16S rRNA Sequencing Reveals the Antibacterial Effect of Omega-3 (Fish Oil) against Fibrolytic Bacteria, Altering Fermentation and Volatile Fatty Acids Profile In Vitro
Abstract
:1. Introduction
2. Materials and Method
2.1. Sampling and In Vitro Fermentations
2.2. Chemical Analysis
2.3. Sequence Accession Numbers
2.4. The 16S rDNA Sequence Data Acquisition and Bioinformatics
2.5. Statistical Analysis
2.6. Differential Analysis between Groups
2.7. 16s Functional Genes Prediction
3. Results
3.1. Fermentation and Short Chain Fatty Acid (SCFA) Activity
3.2. Species Refraction Curve
3.3. Differential Rumen Bacterial Taxa among Different Treatments Differential Alpha Diversity Analysis
3.4. Taxonomic Composition and Alteration of Bacterial Community Associated with Different Levels of FO
3.5. Linear Discriminant Analysis of Effect Size (LDA)
3.6. Predictive Functional Profiling Based on the KEGG Pathway Database
3.7. Predictive Functional Profiling Based on the COGs Database
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, G.; Zhang, Y.; Xu, Q.; Zheng, N.; Zhao, S.; Liu, K.; Qu, X.; Yu, J.; Wang, J. DHA content in milk and biohydrogenation pathway in rumen: A review. PeerJ 2020, 8, e10230. [Google Scholar] [CrossRef]
- Lourenço, M.; Ramos-Morales, E.; Wallace, R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [Green Version]
- Loor, J.; Hoover, W.; Miller-Webster, T.; Herbein, J.; Polan, C. Biohydrogenation of unsaturated fatty acids in continuous culture fermenters during digestion of orchardgrass or red clover with three levels of ground corn supplementation. J. Anim. Sci. 2003, 81, 1611–1627. [Google Scholar] [CrossRef]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Mamuad, L.L.; Lee, S.S.; Lee, S.S. Recent insight and future techniques to enhance rumen fermentation in dairy goats. Asian-Australas. J. Anim. Sci. 2019, 32, 1321. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Myer, P.R.; Smith, T.P.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, T.; Titgemeyer, E. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [Green Version]
- Boerman, J.; Lock, A. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle. J. Dairy Sci. 2014, 97, 7031–7042. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.; Ahvenjärvi, S.; Toivonen, V.; Ärölä, A.; Nurmela, K.; Huhtanen, P.; Griinari, J.M. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 2003, 77, 165–179. [Google Scholar] [CrossRef]
- Pirondini, M.; Colombini, S.; Mele, M.; Malagutti, L.; Rapetti, L.; Galassi, G.; Crovetto, G. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J. Dairy Sci. 2015, 98, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Donovan, D.C.; Schingoethe, D.J.; Baer, R.J.; Ryali, J.; Hippen, A.R.; Franklin, S.T. Influence of Dietary Fish Oil on Conjugated Linoleic Acid and Other Fatty Acids in Milk Fat from Lactating Dairy Cows1. J. Dairy Sci. 2000, 83, 2620–2628. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; Snelling, T.J.; López-Ferreras, L.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Effect of sunflower and marine oils on ruminal microbiota, in vitro fermentation and digesta fatty acid profile. Front. Microbiol. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- AbuGhazaleh, A.; Ishlak, A. Effects of incremental amounts of fish oil on trans fatty acids and b utyrivibrio bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 2014, 98, 271–278. [Google Scholar] [CrossRef]
- Harfoot, C.; Hazlewood, G.; Hobson, P.; Stewart, C.J.e.H.P.; Stewart CS, C.; Hall, L. The Rumen Microbial Ecosystem; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; pp. 382–426. [Google Scholar]
- Maia, M.R.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Yuan, Z.; Wu, Y.; Wang, J.; Liu, J.; Zhu, W.J. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. 2008, 146, 259–269. [Google Scholar] [CrossRef]
- Huws, S.A.; Kim, E.J.; Lee, M.R.; Scott, M.B.; Tweed, J.K.; Pinloche, E.; Wallace, R.J.; Scollan, N.D. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 2011, 13, 1500–1512. [Google Scholar] [CrossRef]
- Toral, P.G.; Belenguer, A.; Shingfield, K.J.; Hervás, G.; Toivonen, V.; Frutos, P. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2012, 95, 794–806. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Luo, G.; Abdelrahman, M.; Riaz, U.; Gao, S.; Yao, Z.; Ye, T.; Lv, H.; Zhao, J.; Chen, C.; et al. Effects of capsicum oleoresin supplementation on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. Front. Microbiol 2022, 13, 1005818. [Google Scholar] [CrossRef]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. In Annales de Zootechnie; EDP Sciences: Les Ulis, France, 2000; pp. 231–253. [Google Scholar]
- Colombini, S.; Graziosi, A.R.; Parma, P.; Iriti, M.; Vitalini, S.; Sarnataro, C.; Spanghero, M. Evaluation of dietary addition of 2 essential oils from Achillea moschata, or their components (bornyl acetate, camphor, and eucalyptol) on in vitro ruminal fermentation and microbial community composition. Anim. Nutr. 2021, 7, 224–231. [Google Scholar] [CrossRef]
- Li, A.; Liu, B.; Li, F.; He, Y.; Wang, L.; Fakhar, E.A.K.M.; Li, H.; Fu, Y.; Zhu, H.; Wang, Y.; et al. Integrated Bacterial and Fungal Diversity Analysis Reveals the Gut Microbial Alterations in Diarrheic Giraffes. Front. Microbiol. 2021, 12, 712092. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [Green Version]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef]
- Carreño, D.; Toral, P.; Pinloche, E.; Belenguer, A.; Yáñez-Ruiz, D.; Hervás, G.; McEwan, N.; Newbold, C.; Frutos, P. Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study. Sci. Rep. 2019, 9, 11857. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Hervás, G.; Carreño, D.; Leskinen, H.; Belenguer, A.; Shingfield, K.J.; Frutos, P. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. J. Dairy Sci. 2017, 100, 6187–6198. [Google Scholar] [CrossRef]
- Tomazetto, G.; Hahnke, S.; Wibberg, D.; Pühler, A.; Klocke, M.; Schlüter, A. Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions. Biotechnol. Rep. 2018, 18, e00254. [Google Scholar] [CrossRef]
- Hao, Y.; Gong, Y.; Huang, S.; Ji, S.; Wang, W.; Wang, Y.; Yang, H.; Cao, Z.; Li, S. Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle. Microorganisms 2021, 9, 1788. [Google Scholar] [CrossRef]
- Chen, S.; Niu, L.; Zhang, Y. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 2010, 60, 2735–2738. [Google Scholar] [CrossRef] [Green Version]
- Paillard, D.; McKain, N.; Chaudhary, L.C.; Walker, N.D.; Pizette, F.; Koppova, I.; McEwan, N.R.; Kopečný, J.; Vercoe, P.E.; Louis, P.; et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 2007, 91, 417–422. [Google Scholar] [CrossRef]
- Jeyanathan, J.; Escobar, M.; Wallace, R.J.; Fievez, V.; Vlaeminck, B. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18. BMC Microbiol. 2016, 16, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kairenius, P.; Leskinen, H.; Toivonen, V.; Muetzel, S.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Wallace, R.; Shingfield, K.J. Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J. Dairy Sci. 2018, 101, 3021–3035. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Kairenius, P.; Ärölä, A.; Paillard, D.; Muetzel, S.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Toivonen, V.; Griinari, J.M. Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. J. Nutr. 2012, 142, 1437–1448. [Google Scholar] [CrossRef] [Green Version]
- Counotte, G.; Prins, R.; Janssen, R.; Debie, M.J.A. Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Appl. Environ. Microbiol. 1981, 42, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Henning, P.; Horn, C.; Steyn, D.; Meissner, H.; Hagg, F.M. The potential of Megasphaera elsdenii isolates to control ruminal acidosis. Anim. Feed. Sci. Technol. 2010, 157, 13–19. [Google Scholar] [CrossRef]
- Muya, M.; Nherera, F.; Miller, K.; Aperce, C.; Moshidi, P.; Erasmus, L.J. Effect of Megasphaera elsdenii NCIMB 41125 dosing on rumen development, volatile fatty acid production and blood β-hydroxybutyrate in neonatal dairy calves. J. Anim. Physiol. Anim. Nutr. 2015, 99, 913–918. [Google Scholar] [CrossRef]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef]
- Whitlock, L.; Schingoethe, D.; Hippen, A.; Kalscheur, K.; Baer, R.; Ramaswamy, N.; Kasperson, K.J. Fish oil and extruded soybeans fed in combination increase conjugated linoleic acids in milk of dairy cows more than when fed separately. J. Dairy Sci. 2002, 85, 234–243. [Google Scholar] [CrossRef]
- Palmquist, D.; Griinari, J. Milk fatty acid composition in response to reciprocal combinations of sunflower and fish oils in the diet. Anim. Feed. Sci. Technol. 2006, 131, 358–369. [Google Scholar] [CrossRef]
- Maia, M.R.; Chaudhary, L.C.; Bestwick, C.S.; Richardson, A.J.; McKain, N.; Larson, T.R.; Graham, I.A.; Wallace, R.J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [Green Version]
Diet component | ||
Forage | ||
Corn silage | ||
Concentrate mixture components | ||
Corn | ||
Soybean meal | ||
Cottonseed meal | ||
Wheat bran | ||
CaHCo3 | ||
NaCl | ||
Vit. A, D, E | ||
FeSo4 | ||
ZnSo4 | ||
MnSo4 | ||
Chemical composition (Forage: concentrate) | 30:70 | 70:30 |
Dry matter (%DM) | 90.94 | 91.67 |
Organic matter (%DM) | 92.84 | 92.12 |
Crude protein (%DM) | 15.53 | 12.67 |
Neutral detergent fiber (%DM) | 30.34 | 45.19 |
Acid detergent fiber (%DM) | 18.77 | 25.27 |
Ash (%DM) | 7.16 | 7.88 |
1 F:C = forage/concentrate ratio. |
Sample ID | Raw Reads | Clean Reads | De-Noised Reads | Merged Reads | Non-Chimeric Reads |
---|---|---|---|---|---|
C11 | 80,040 | 79,896 | 79,577 | 71,741 | 65,002 |
C12 | 79,966 | 79,805 | 79,272 | 68,943 | 63,386 |
C13 | 80,423 | 80,261 | 79,858 | 70,404 | 64,576 |
C14 | 80,000 | 79,848 | 79,459 | 70,400 | 65,505 |
C15 | 80,059 | 79,917 | 79,555 | 69,973 | 62,958 |
C16 | 80,031 | 79,875 | 79,378 | 69,894 | 62,783 |
C21 | 80,094 | 79,940 | 79,429 | 69,886 | 62,633 |
C22 | 79,757 | 79,599 | 79,141 | 68,602 | 61,146 |
C23 | 79,860 | 79,685 | 79,285 | 70,858 | 62,659 |
C24 | 79,891 | 79,755 | 79,197 | 69,330 | 61,632 |
C25 | 80,251 | 80,065 | 79,596 | 70,736 | 62,323 |
C26 | 79,578 | 79,422 | 79,012 | 70,142 | 61,707 |
F11 | 79,955 | 79,797 | 79,386 | 70,451 | 64,893 |
F12 | 79,889 | 79,717 | 79,330 | 69,878 | 64,066 |
F13 | 79,551 | 79,385 | 78,992 | 69,876 | 64,462 |
F14 | 80,042 | 79,864 | 79,370 | 69,132 | 63,920 |
F15 | 80,335 | 80,188 | 79,673 | 70,942 | 64,606 |
F16 | 79,809 | 79,628 | 79,214 | 69,857 | 64,227 |
F21 | 80,085 | 79,910 | 79,425 | 70,269 | 64,262 |
F22 | 80,001 | 79,862 | 79,498 | 70,603 | 63,787 |
F23 | 79,969 | 79,803 | 79,294 | 70,849 | 64,364 |
F24 | 79,948 | 79,796 | 79,280 | 70,412 | 64,815 |
F25 | 80,252 | 80,099 | 79,611 | 70,119 | 62,987 |
F26 | 79,981 | 79,819 | 79,273 | 69,730 | 63,018 |
T11 | 80,137 | 79,992 | 79,576 | 71,454 | 66,206 |
T12 | 80,145 | 79,970 | 79,671 | 70,445 | 64,822 |
T13 | 79,928 | 79,764 | 79,433 | 70,660 | 65,036 |
T14 | 80,202 | 80,052 | 79,662 | 71,048 | 66,258 |
T15 | 80,229 | 80,098 | 79,583 | 69,881 | 64,077 |
T16 | 80,026 | 79,875 | 79,498 | 70,576 | 64,643 |
T21 | 79,860 | 79,699 | 79,356 | 70,003 | 63,431 |
T22 | 79,743 | 79,559 | 79,113 | 69,567 | 63,107 |
T23 | 80,136 | 79,961 | 79,565 | 70,032 | 63,738 |
T24 | 80,127 | 79,972 | 79,427 | 68,803 | 62,509 |
T25 | 80,483 | 80,335 | 79,910 | 71,802 | 63,517 |
T26 | 79,824 | 79,666 | 79,231 | 69,506 | 62,902 |
High-Forage: Low-Concentrate (70:30) | |||||
Control | 5 mL/L | 10 mL/L | SEM | p-Value | |
pH | 6.60 | 6.58 | 6.64 | 0.03 | 0.337 |
CH4 (mmol/L) | 19.29 a | 14.55 b | 11.77 b | 1.12 | 0.011 |
Total SCFA (mmol/L) | 92.11 a | 64.34 b | 61.74 b | 6.39 | 0.001 |
Acetic acid (mol/100 mol) | 56.44 a | 39.94 b | 35.48 b | 3.93 | 0.001 |
Propionic acid (mol/100 mol) | 29.02 a | 18.60 b | 21.05 b | 2.01 | 0.024 |
Isobutyric acid (mol/100 mol) | 0.3133 | 0.1916 | 0.1331 | 0.07 | 0.073 |
Butyric acid (mol/100 mol) | 4.68 | 4.242 | 3.996 | 0.37 | 0.316 |
Valeric acid (mol/100 mol) | 0.5354 | 0.4625 | 0.3203 | 0.11 | 0.207 |
Caproic acid (mol/100 mol) | 1.1169 | 0.8926 | 0.7579 | 0.13 | 0.052 |
Low-Forage: High-Concentrate (30:70) | |||||
Control | 5 mL/L | 10 mL/L | SEM | p-Value | |
pH | 6.57 | 6.55 | 6.61 | 0.0247 | 0.657 |
CH4 (mmol/L) | 12.43 | 14.65 | 14.48 | 0.53 | 0.169 |
Total SCFA (mmol/L) | 59.78 b | 78.43 a | 81.08 a | 3.55 | 0.017 |
Acetic acid (mol/100 mol) | 36.05 | 44.25 | 44.40 | 1.66 | 0.054 |
Propionic acid (mol/100 mol) | 18.88 b | 26.72 a | 28.42 a | 1.430 | 0.006 |
Isobutyric acid (mol/100 mol) | 0.1065 b | 0.2867 a | 0.3275 a | 0.033 | 0.008 |
Butyric acid (mol/100 mol) | 3.503 b | 5.232 a | 5.780 a | 0.365 | 0.018 |
Valeric acid (mol/100 mol) | 0.2724 b | 0.6236 a | 0.6791 a | 0.05893 | 0.003 |
Caproic acid (mol/100 mol) | 0.9607 | 1.3153 | 1.4693 | 0.12820 | 0.265 |
High-Forage: Low-Concentrate Ratio (70:30) | ||||||
Sample ID | Feature | ACE | Chao1 | Simpson | Shannon | Good Coverage |
C11 | 408 | 408.516 | 411.0 | 0.9233 | 6.3491 | 1.0 |
C12 | 476 | 476.1903 | 476.0 | 0.9745 | 7.2457 | 1.0 |
C13 | 472 | 472.1429 | 472.0 | 0.9541 | 6.8717 | 1.0 |
C14 | 450 | 450.152 | 450.0 | 0.9266 | 6.5063 | 1.0 |
C15 | 454 | 454.0 | 454.0 | 0.9723 | 7.1301 | 1.0 |
C16 | 470 | 470.0 | 470.0 | 0.9752 | 7.2702 | 1.0 |
F11 | 429 | 429.1799 | 429.0 | 0.9488 | 6.5274 | 1.0 |
F12 | 394 | 394.2254 | 394.0 | 0.9514 | 6.4493 | 1.0 |
F13 | 390 | 390.0 | 390.0 | 0.9515 | 6.4377 | 1.0 |
F14 | 424 | 424.1563 | 424.0 | 0.9489 | 6.5258 | 1.0 |
F15 | 390 | 390.7117 | 393.0 | 0.9609 | 6.5202 | 1.0 |
F16 | 418 | 418.0 | 418.0 | 0.9609 | 6.6149 | 1.0 |
T11 | 391 | 391.1453 | 391.0 | 0.9423 | 6.2392 | 1.0 |
T12 | 415 | 415.5068 | 416.0 | 0.9506 | 6.4065 | 1.0 |
T13 | 435 | 435.1439 | 435.0 | 0.9561 | 6.6737 | 1.0 |
T14 | 457 | 457.7152 | 460.0 | 0.9335 | 6.4119 | 0.9999 |
T15 | 413 | 413.7325 | 413.75 | 0.9674 | 6.708 | 1.0 |
T16 | 403 | 403.0 | 403.0 | 0.9629 | 6.5992 | 1.0 |
Low-Forage: High-Concentrate Ratio (30:70) | ||||||
Sample ID | Feature | ACE | Chao1 | Simpson | Shannon | Good Coverage |
C21 | 471 | 472.0735 | 473.0 | 0.9777 | 7.3038 | 0.9999 |
C22 | 501 | 501.7114 | 501.6 | 0.9918 | 7.8428 | 0.9999 |
C23 | 454 | 454.3172 | 455.0 | 0.9697 | 7.1101 | 1.0 |
C24 | 478 | 479.1216 | 479.5 | 0.9692 | 7.1402 | 0.9999 |
C25 | 434 | 434.1434 | 434.0 | 0.9869 | 7.3164 | 1.0 |
C26 | 447 | 448.7237 | 468.0 | 0.9781 | 7.1968 | 0.9999 |
F21 | 411 | 411.1642 | 411.0 | 0.9556 | 6.4908 | 1.0 |
F22 | 385 | 385.1417 | 385.0 | 0.9582 | 6.3736 | 1.0 |
F23 | 406 | 406.7465 | 406.6 | 0.9613 | 6.5443 | 1.0 |
F24 | 382 | 382.161 | 382.0 | 0.9364 | 6.1751 | 1.0 |
F25 | 368 | 368.0 | 368.0 | 0.9746 | 6.6478 | 1.0 |
F26 | 419 | 419.1919 | 419.0 | 0.9812 | 7.0818 | 1.0 |
T21 | 406 | 406.1364 | 406.0 | 0.9447 | 6.3128 | 1.0 |
T22 | 408 | 408.171 | 408.0 | 0.9659 | 6.6614 | 1.0 |
T23 | 401 | 401.155 | 401.0 | 0.9612 | 6.602 | 1.0 |
T24 | 403 | 403.0 | 403.0 | 0.9752 | 6.8771 | 1.0 |
T25 | 347 | 347.0 | 347.0 | 0.9714 | 6.548 | 1.0 |
T26 | 410 | 410.3526 | 410.3333 | 0.9695 | 6.7481 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.; Wang, W.; An, Z.; Lv, H.; Hua, G.; Ahmed, A.E.; Alsaegh, A.; Yang, L. 16S rRNA Sequencing Reveals the Antibacterial Effect of Omega-3 (Fish Oil) against Fibrolytic Bacteria, Altering Fermentation and Volatile Fatty Acids Profile In Vitro. Fermentation 2023, 9, 596. https://doi.org/10.3390/fermentation9070596
Abdelrahman M, Wang W, An Z, Lv H, Hua G, Ahmed AE, Alsaegh A, Yang L. 16S rRNA Sequencing Reveals the Antibacterial Effect of Omega-3 (Fish Oil) against Fibrolytic Bacteria, Altering Fermentation and Volatile Fatty Acids Profile In Vitro. Fermentation. 2023; 9(7):596. https://doi.org/10.3390/fermentation9070596
Chicago/Turabian StyleAbdelrahman, Mohamed, Wei Wang, Zhigao An, Haimiao Lv, Guohua Hua, Ahmed Ezzat Ahmed, Aiman Alsaegh, and Liguo Yang. 2023. "16S rRNA Sequencing Reveals the Antibacterial Effect of Omega-3 (Fish Oil) against Fibrolytic Bacteria, Altering Fermentation and Volatile Fatty Acids Profile In Vitro" Fermentation 9, no. 7: 596. https://doi.org/10.3390/fermentation9070596
APA StyleAbdelrahman, M., Wang, W., An, Z., Lv, H., Hua, G., Ahmed, A. E., Alsaegh, A., & Yang, L. (2023). 16S rRNA Sequencing Reveals the Antibacterial Effect of Omega-3 (Fish Oil) against Fibrolytic Bacteria, Altering Fermentation and Volatile Fatty Acids Profile In Vitro. Fermentation, 9(7), 596. https://doi.org/10.3390/fermentation9070596