | - | - | - |
Ethyl decanoate (Ed) | 91.65 | 1248.89 | 454.18 | 306.08 | 48.77 | 830.48 | 330.35 | 208.97 |
Phenylethyl alcohol (Pa) | 2721.95 | 13,330.25 | 7630.61 | 2641.98 | 13,524.83 | 38,837.24 | 22,770.97 | 6095.05 |
Furfural (F) | 7.54 | 166.47 | 82.73 | 44.46 | 6.67 | 86.68 | 36.81 | 21.41 |
Geraniol (G) | 181.1 | 442.19 | 309.63 | 66.45 | - | - | - | - |
Ethyl hexanoate (Ehx) | 20.77 | 219.85 | 69.5 | 55.36 | 24.67 | 144.02 | 79.4 | 32.45 |
Ethyl heptanoate (Ehp) | - | - | - | - | n.d. | 5.34 | 0.88 | 1.59 |
Isoamyl acetate (Ia) | 13.06 | 303.48 | 103.74 | 79.15 | 80.13 | 632.38 | 187.41 | 134.68 |
Ethyl laurate (El) | 222.03 | 1056.14 | 484.35 | 235.46 | 325.37 | 1970.95 | 849.26 | 391.05 |
Linalool (L) | 873.43 | 2342.24 | 1386.83 | 398.29 | - | - | - | - |
Nerol (N) | 106.66 | 188.41 | 133.15 | 23.294 | - | - | - | - |
Ethyl octanoate (Eo) | 41.48 | 290.01 | 123.73 | 81.86 | 31.48 | 427.67 | 171.12 | 103.29 |
Ethyl pelargonate (Ep) | 0 | 4.11 | 1.5 | 0.93 | 0.85 | 4.71 | 2.04 | 1.07 |
α-Terpineol (α-T) | 190.61 | 456.48 | 284.55 | 64.44 | 3.46 | 133.68 | 16.76 | 27.92 |
Ethyl valerate (Ev) | n.d. | 0.83 | 0.089 | 0.22 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napa-Almeyda, C.A.; Criado, C.; Mayta-Hancco, J.; Silva-Jaimes, M.; Condezo-Hoyos, L.; Pozo-Bayón, M.Á. Non-Saccharomyces Yeast Strains, Aromatic Compounds and Sensory Analysis of Italy and Negra Criolla Pisco from the Moquegua Region of Peru. Fermentation 2023, 9, 757. https://doi.org/10.3390/fermentation9080757
Napa-Almeyda CA, Criado C, Mayta-Hancco J, Silva-Jaimes M, Condezo-Hoyos L, Pozo-Bayón MÁ. Non-Saccharomyces Yeast Strains, Aromatic Compounds and Sensory Analysis of Italy and Negra Criolla Pisco from the Moquegua Region of Peru. Fermentation. 2023; 9(8):757. https://doi.org/10.3390/fermentation9080757
Chicago/Turabian StyleNapa-Almeyda, César Augusto, Celia Criado, Jhony Mayta-Hancco, Marcial Silva-Jaimes, Luis Condezo-Hoyos, and María Ángeles Pozo-Bayón. 2023. "Non-Saccharomyces Yeast Strains, Aromatic Compounds and Sensory Analysis of Italy and Negra Criolla Pisco from the Moquegua Region of Peru" Fermentation 9, no. 8: 757. https://doi.org/10.3390/fermentation9080757
APA StyleNapa-Almeyda, C. A., Criado, C., Mayta-Hancco, J., Silva-Jaimes, M., Condezo-Hoyos, L., & Pozo-Bayón, M. Á. (2023). Non-Saccharomyces Yeast Strains, Aromatic Compounds and Sensory Analysis of Italy and Negra Criolla Pisco from the Moquegua Region of Peru. Fermentation, 9(8), 757. https://doi.org/10.3390/fermentation9080757