Improving the Agronomic Value of Paddy Straw Using Trichoderma harzianum, Eisenia fetida and Cow Dung
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Paddy Straw, Eisenia fetida, and Trichoderma harzianum
2.2. Experimental Design with Treatment Conditions
2.3. Physico-Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analysis of pH
3.2. Analysis of Total Organic Carbon (TOC)
3.3. Analysis of Nitrogen (N)
3.4. Analysis of C:N Ratio
3.5. Analysis of Potassium (K)
3.6. Analysis of Phosphorous (P)
3.7. Analysis of Calcium (Ca)
3.8. Analysis of Magnesium (Mg)
3.9. Analysis of Sodium (Na)
3.10. Micronutrient (Cu, Fe and Zn) Profile during Composting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption: Global Rice Production, Consumption, and Trade. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef]
- Ali Mekouar, M. 15. Food and Agriculture Organization of the United Nations (FAO). Yearb. Int. Environ. Law 2017, 28, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Das, P.; Ragauskas, A.J. Rice Straw as a Feedstock for Biofuels: Availability, Recalcitrance, and Chemical Properties. Biofuels Bioprod. Biorefining 2018, 12, 83–107. [Google Scholar] [CrossRef]
- Shukla, L.; Suman, A.; Verma, P.; Yadav, A.N.; Saxena, A.K. Syntrophic Microbial System for Ex-Situ Degradation of Paddy Straw at Low Temperature under Controlled and Natural Environment. J. Appl. Biol. Biotechnol. 2016, 4, 30–37. [Google Scholar]
- Muzamil, M.; Mani, I.; Kumar, A.; Shukla, L. An Engineering Intervention to Prevent Paddy Straw Burning through in Situ Microbial Degradation. J. Inst. Eng. India Ser. A 2021, 102, 11–17. [Google Scholar] [CrossRef]
- Arora, M.; Kaur, A. Azolla pinnata, Aspergillus terreus and Eisenia fetida for Enhancing Agronomic Value of Paddy Straw. Sci. Rep. 2019, 9, 1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phutela, U.G.; Sahni, N.; Sooch, S.S. Fungal Degradation of Paddy Straw for Enhancing Biogas Production. Indian J. Sci. Technol. 2011, 4, 660–665. [Google Scholar] [CrossRef]
- Goyal, S.; Sindhu, S.S. Composting of Rice Stravv Using Different Inocula and Analysis of Compost Guality. Microbiol. J. 2011, 1, 126–138. [Google Scholar] [CrossRef] [Green Version]
- El-Hassanin, A.S.; Samak, M.; Ahmed, S.; Afifi, M.; Abd El-Satar, A. Bioaccumulation of Heavy Metals during Composting and Vermicomposting Processes of Sewage Sludge. Egypt. J. Chem. 2022, 65, 1155–1162. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial Diversity of Vermicompost Bacteria That Exhibit Useful Agricultural Traits and Waste Management Potential. SpringerPlus 2012, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, M.; Souri, M.K.; Mousavi, A.; Sahebani, N. Biochar and Vermicompost Improve Growth and Physiological Traits of Eggplant (Solanum melongena L.) under Deficit Irrigation. Chem. Biol. Technol. Agric. 2021, 8, 19. [Google Scholar] [CrossRef]
- Kumar, A.; Gaind, S.; Nain, L. Evaluation of Thermophilic Fungal Consortium for Paddy Straw Composting. Biodegradation 2008, 19, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Kausar, H.; Sariah, M.; Saud, H.M.; Alam, M.Z.; Ismail, M.R. Development of Compatible Lignocellulolytic Fungal Consortium for Rapid Composting of Rice Straw. Int. Biodeterior. Biodegrad. 2010, 64, 594–600. [Google Scholar] [CrossRef]
- Hefnawy, M.; Gharieb, M.; Nagdi, O.M. Microbial Diversity during Composting Cycles of Rice Straw. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 232–245. [Google Scholar]
- Tang, J.-C.; Inoue, Y.; Yasuta, T.; Yoshida, S.; Katayama, A. Chemical and Microbial Properties of Various Compost Products. Soil Sci. Plant Nutr. 2003, 49, 273–280. [Google Scholar] [CrossRef]
- Sitepu, R.B.; Anas, I.; Djuniwati, S. Utilization of Straw as Organic Fertilizer to Increase Growth and Production of Rice (Oryza sativa). Bul. Tanah Dan Lahan 2017, 1, 100–108. [Google Scholar]
- Yaacob, S.Z.; Abdullah, N.; Abdullah, L.C. Potential of Trichoderma harzianum as Cellulose Biodegrader in Biocomposting of Paddy Straw. J. Adv. Res. Mater. Sci. 2019, 39, 8–13. [Google Scholar]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A. Composting of Municipal Solid Waste Using Earthworms and Ligno-Cellulolytic Microbial Consortia for Reclamation of the Degraded Sodic Soils and Harnessing Their Productivity Potential. Sustainability 2023, 15, 2317. [Google Scholar] [CrossRef]
- Singh, W.R.; Kalamdhad, A.S. Transformation of Nutrients and Heavy Metals during Vermicomposting of the Invasive Green Weed Salvinia Natans Using Eisenia fetida. Int. J. Recycl. Org. Waste Agric. 2016, 5, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, J.; Edwards, C.A.; Dominguez, J. The Biology and Population Dynamics of Eudriluseugeniae (Kinberg)(Oligochaeta) in Cattle Waste Solids. Pedobiologia 2001, 45, 341–353. [Google Scholar] [CrossRef] [Green Version]
- John, K.; Janz, B.; Kiese, R.; Wassmann, R.; Zaitsev, A.S.; Wolters, V. Earthworms Offset Straw-Induced Increase of Greenhouse Gas Emission in Upland Rice Production. Sci. Total Environ. 2020, 710, 136352. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Sun, Y.; Qin, Q.; Sun, L.; Zheng, X.; Terzaghi, W.; Lv, W.; Xue, Y. The Effects of Earthworms on Fungal Diversity and Community Structure in Farmland Soil with Returned Straw. Front. Microbiol. 2020, 11, 594265. [Google Scholar] [CrossRef]
- Singh, K.P.; Kumar, V.; Hooda, J.S. The Effect of Inoculation with Eisenia Foetida and N-Fixing or P-Solubilizing Microorganisms on Decomposition of Cattle Dung and Crop Residues. Biol. Agric. Hortic. 2000, 18, 103–112. [Google Scholar] [CrossRef]
- Jaybhaye, M.M.; Bhalerao, S.A. Influence of Vermiwash on Germination and Growth Parameters of Seedlings of Green Gram (Vigna radiata L.) and Black Gram (Vigna mungo L.). Int. J. Curr. Microbiol. App. Sci. 2015, 4, 634–643. [Google Scholar]
- Rini, J.; Deepthi, M.P.; Saminathan, K.; Narendhirakannan, R.T.; Karmegam, N.; Kathireswari, P. Nutrient Recovery and Vermicompost Production from Livestock Solid Wastes with Epigeic Earthworms. Bioresour. Technol. 2020, 313, 123690. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.K.; Aneja, K.R.; Rana, D. Current Status of Cow Dung as a Bioresource for Sustainable Development. Bioresour. Bioprocess. 2016, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Jodice, R.; Luzzati, A.; Nappi, P. The Influence of Organic Fertilizers, Obtained from Poplar Barks, on the Correction of Iron Chlorosis of Lupinus albus L. Plant Soil 1982, 65, 309–317. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Bremner, J.M.; Hauck, R.D. Advances in Methodology for Research on Nitrogen Transformations in Soils. Nitrogen Agric. Soils 1982, 22, 467–502. [Google Scholar]
- Sharma, K.; Garg, V.K. Comparative Analysis of Vermicompost Quality Produced from Rice Straw and Paper Waste Employing Earthworm Eisenia fetida (Sav.). Bioresour. Technol. 2018, 250, 708–715. [Google Scholar] [CrossRef]
- Jackson, M. Soil Chemical Analysis Prentice; Hall India Priv. Ltd.: New Delhi, India, 1967; p. 498. [Google Scholar]
- Koenig, R.; Johnson, C. Colorimetric Determination of Phosphorus in Biological Materials. Ind. Eng. Chem. Anal. Ed. 1942, 14, 155–156. [Google Scholar] [CrossRef]
- Allen, S.E.; Grimshaw, H.M.; Rowland, A.P. Chemical Analysis. Methods in Plant Ecology; Blackwell Scientific Publications: Hoboken, NJ, USA, 1986; pp. 285–344. [Google Scholar]
- Singh, D.; Suthar, S. Vermicomposting of Herbal Pharmaceutical Industry Waste: Earthworm Growth, Plant-Available Nutrient and Microbial Quality of End Materials. Bioresour. Technol. 2012, 112, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Gaind, S.; Ali, A.; Nain, L. Effect of Bioaugmentation and Nitrogen Supplementation on Composting of Paddy Straw. Biodegradation 2009, 20, 293–306. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, R.; Wu, H.; Xu, D.; Tang, Z.; Yu, G.; Xu, Z.; Shen, Q. Changes in Biochemical and Microbiological Parameters during the Period of Rapid Composting of Dairy Manure with Rice Chaff. Bioresour. Technol. 2011, 102, 9040–9049. [Google Scholar] [CrossRef] [PubMed]
- Ndegwa, P.M.; Thompson, S.A. Integrating Composting and Vermicomposting in the Treatment and Bioconversion of Biosolids. Bioresour. Technol. 2001, 76, 107–112. [Google Scholar] [CrossRef]
- Kumar, S.; Nakajima, T.; Mbonimpa, E.G.; Gautam, S.; Somireddy, U.R.; Kadono, A.; Lal, R.; Chintala, R.; Rafique, R.; Fausey, N. Long-Term Tillage and Drainage Influences on Soil Organic Carbon Dynamics, Aggregate Stability and Corn Yield. Soil Sci. Plant Nutr. 2014, 60, 108–118. [Google Scholar] [CrossRef]
- Rashad, F.M.; Saleh, W.D.; Moselhy, M.A. Bioconversion of Rice Straw and Certain Agro-Industrial Wastes to Amendments for Organic Farming Systems: 1. Composting, Quality, Stability and Maturity Indices. Bioresour. Technol. 2010, 101, 5952–5960. [Google Scholar] [CrossRef]
- Ren, G.; Xu, X.; Qu, J.; Zhu, L.; Wang, T. Evaluation of Microbial Population Dynamics in the Co-Composting of Cow Manure and Rice Straw Using High Throughput Sequencing Analysis. World J. Microbiol. Biotechnol. 2016, 32, 101. [Google Scholar] [CrossRef]
- Loh, T.C.; Lee, Y.C.; Liang, J.B.; Tan, D. Vermicomposting of Cattle and Goat Manures by Eisenia foetida and Their Growth and Reproduction Performance. Bioresour. Technol. 2005, 96, 111–114. [Google Scholar] [CrossRef]
- Aira, M.; Monroy, F.; Dominguez, J. Earthworms Strongly Modify Microbial Biomass and Activity Triggering Enzymatic Activities during Vermicomposting Independently of the Application Rates of Pig Slurry. Sci. Total Environ. 2007, 385, 252–261. [Google Scholar] [CrossRef]
- Negi, R.; Suthar, S. Degradation of Paper Mill Wastewater Sludge and Cow Dung by Brown-Rot Fungi Oligoporus Placenta and Earthworm (Eisenia fetida) during Vermicomposting. J. Clean. Prod. 2018, 201, 842–852. [Google Scholar] [CrossRef]
- Mane, T.T.; Raskar Smita, S. Management of Agriculture Waste from Market Yard through Vermicomposting. Res. J. Recent Sci. ISSN 2012, 2277, 2502. [Google Scholar]
- Das, D.; Powell, M.; Bhattacharyya, P.; Banik, P. Changes of Carbon, Nitrogen, Phosphorous, and Potassium Content during Storage of Vermicomposts Prepared from Different Substrates. Environ. Monit. Assess. 2014, 186, 8827–8832. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Pandey, B.; Gusain, R.; Gaur, R.Z.; Kumar, K. Nutrient Changes and Biodynamics of Eisenia fetida during Vermicomposting of Water Lettuce (Pistia Sp.) Biomass: A Noxious Weed of Aquatic System. Environ. Sci. Pollut. Res. 2017, 24, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Karnchanawong, S.; Mongkontep, T.; Praphunsri, K. Effect of Green Waste Pretreatment by Sodium Hydroxide and Biomass Fly Ash on Composting Process. J. Clean. Prod. 2017, 146, 14–19. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.C.; Wu, Q.T.; Nagar, B.B. Effect of C/N on Composting of Pig Manure with Sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Pandit, N.P.; Ahmad, N.; Maheshwari, S.K. Vermicomposting Biotechnology an Eco-Loving Approach for Recycling of Solid Organic Wastes into Valuable Biofertilizers. J. Biofertil. Biopestic 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Sellami, F.; Hachicha, S.; Chtourou, M.; Medhioub, K.; Ammar, E. Maturity Assessment of Composted Olive Mill Wastes Using UV Spectra and Humification Parameters. Bioresour. Technol. 2008, 99, 6900–6907. [Google Scholar] [CrossRef]
- Sharma, S. Municipal Solid Waste Management through Vermicomposting Employing Exotic and Local Species of Earthworms. Bioresour. Technol. 2003, 90, 169–173. [Google Scholar]
- Lakshmi, C.S.R.; Rao, P.; Sreelatha, T.; Madahvi, M.; Padmaja, G.; Rao, V.; Sireesha, A. Manurial Value of Different Vermicomposts and Conventional Composts. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 59–64. [Google Scholar]
- Garg, V.K.; Gupta, R. Vermicomposting of Agro-Industrial Processing Waste. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: New Delhi, India, 2009; pp. 431–456. [Google Scholar]
- Chaudhary, D.R.; Bhandari, S.C.; Shukla, L.M. Role of Vermicompost in Sustainable Agriculture—A Review. Agric. Rev. 2004, 25, 29–39. [Google Scholar]
- Tallapragada, P.; Gudimi, M. Phosphate Solubility and Biocontrol Activity of Trichoderma Harzianum. Turk. J. Biol. 2011, 35, 593–600. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, X.; Zheng, M.; Cheng, H. Calcium Gradients Underlying Cell Migration. Curr. Opin. Cell Biol. 2012, 24, 254–261. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms; Chapman & Hall: London, UK, 1996; Volume 3. [Google Scholar]
- Pramanik, P.; Chung, Y.R. Changes in Fungal Population of Fly Ash and Vinasse Mixture during Vermicomposting by Eudriluseugeniae and Eisenia fetida: Documentation of Cellulase Isozymes in Vermicompost. Waste Manag. 2011, 31, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, S.; Reddy, M.V. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species—Eisenia fetida, Eudriluseugeniae, and Perionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 967526. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S. Vermicomposting of Vegetable-Market Solid Waste Using Eisenia fetida: Impact of Bulking Material on Earthworm Growth and Decomposition Rate. Ecol. Eng. 2009, 35, 914–920. [Google Scholar] [CrossRef]
- Suthar, S. Pilot-Scale Vermireactors for Sewage Sludge Stabilization and Metal Remediation Process: Comparison with Small-Scale Vermireactors. Ecol. Eng. 2010, 36, 703–712. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Wu, T.Y.; Lim, S.L.; Lee, C.A. Sustainable Reuse of Rice Residues as Feedstocks in Vermicomposting for Organic Fertilizer Production. Environ. Sci. Pollut. Res. 2014, 21, 1349–1359. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium—A Functional Plant Nutrient. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar]
- Karwal, M.; Kaushik, A. Co-Composting and Vermicomposting of Coal Fly-Ash with Press Mud: Changes in Nutrients, Micro-Nutrients and Enzyme Activities. Environ. Technol. Innov. 2020, 18, 100708. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, J.; Vig, A.P. Potential Utilization of Bagasse as Feed Material for Earthworm Eisenia fetida and Production of Vermicompost. Springerplus 2015, 4, 11. [Google Scholar] [CrossRef]
- Daur, I. Study of Commercial Effective Microorganism on Composting and Dynamics of Plant Essential Metal Micronutrients. J. Environ. Biol. 2016, 37, 937. [Google Scholar] [PubMed]
- Jusoh, M.L.C.; Manaf, L.A.; Latiff, P.A. Composting of Rice Straw with Effective Microorganisms (EM) and Its Influence on Compost Quality. Iran. J. Environ. Health Sci. Eng. 2013, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Interval (Days) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH Value | Carbon (%) | Nitrogen (%) | C:N Ratio | Potassium (%) | Phosphorous (%) | |||||||
At Start | At End | At Start | At End | At Start | At End | At Start | At End | At Start | At End | At Start | At End | |
T0 | 6.06 | 7.83 * (29.21) | 47.90 ± 0.40 | 42.90 ± 0.14 * (10.44) | 0.43 ± 0.002 | 0.65 ± 0.004 * (51.16) | 110.50 ± 1.52 | 66.01 ± 0.27 * (40.26) | 1.67 ± 0.007 | 1.84 ± 0.004 * (10.17) | 0.05 ± 0.01 | 0.09 ± 0.002 * (80) |
T1 | 6.7 | 7.86 * (17.31) | 45.83 ± 0.14 | 33 ± 0.44 * (27.99) | 0.54 ± 0.002 | 0.75 ± 0.004 * (38.89) | 84.30 ± 0.44 | 43.93 ± 0.33 * (47.89) | 2.26 ± 0.004 | 2.52 ± 0.004 * (11.50) | 0.2 ± 0.009 | 0.31 ± 0.01 * (55) |
T2 | 6.26 | 7.2 * (15.02) | 44.16 ± 0.42 | 30.90 ± 0.41 a* (30.03) | 0.56 ± 0.004 | 0.81 ± 0.004 a* (44.64) | 78.86 ± 1.20 | 38.13 ± 0.61 a* (51.65) | 2.34 ± 0.004 | 2.59 ± 0.01 * (10.68) | 0.21 ± 0.02 | 0.42 ± 0.02 * (100) |
T3 | 6.13 | 6.16 * (0.49) | 43.83 ± 0.22 | 32.06 ± 0.64 a* (26.85) | 0.56 ± 0.007 | 0.82 ± 0.004 a* (46.43) | 78.43 ± 1.79 | 39.06 ± 0.84 a* (50.20) | 2.35 ± 0.004 | 2.63 ± 0.007 * (11.91) | 0.21 ± 0.01 | 0.43 ± 0.03 * (104.7) |
T4 | 6.63 | 6.5 * (1.96) | 43.93 ± 0.31 | 28.83 ± 0.26 * (34.37) | 0.57 ± 0.007 | 0.87 ± 0.004 * (52.63) | 81.53 ± 2.61 | 33.10 ± 0.16 * (59.40) | 2.36 ± 0.002 | 2.66 ± 0.007 * (12.71) | 0.21 ± 0.01 | 0.47 ± 0.02 * (123.8) |
Treatment | Interval (Days) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Calcium (%) | Magnesium (%) | Sodium (%) | Copper (ppm) | Iron (ppm) | Zinc (ppm) | |||||||
At Start | At End | At Start | At End | At Start | At End | At Start | At End | At Start | At End | At Start | At End | |
T0 | 0.005 ± 0.0005 | 0.024 ± 0.0007 * (380) | 0.007 ± 0.0007 | 0.045 ± 0.0009 * (542) | 0.21 ± 0.006 | 0.32 ± 0.003 * (53.2) | 2.38± 0.005 | 16.73 ± 0.66 * (602) | 302 ± 1.72 | 525 ± 4.47 * (73.8) | 49.25 ± 0.16 | 292 ± 4.00 * (492) |
T1 | 0.006 ± 0.0005 | 0.029 ± 0.0005 * (383) | 0.009 ± 0.0004 | 0.046 ± 0.0004 * (411) | 0.26 ± 0.003 | 0.38 ± 0.004 * (46.4) | 2.90 ± 0.002 | 32.33 ± 0.61 * (1014) | 964 ± 3.65 | 1036 ± 2.27 * (7.46) | 183.4 ± 1.43 | 334 ± 2.23 * (82.5) |
T2 | 0.006 ± 0.0002 | 0.030 ± 0.0007 * (400) | 0.008 ± 0.0004 | 0.051 ± 0.001 * (537) | 0.26 ± 0.004 | 0.39 ± 0.004 * (50) | 2.90 ± 0.09 | 35.44 ± 0.58 * (1122) | 965 ± 2.63 | 1061 ± 2.34 * (9.94) | 192.8 ± 1.01 | 380 ± 2.94 * (97.09) |
T3 | 0.007 ± 0.0002 | 0.031 ± 0.0002 * (342) | 0.008 ± 0.0005 | 0.053 ± 0.001 * (562) | 0.26 ± 0.004 | 0.41 ± 0.004 * (47.6) | 2.93 ± 0.01 | 36.36 ± 0.60 * (1138) | 967 ± 3.77 | 1109 ± 3.90 * (14.68) | 193.4 ± 1.20 | 395 ± 2.47 * (104.23) |
T4 | 0.008 ± 0.0005 | 0.033 ± 0.0007 * (312) | 0.009 ± 0.0004 | 0.056 ± 0.001 * (522) | 0.26 ± 0.002 | 0.42 ± 0.003 * (61.5) | 2.85 ± 0.02 | 47.93 ± 0.28 * (1581) | 967 ± 2.75 | 1128 ± 3.85 * (16.64) | 194.9 ± 2.33 | 500 ± 4.61 * (156.54) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Singh, J.; Singh, B.; Malik, V. Improving the Agronomic Value of Paddy Straw Using Trichoderma harzianum, Eisenia fetida and Cow Dung. Fermentation 2023, 9, 671. https://doi.org/10.3390/fermentation9070671
Sharma N, Singh J, Singh B, Malik V. Improving the Agronomic Value of Paddy Straw Using Trichoderma harzianum, Eisenia fetida and Cow Dung. Fermentation. 2023; 9(7):671. https://doi.org/10.3390/fermentation9070671
Chicago/Turabian StyleSharma, Neetu, Jagjeet Singh, Bijender Singh, and Vinay Malik. 2023. "Improving the Agronomic Value of Paddy Straw Using Trichoderma harzianum, Eisenia fetida and Cow Dung" Fermentation 9, no. 7: 671. https://doi.org/10.3390/fermentation9070671
APA StyleSharma, N., Singh, J., Singh, B., & Malik, V. (2023). Improving the Agronomic Value of Paddy Straw Using Trichoderma harzianum, Eisenia fetida and Cow Dung. Fermentation, 9(7), 671. https://doi.org/10.3390/fermentation9070671