Optimization of Main Ingredient Ratio, Metabolomics Analysis, and Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. The Fermentation Process of Compound Fruit Wine
2.3. Response Surface Experiment on the Main Ingredient Ratio of Compound Fruit Wine
2.4. Determination of Lycopene Content in Compound Fruit Wine
2.5. Sensory Evaluation of Compound Fruit Wine
2.6. Establishment of Sensory Evaluation Model of Fuzzy Mathematics
2.7. Physicochemical Indexes and Metabolomics Analysis of Compound Fruit Wine
2.8. Antioxidant Activity Assays
2.9. Data Processing
3. Results and Discussion
3.1. Comprehensive Sensory Evaluation Results of Fuzzy Mathematics
3.2. Response Surface Results of Lycopene Content and the Sensory Score of Compound Fruit Wine with Different Main Ingredient Ratios
3.3. Optimization and Verification Test of Main Ingredient Ratio of Lycopene-Enriched Compound Fruit Wine
3.4. Physicochemical Indexes and Metabolites in Compound Fruit Wines by Metabolomics Approach
3.5. Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anna, P.; Dorota, S.; Barbara, A. Antioxidative capacity of tomato products. Eur. Food Res. Technol. 2003, 217, 296–300. [Google Scholar]
- Georgiadou, E.C.; Antoniou, C.; Majak, I.; Goulas, V.; Filippou, P.; Smolińska, B.; Leszczyńska, J.; Fotopoulos, V. Tissue-specific elucidation of lycopene metabolism in commercial tomato fruit cultivars during ripening. Sci. Hortic.-Amst. 2021, 284, 110144. [Google Scholar] [CrossRef]
- Heymann, T.; Heinz, P.; Glomb, M.A. Lycopene inhibits the isomerization of β-Carotene during quenching of singlet oxygen and free radicals. J. Agr. Food Chem. 2015, 63, 3279–3287. [Google Scholar] [CrossRef] [PubMed]
- Lindshield, B.L. Lycopene, Selenium, Vitamin E and Prostate Cancer; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2008. [Google Scholar]
- Karas, M.; Amir, H.; Fishman, D.; Danilenko, M.; Segal, S.; Nahum, A.; Koifmann, A.; Giat, Y.; Levy, J.; Sharoni, Y. Lycopene interferes with cell cycle progression and Insulin-Like growth factor i signaling in mammary cancer cells. Nutr. Cancer 2000, 36, 101–111. [Google Scholar] [CrossRef]
- Lu, Y.; Edwards, A.; Chen, Z.; Tseng, T.S.; Li, M.; Gonzalez, G.V.; Zhang, K. Insufficient lycopene intake is associated with high risk of prostate cancer: A Cross-Sectional study from the national health and nutrition examination survey (2003–2010). Front. Public Health 2021, 9, 792572. [Google Scholar] [CrossRef] [PubMed]
- Narisawa, T.; Fukaura, Y.; Hasebe, M.; Ito, M.; Aizawa, R.; Murakoshi, M.; Uemura, S.; Khachik, F.; Nishino, H. Inhibitory effects of natural carotenoids, α-carotene, β-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats. Cancer Lett. 1996, 107, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Preeti, S.; Goyal, G.K. Dietary lycopene: Its properties and anticarcinogenic effects. Compr. Rev. Food Sci. F 2008, 7, 255–270. [Google Scholar]
- Puah, B.; Jalil, J.; Attiq, A.; Kamisah, Y. New insights into molecular mechanism behind anti-cancer activities of lycopene. Molecules 2021, 26, 3888. [Google Scholar] [CrossRef]
- Hsiao, G.; Fong, T.H.; Tzu, N.H.; Lin, K.H.; Chou, D.S.; Sheu, J.R. A potent antioxidant, lycopene, affords neuroprotection against microglia activation and focal cerebral ischemia in rats. In Vivo 2004, 18, 351–356. [Google Scholar]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary lycopene, Tomato-Based food products and cardiovascular disease in women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yang, W.C.; Shen, Z.Y.; Wen, S.X.; Hu, M.Y. The Dose-Response effect of lycopene on cerebral vessel and neuron impairment induced by hyperlipidemia. J. Agr. Food Chem. 2018, 50, 13173–13182. [Google Scholar] [CrossRef]
- Feng, D.; Ling, W.; Duan, R. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-KB in macrophages. Inflamm. Res. 2010, 59, 115–121. [Google Scholar] [CrossRef]
- Luo, C.; Wu, X.G. Lycopene enhances antioxidant enzyme activities and immunity function in N-methyl-N′-nitro-N-nitrosoguanidine-enduced gastric cancer rats. Int. J. Mol. Sci. 2011, 12, 3340–3351. [Google Scholar] [PubMed] [Green Version]
- Watzl, B.; Bub, A.; Briviba, K.; Rechkemmer, G. Supplementation of a Low-Carotenoid diet with tomato or carrot juice modulates immune functions in healthy men. Ann. Nutr. Metab. 2003, 47, 255–261. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in human health. Food Sci. Technol. 2020, 127, 109323. [Google Scholar]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. 2017, 59, 141–158. [Google Scholar]
- Villaseñor-Aguilar, M.; Padilla-Medina, J.; Botello-Álvarez, J.; Bravo-Sánchez, M.; Prado-Olivares, J.; Espinosa-Calderon, A.; Barranco-Gutiérrez, A. Current status of optical systems for measuring lycopene content in fruits: Review. Appl. Sci. 2021, 11, 9332. [Google Scholar] [CrossRef]
- Stéphane, G.; Franck, T.; Hélène, G.; Pascale, G.; Edmond, R.; Catherine, C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 2010, 124, 1603–1611. [Google Scholar]
- Walubengo, D.; Orina, I.; Kubo, Y.; Owino, W. Physico-chemical and postharvest quality characteristics of intra and interspecific grafted tomato fruits. J. Agric. Food Res. 2022, 7, 100261. [Google Scholar]
- Laurora, A.; Bingham, J.; Poojary, M.M.; Wall, M.M.; Ho, K.K.H.Y. Carotenoid composition and bioaccessibility of papaya cultivars from Hawaii. J. Food Compos. Anal. 2021, 101, 103984. [Google Scholar] [CrossRef]
- Vinodhini, J.M.; Vigasini, N. Effect of lycopene in papaya (Carica papaya) and water melon (Citrullus lanatus) on the serum lipid profile. Int. J. Med. Health Res. 2015, 1, 113–115. [Google Scholar]
- Boadi, N.O.; Badu, M.; Kortei, N.K.; Saah, S.A.; Annor, B.; Mensah, M.B.; Okyere, H.; Fiebor, A. Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Sci. Afr. 2021, 12, e801. [Google Scholar] [CrossRef]
- Ibrahim, I.M.A.; Khashaba, H.M.H. Nutritional values and acceptability of syrups produced after blending carrots, sweet potatoes, and tomatoes. Bull. Nat. Res. Centre 2020, 44, 182. [Google Scholar] [CrossRef]
- Halimaton, S.O.; Nor, A.A.R.; Nor, I.M.N. Preliminary morphological and phytochemical evaluation of Momordica cochinchinensis Spreng. Acta Chem. Malays. 2020, 4, 1–8. [Google Scholar]
- Vuong, L.T.; Franke, A.A.; Custer, L.J.; Murphy, S.P. Momordica cochinchinensis Spreng. (Gac) fruit carotenoids reevaluated. J. Food Compos. Anal. 2005, 19, 664–668. [Google Scholar] [CrossRef]
- Chang, K.J.; Thach, M.L.; Olsen, J. Wine and health perceptions: Exploring the impact of gender, age and ethnicity on consumer perceptions of wine and health. Wine Econ. Policy 2016, 5, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Saranraj, P.; Sivasakthivelan, P.; Naveen, M. Fermentation of fruit wine and its quality analysis: A review. Aust. J. Sci. Technol. 2017, 1, 85–97. [Google Scholar]
- Tsegay, Z.T.; Lemma, S.M. Response surface optimization of Cactus pear (Opuntia ficus-indica) with Lantana camara (L. Camara) fruit fermentation process for quality wine production. Int. J. Food Sci. 2020, 2020, 8647262. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; He, Y.Q.; Liu, X.F. Property assessment of steamed bread added with cellulase by using fuzzy mathematical model. J. Texture Stud. 2015, 46, 420–428. [Google Scholar] [CrossRef]
- Amini Sarteshnizi, R.; Hosseini, H.; Bondarianzadeh, D.; Colmenero, F.J.; Khaksar, R. Optimization of prebiotic sausage formulation: Effect of using β-glucan and resistant starch by D-optimal mixture design approach. LWT 2015, 62, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Scott, D. Determination of Lycopene Isomers in Model Food Systems and Their Effectiveness as Antioxidants; Oklahoma State University: Stillwater, OK, USA, 2012. [Google Scholar]
- Guo, X.G.; Ma, P.X.; Wang, X.H.; Zhang, C.Y.; Ren, Y.P.; Wang, X.C.; Huang, B.F. Analytical Methods of Wine and Fruit Wine; Standards Press of China: Beijing, China, 2008; pp. 56–58. [Google Scholar]
- Mao, D.M.; Liu, K.Y.; Xu, B.; Chen, Z.; Chen, Q.Y.; Xie, Z.Z.; Wang, Q.; Pu, J.; He, C.R. Technological exploration and antioxidant activity determination of purple compound fruit wine. Int. Food Res. J. 2023, 30, 412–425. [Google Scholar] [CrossRef]
- Li, P.P.; Su, R.; Wang, Q.; Liu, K.Y.; Yang, H.; Du, W.; Li, Z.A.; Chen, S.; Xu, B.; Yang, W. Comparison of fungal communities and nonvolatile flavor components in black Huangjiu formed using different inoculation fermentation methods. Front. Microbiol. 2022, 13, 955825. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.J.; Schultz, A.W.; Wang, J.; Johnson, C.H.; Yannone, S.M.; Patti, G.J.; Siuzdak, G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013, 8, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Wu, L.; Wang, Q.; Yang, L.R.; Zheng, J.; Zhou, S.L.; He, C.R.; Jiao, W.W.; Xu, B.; Liu, K.Y. The microbial communities in Zaopeis, free amino acids in raw liquor, and their correlations for Wuliangye-flavor raw liquor production. Food Sci. Nutr. 2022, 10, 2681–2693. [Google Scholar] [CrossRef]
- Shen, X.J.; Nie, F.Q.; Fang, H.X.; Liu, K.Y.; Li, Z.L.; Li, X.Y.; Chen, Y.M.; Chen, R.; Zheng, T.T.; Fan, J.P. Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci. Nutr. 2023, 11, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Zhang, M.; Sun, B. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box-Behnken design optimization. J. Food Sci. Technol. Mys. 2019, 56, 4879–4890. [Google Scholar] [CrossRef] [PubMed]
- Boon, C.S.; Xu, Z.; Yue, X.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors affecting lycopene oxidation in oil-in-water emulsions. J. Agr. Food Chem. 2008, 56, 1408–1414. [Google Scholar] [CrossRef]
- Maryam, T.; Zahra, E. Lycopene degradation and color characteristics of fresh and processed tomatoes under the different drying methods: A comparative study. Chem. Pap. 2021, 75, 3617–3623. [Google Scholar]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin derived pigments in wine: Structure and formation during winemaking. J. Chem.-NY 2013, 2013, 713028. [Google Scholar] [CrossRef] [Green Version]
- Morata, A.; Loira, I.; Heras, J.M.; Callejo, M.J.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Yeast influence on the formation of stable pigments in red winemaking. Food Chem. 2016, 197, 686–691. [Google Scholar] [CrossRef]
- Tzachristas, A.; Dasenaki, M.E.; Aalizadeh, R.; Thomaidis, N.S.; Proestos, C. Development of a wine metabolomics approach for the authenticity assessment of selected greek red wines. Molecules 2021, 26, 2837. [Google Scholar] [CrossRef]
- Zhang, X.K.; Lan, Y.B.; Huang, Y.; Zhao, X.; Duan, C.Q. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: Evolution, color contribution and aging prediction. Food Chem. 2021, 339, 127795. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Kim, H.; Jeong, H. Anti-fatigue effect by active dipeptides of fermented porcine placenta through inhibiting the inflammatory and oxidative reactions. Biomed. Pharmacother. 2016, 84, 51–59. [Google Scholar] [CrossRef]
- Han, C.; Lin, Y.; Lin, S.; Hou, W. Antioxidant and antiglycation activities of the synthesised dipeptide, Asn-Trp, derived from computer-aided simulation of yam dioscorin hydrolysis and its analogue, Gln-Trp. Food Chem. 2014, 147, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ekumah, J.; Ma, Y.; Akpabli-Tsigbe ND, K.; Kwaw, E.; Jie, H.; Quaisie, J.; Manqing, X.; Johnson Nkuma, N.A. Effect of selenium supplementation on yeast growth, fermentation efficiency, phytochemical and antioxidant activities of mulberry wine. LWT 2021, 146, 111425. [Google Scholar] [CrossRef]
- Fentie, E.G.; Jeong, M.; Emire, S.A.; Demsash, H.D.; Kim, M.A.; Jeon, H.; Lee, S.; Tagele, S.B.; Park, Y.; Shin, J. Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine, Tej. Food Res. Int. 2022, 152, 110765. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; García-Martínez, T.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. LWT 2021, 146, 111661. [Google Scholar] [CrossRef]
- Ha TV, A.; Kim, S.; Choi, Y.; Kwak, H.; Lee, S.J.; Wen, J.; Oey, I.; Ko, S. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem. 2015, 178, 115–121. [Google Scholar]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agr. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Honest, K.N.; Zhang, H.W.; Zhang, L.F. Lycopene: Isomerization effects on bioavailability and bioactivity properties. Food Rev. Int. 2011, 27, 248–258. [Google Scholar] [CrossRef]
Index | Evaluation Standard | |||
---|---|---|---|---|
Excellent | Good | General | Worse | |
Appearance (20) | Orange red, clear and transparent (16–20) | Orange yellow, relatively clear, no suspended matter (10–15) | Brown, slightly turbid (6–10) | Brown, turbid with obvious suspended matter (0–5) |
Aroma (25) | The aroma of fruit and wine is full-bodied and harmonious (19–25) | The aroma of fruit and wine is rich, general harmonious (13–18) | The aroma of fruit and wine is not enough, with a slight peculiar smell (7–12) | The aroma of fruit and wine is insufficient and the aroma is not harmonious (0–6) |
Taste (35) | The wine is full-bodied, refreshing (28–35) | The wine is soft, refreshing (19–27) | The wine is softer, less refreshing and has heterogenous taste (10–18) | The wine is light, tasteless, and has obvious heterogenous taste (0–9) |
Typicality (20) | Elegant and unique style (16–20) | Good style (10–15) | General style (6–10) | Style is not typical (0–5) |
Test No. | A: Tomato Juice/% | B: Papaya Juice/% | C: Carrot Juice/% | D: Gac Fruit Juice/% | Lycopene Content/(μg/mL) | Sensory Evaluation |
---|---|---|---|---|---|---|
1 | 10.0 | 10.0 | 70.0 | 10.0 | 16.28 | 81.8 |
2 | 10.0 | 10.0 | 40.0 | 40.0 | 17.92 | 91.0 |
3 | 17.5 | 17.5 | 17.5 | 47.5 | 17.99 | 91.8 |
4 | 40.0 | 40.0 | 10.0 | 10.0 | 16.84 | 85.5 |
5 | 10.0 | 40.0 | 10.0 | 40.0 | 17.80 | 90.4 |
6 | 40.0 | 40.0 | 10.0 | 10.0 | 16.93 | 85.9 |
7 | 10.0 | 10.0 | 40.0 | 40.0 | 17.77 | 90.2 |
8 | 70.0 | 10.0 | 10.0 | 10.0 | 17.15 | 87.1 |
9 | 10.0 | 40.0 | 40.0 | 10.0 | 15.88 | 80.6 |
10 | 17.5 | 47.5 | 17.5 | 17.5 | 16.39 | 83.3 |
11 | 10.0 | 10.0 | 10.0 | 70.0 | 17.96 | 92.5 |
12 | 47.5 | 17.5 | 17.5 | 17.5 | 17.66 | 89.6 |
13 | 17.5 | 17.5 | 47.5 | 17.5 | 16.48 | 83.7 |
14 | 40.0 | 10.0 | 10.0 | 40.0 | 17.60 | 89.3 |
15 | 40.0 | 10.0 | 40.0 | 10.0 | 17.34 | 88.1 |
16 | 10.0 | 70.0 | 10.0 | 10.0 | 15.73 | 79.9 |
17 | 40.0 | 10.0 | 10.0 | 40.0 | 17.37 | 88.2 |
18 | 10.0 | 40.0 | 40.0 | 10.0 | 15.92 | 80.8 |
19 | 30.0 | 30.0 | 30.0 | 10.0 | 16.61 | 84.4 |
20 | 10.0 | 40.0 | 10.0 | 40.0 | 17.55 | 89.1 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | |
Model | 10.55 | 295.66 | 13 | 13 | 0.81 | 22.74 | 42.7 | 46.7 | <0.001 | <0.001 | ** | ** |
Linear Mixture | 8.3 | 241.06 | 3 | 3 | 2.77 | 80.35 | 145.58 | 165.01 | <0.001 | <0.001 | ** | ** |
AB | 0.21 | 5.04 | 1 | 1 | 0.21 | 5.04 | 10.83 | 10.34 | 0.017 | 0.018 | * | * |
AC | 0.26 | 8.64 | 1 | 1 | 0.26 | 8.64 | 13.7 | 17.74 | 0.01 | 0.006 | * | ** |
AD | <0.01 | 1.15 | 1 | 1 | <0.01 | 1.15 | 0.29 | 2.36 | 0.61 | 0.176 | ||
BC | <0.01 | 0.03 | 1 | 1 | <0.01 | 0.03 | 0.49 | 0.05 | 0.509 | 0.829 | ||
BD | 0.68 | 12.46 | 1 | 1 | 0.68 | 12.46 | 35.9 | 25.58 | 0.001 | 0.002 | ** | ** |
CD | 0.52 | 11.42 | 1 | 1 | 0.52 | 11.42 | 27.35 | 23.45 | 0.002 | 0.003 | ** | ** |
ABC | 0.04 | 1.09 | 1 | 1 | 0.04 | 1.09 | 2.19 | 2.25 | 0.19 | 0.185 | ||
ABD | 0.13 | 3.03 | 1 | 1 | 0.13 | 3.03 | 6.87 | 6.23 | 0.04 | 0.047 | * | * |
ACD | 0.02 | 0.52 | 1 | 1 | 0.02 | 0.52 | 0.93 | 1.06 | 0.371 | 0.343 | ||
BCD | 0.3 | 6.49 | 1 | 1 | 0.3 | 6.49 | 15.65 | 13.32 | 0.008 | 0.011 | ** | * |
Residual | 0.11 | 2.92 | 6 | 6 | 0.02 | 0.49 | ||||||
Lack of fit | 0.04 | 1.05 | 1 | 1 | 0.04 | 1.05 | 2.73 | 2.81 | 0.16 | 0.154 | ||
Pure terror | 0.07 | 1.87 | 5 | 5 | 0.02 | 0.37 | ||||||
Cor total | 10.66 | 298.59 | 19 | 19 |
AO | BO | |
---|---|---|
ABV/% | 8.71 ± 0.18 | 8.69 ± 0.21 |
Total sugar/(g/L) | 7.66 ± 0.13 | 7.70 ± 0.16 |
Total acid/(g/L) | 6.03 ± 0.10 | 6.07 ± 0.14 |
Dry extract/(g/L) | 36.89 ± 0.86 b 1 | 39.44 ± 0.91 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Liu, X.; Wang, T.; Wang, Q.; Feng, L.; Su, R.; Zhang, M.; Xu, B.; Chen, F.; Li, P. Optimization of Main Ingredient Ratio, Metabolomics Analysis, and Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine. Fermentation 2023, 9, 591. https://doi.org/10.3390/fermentation9070591
Liu K, Liu X, Wang T, Wang Q, Feng L, Su R, Zhang M, Xu B, Chen F, Li P. Optimization of Main Ingredient Ratio, Metabolomics Analysis, and Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine. Fermentation. 2023; 9(7):591. https://doi.org/10.3390/fermentation9070591
Chicago/Turabian StyleLiu, Kunyi, Xiangyu Liu, Teng Wang, Qi Wang, Lei Feng, Rui Su, Meng Zhang, Bin Xu, Fei Chen, and Pingping Li. 2023. "Optimization of Main Ingredient Ratio, Metabolomics Analysis, and Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine" Fermentation 9, no. 7: 591. https://doi.org/10.3390/fermentation9070591
APA StyleLiu, K., Liu, X., Wang, T., Wang, Q., Feng, L., Su, R., Zhang, M., Xu, B., Chen, F., & Li, P. (2023). Optimization of Main Ingredient Ratio, Metabolomics Analysis, and Antioxidant Activity Analysis of Lycopene-Enriched Compound Fruit Wine. Fermentation, 9(7), 591. https://doi.org/10.3390/fermentation9070591