Bio-Augmentation of S2− Oxidation for a Heavily Polluted River by a Mixed Culture Microbial Consortium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sample
2.2. The Strains
2.3. The MCMC
2.4. Experiment of Sulfur Oxidation
2.4.1. DNA Extraction and PCR Amplification
2.4.2. Illumina MiSeq Sequencing
2.4.3. Processing of Sequencing Data
2.5. Analytical Methods
3. Results
3.1. Variation of Inorganic Sulfur as Result of MCMC
3.2. Variation of Community Structure as a Result of MCMC
3.3. Analysis of Sulfides Metabolism Bacterium
3.4. Identification of SOB and Their Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semrany, S.; Favier, L.; Djelal, H.; Taha, S.; Amrane, A. Bioaugmentation: Possible solution in the treatment of Bio-Refractory Organic Compounds (Bio-ROCs). Biochem. Eng. J. 2012, 69, 75–86. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Fang, Y.; Huang, R. Analysis on the formation condition of the algae-induced odorous black water agglomerate. Saudi J. Biol. Sci. 2014, 21, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tang, Y.; Kou, Z.; Teng, X.; Cai, W.; Hu, J. Shift of Sediments Bacterial Community in the Black-Odor Urban River during In Situ Remediation by Comprehensive Measures. Water 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Liu, X.; Song, Y.; Liu, R.; Gao, H.; Han, L.; Peng, J. Key blackening and stinking pollutants in Dongsha River of Beijing: Spatial distribution and source identification. J. Environ. Manag. 2017, 200, 335–346. [Google Scholar] [CrossRef]
- Sheng, Y.; Qu, Y.; Ding, C.; Sun, Q.; Mortimer, R.J.G. A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecol. Eng. 2013, 57, 1–7. [Google Scholar] [CrossRef]
- Ministry of Environment and Protection of the People’s Republic of China (MEP). Chinese Water and Wastewater Monitoring and Analysis Methods, 4th ed.; China Environmental Science Press: Beijing, China, 2002.
- Liu, C.; Shen, Q.; Zhou, Q.; Fan, C.; Shao, S. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake. Ecol. Eng. 2015, 77, 139–145. [Google Scholar] [CrossRef]
- Xia, F.F.; Zhang, H.T.; Wei, X.M.; Su, Y.; He, R. Characterization of H2S removal and microbial community in landfill cover soils. Environ. Sci. Pollut. Res. 2015, 22, 18906–18917. [Google Scholar] [CrossRef]
- Pikaar, I.; Likosova, E.M.; Freguia, S.; Keller, J.; Rabaey, K.; Yuan, Z. Electrochemical abatement of hydrogen sulfide from waste streams. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1555–1578. [Google Scholar] [CrossRef]
- He, D.F.; Chen, R.R.; Zhu, E.H.; Chen, N.; Yang, B.; Shi, H.H.; Huang, M.S. Toxicity bioassays for water from black-odor rivers in Wenzhou. China Environ. Sci. Pollut. Res. 2015, 22, 1731. [Google Scholar] [CrossRef]
- Lu, X.; Feng, Z.; Shang, J.; Fan, C.; Fan, J. Black water bloom induced by different types of organic matters and forming mechanisms of major odorous compounds. Environ. Sci. 2012, 33, 3152–3159. [Google Scholar] [PubMed]
- Sorokin, D.Y.; Berben, T.; Melton, E.D.; Overmars, L.; Vavourakis, C.D.; Muyzer, G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014, 18, 791. [Google Scholar] [CrossRef] [Green Version]
- Rohwerder, T.; Sand, W. Oxidation of inorganic sulfur compounds in Acidophilic Prokaryotes. Eng. Life. Sci. 2007, 7, 301–309. [Google Scholar] [CrossRef]
- Rzhepishevska, O.; Valdes, J.; Marcinkeviciene, L.; Gallardo, C.; Meskys, R.; Bonnefoy, V.; Holmes, D.; Dopson, M. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds. Appl. Environ. Microbiol. 2007, 73, 7367. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, H.; Ogawa, T.; Shiga, M.; Inoue, K. Inorganic sulfur oxidizing system in green sulfur bacteria. Photosyn. Res. 2010, 104, 163. [Google Scholar] [CrossRef]
- Tian, H.; Gao, P.; Chen, Z.; Li, Y.; Li, Y.; Wang, Y.; Zhou, J.; Li, G.; Ma, T. Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front. Microbiol. 2017, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiang, T.; Huang, R.; Wang, D.; Zhang, J.; Qian, S.; Yin, D.; Chen, H. A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation. Chemosphere 2017, 166, 31. [Google Scholar] [CrossRef]
- Kiani, M.H.; Ahmadi, A.; Zilouei, H. Biological removal of sulfur and ash from fine-grained high pyritic sulfur coals using a mixed culture of mesophilic microorganisms. Fuel 2014, 131, 89–95. [Google Scholar] [CrossRef]
- Luo, J.; Tian, G.; Lin, W. Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor. J. Environ. Sci. 2013, 25, 1393–1399. [Google Scholar] [CrossRef]
- Liu, Y.G.; Zhou, M.; Zeng, G.M.; Wang, X.; Li, X.; Fan, T.; Xu, W.H. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresour. Technol. 2008, 99, 4124–4129. [Google Scholar] [CrossRef]
- Aguilar, J.R.P.; Cabriales, J.J.P.A.; Vega, M.A.M. Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. Int. J. Phytoremediation 2008, 10, 359–370. [Google Scholar] [CrossRef]
- Chen, P.; Yan, L.; Leng, F.; Nan, W.; Yue, X.; Zheng, Y.; Feng, N.; Li, H. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour. Technol. 2011, 102, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Gevertz, D.; Telang, A.J.; Voordouw, G.; Jenneman, G.E. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microb. 2000, 66, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brock, T.D.; Brock, K.M.; Belly, R.T.; Weiss, R.L. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 1972, 84, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Anandham, R.; Indiragandhi, P.; Madhaiyan, M.; Ryu, K.Y.; Jee, H.J.; Sa, T.M. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res. Microbiol. 2008, 159, 579–589. [Google Scholar] [CrossRef]
- Zhang, L.; Song, C.; Xu, Y.; Shi, Y.; Liu, X. Isolation, Characterization and S2--oxidation Metabolic Pathway of a Sulfur-oxidizing Strain from a Black-odor River in Beijing. Water Sci. Technol. Water Supply. 2022, 22, 4. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, P.; Koopman, B.; Fang, G.; Shi, Y. Bioaugmentation with Gordonia strain JW8 in treatment of pulp and paper wastewater. Clean Technol. Environ. Policy 2012, 14, 899–904. [Google Scholar] [CrossRef]
- Wang, J.H.; He, H.Z.; Wang, M.Z.; Wang, S.; Zhang, J.; Wei, W.; Xu, H.X.; Lv, Z.M.; Shen, D.S. Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system. Bioresour. Technol. 2013, 142, 445. [Google Scholar] [CrossRef]
- Delmont, T.; Eren, A.; Vineis, J.; Post, A. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015, 6, 1090. [Google Scholar] [CrossRef] [Green Version]
- Portela, C.A.F.; Smart, K.F.; Tumanov, S.; Cook, G.M.; Villasbôas, S. Global metabolic response of enterococcus faecalis to oxygen. J. Bacteriol. 2014, 196, 2012–2022. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.S.; Chevrette, M.G.; Ehlmann, B.L.; Benison, K.C. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment. PLoS ONE 2015, 10, e0122869. [Google Scholar] [CrossRef] [Green Version]
- Carbajal-Rodríguez, I.; Stoveken, N.; Satola, B. Aerobic degradation of mercaptosuccinate by the gram-negative bacterium Variovorax paradoxus strain B4. J. Bacteriol. 2011, 193, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Llorens-Marès, T.; Yooseph, S.; Goll, J.; Hoffman, J.; Vila-Costa, M.; Borrego, C.M.; Dupont, C.L.; Casamayor, E.O. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 2015, 9, 1648. [Google Scholar] [CrossRef] [Green Version]
- Balcke, G.U.; Turunen, L.P.; Geyer, R.; Wenderoth, D.F.; Schlosser, D. Chlorobenzene biodegradation under consecutive aerobic–anaerobic conditions. FEMS Microbiol. Ecol. 2004, 49, 109–120. [Google Scholar] [CrossRef]
- Lin, C.W.; Lin, C.Y. MTBE biodegradation and degrader microbial community dynamics in MTBE, BTEX, and heavy metal-contaminated water. INT Biodeter. Biodegr. 2007, 59, 97–102. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.; Sun, F.; Zhu, W.; Wu, W. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour. Technol. 2014, 152, 420–428. [Google Scholar] [CrossRef]
- Hattori, S. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 2008, 23, 118. [Google Scholar] [CrossRef] [Green Version]
- Xin, B.; Zhang, D.; Zhang, X.; Xi, Y.; Wu, F.; Chen, S.; Li, L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 2009, 100, 6163–6169. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Y.; Jin, Y.; Huang, J.; Bao, S.; Fu, T.; He, Z.; Wang, F.; Zhao, H. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth. Bioresour. Technol. 2014, 163, 82–91. [Google Scholar] [CrossRef]
- Zhuang, R.; Lou, Y.; Qiu, X.; Zhao, Y.; Dong, Q.; Yan, X.; He, X.; Shen, Q.; Qian, L. Identification of a yeast strain able to oxidize and remove sulfide high efficiently. Appl. Microbiol. Biotechnol. 2017, 101, 391–400. [Google Scholar] [CrossRef]
- Pawar, S.S.; Niel, E.W.J. Evaluation of assimilatory sulfur metabolism in Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 2014, 169, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.F.; Hassan, A.N. Microorganisms associated with milk. In Encyclopedia of Dairy Sciences, 1st ed.; Roginski, H., Ed.; Werribee: Melbourne, Australia, 2002; pp. 1786–1796. [Google Scholar] [CrossRef]
- Brady, M.T.; Marcon, M.J. Less Commonly Encountered Nonenteric Gram-Negative Bacilli. In Principles and Practice of Pediatric Infectious Disease, 3rd ed.; Long, S.S., Ed.; W.B. Saunders: London, UK, 2008; Part III; pp. 828–831. [Google Scholar] [CrossRef]
- Tamura, T. The Family Sporichthyaceae. In The Prokaryotes, 4th ed.; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 883–888. [Google Scholar] [CrossRef]
- Roalkvam, I.; Drønen, K.; Stokke, R.; Daae, F.L.; Dahle, H.; Steen, I.H. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol. 2015, 6, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zopfi, J.; Ferdelman, T.G.; Fossing, H.; Amend, J.P.; Edwards, K.J.; Lyons, T.W. Distribution and fate of sulfur intermediates—Sulfite, tetrathionate, thiosulfate, and elemental sulfur—In marine sediments. In Sulfur Biogeochemistry-Past and Present; Amed, J.P., Edwards, K.J., Lyons, T.W., Eds.; Geological Society of America: Washington, DC, USA, 2004; Volume 379, pp. 97–116. [Google Scholar] [CrossRef]
Item | Bio-Treatment Group | Control Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 h | 6 h | 18 h | 28 h | 50 h | 1 h | 6 h | 18 h | 28 h | 50 h | |
Ace | 452.97 | 491.66 | 500.24 | 513.91 | 481.42 | 497.68 | 502.67 | 549.58 | 492.88 | 444.55 |
Shannon | 2.36 | 2.27 | 3.53 | 4.13 | 4.42 | 3.87 | 3.51 | 3.17 | 4.25 | 4.52 |
Coverage | 0.997 | 0.997 | 0.998 | 0.998 | 0.997 | 0.999 | 0.998 | 0.997 | 0.998 | 0.998 |
Role | SMB | Main Substrate Utilization | Protein Description | Gene | References/Sources |
---|---|---|---|---|---|
SRB | Flavobacteriaceae | SO42− | Thioredoxin reductase | trh_1 and trxB | [30] https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 28 January 2017) |
Enterococcaceae | SO42− | Sulfur reduction protein DsrE | EFPG_01082, EFUG_01619, HMPREF1348_01292, EFWG_02410, EfmE1039_2332, W75_03680 and etc. | [31] https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 28 January 2017) | |
Sphingomonadaceae | SO42− | Thioredoxin reductase | cysI | [32] | |
Cryomorphaceae | SO42− | Thioredoxin reductase | trh_1 and trxB | [30] https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 29 January 2017) | |
SOB | Bacteriovoracaceae | S2O32− | Sulfur transport, 4Fe-4S dicluster domain protein, and NADH: ubiquinone oxidoreductase | Unknown | https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 28 January 2017) |
Rhodobacteraceae | S2−, S0, S2O32− and SO32− | Sulfur oxidation protein SoxX | A33M_4449 | [15,30,32,33] | |
Campylobacteraceae | S2−, S0 and S2O32− | Sox and Sqr | Unknown | [19,34] | |
Comamonadaceae | S2− | Sulfur oxidation protein SoxY | CTATCC11996_02647, CtCNB1_3856, CtesDRAFT_PD0732, COMTE_24065 and CTS44_11486 | [8,33] | |
Alcaligenaceae | S2−, S0 and S2O32− | Sulfur oxidation protein SoxY | QWA_06910 and C660_15968 | [19,33] | |
Methylophilaceae | S2− | SoxZ and sulfite reductase | cysI, nir and sir | https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 19 February 2017) | |
SRB or SOB | Caulobacteraceae | SRB: SO32−/ SOB: S2− | Sulfite reductase/ Unknown | cysI, cysI1, cysI2, cysI_1, cysI_2, nirA, sir, sir1, sir11 and sir2/ Unknown | https://www.ncbi.nlm.nih.gov/proteinclusters (accessed on 19 February 2017) |
Burkholderiaceae | SRB: SO42−/ SOB: S2− and S0 | Unknown/ SoxY and SoxZ | Unknown/ B025_06765, BRPE64_BCDS01700, BURK_036384, BYI23_B014570 and BurJ1DRAFT_3069 | [34]/ [15,32] |
S2− | S0 | S2O32− | SO32− | SO42− | Sphingomonadaceae | Rhodobacteraceae | Flavobacteriaceae, | Enterococcaceae | Cryomorphaceae | Comamonadaceae | Campylobacteraceae | Burkholderiaceae | Alcaligenaceae | Methylophilaceae | Caulobacteraceae | Bacteriovoracaceae | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S2− | 1 | ||||||||||||||||
S0 | −0.965 ** | 1 | |||||||||||||||
S2O32− | 0.102 | −0.038 | 1 | ||||||||||||||
SO32− | −0.508 | 0.483 | −0.062 | 1 | |||||||||||||
SO42− | −0.965 ** | 0.999 ** | −0.073 | 0.508 | 1 | ||||||||||||
Sphingomonadaceae | −0.737 | 0.782 | −0.585 | 0.212 | 0.797 | 1 | |||||||||||
Rhodobacteraceae | −0.776 | 0.705 | −0.414 | 0.852* | 0.731 | 0.611 | 1 | ||||||||||
Flavobacteriaceae | 0.320 | −0.438 | 0.558 | −0.554 | −0.474 | −0.676 | −0.612 | 1 | |||||||||
Enterococcaceae | 0.900 * | −0.969 ** | 0.177 | −0.538 | −0.977 ** | −0.854 * | −0.744 | 0.645 | 1 | ||||||||
Cryomorphaceae | −0.352 | 0.233 | 0.653 | 0.393 | 0.212 | −0.373 | 0.220 | 0.510 | −0.042 | 1 | |||||||
Comamonadaceae | −0.906 * | 0.925 * | 0.305 | 0.374 | 0.908 * | 0.521 | 0.511 | −0.101 | −0.814 * | 0.514 | 1 | ||||||
Campylobacteraceae | 0.664 | −0.606 | 0.809 * | −0.307 | −0.631 | −0.894 * | −0.740 | 0.609 | 0.673 | 0.314 | −0.312 | 1 | |||||
Burkholderiaceae | −0.833 * | 0.925 | −0.270 | 0.395 | 0.934 * | 0.922 * | 0.650 | −0.685 | −0.979 ** | −0.143 | 0.736 | −0.712 | 1 | ||||
Alcaligenaceae | −0.813 * | 0.856 * | −0.538 | 0.488 | 0.866 * | 0.957 ** | 0.800 | −0.765 | −0.925 * | −0.212 | 0.581 | −0.890 | 0.942 ** | 1 | |||
Methylophilaceae | −0.902 * | 0.963 ** | −0.139 | 0.631 | 0.972 ** | 0.800 | 0.792 | −0.649 | −0.933 ** | 0.117 | 0.817 * | −0.639 | 0.951 ** | 0.904 * | 1 | ||
Caulobacteraceae | −0.850 * | 0.880* | −0.494 | 0.451 | 0.897 * | 0.964 ** | 0.781 | −0.710 | −0.940 ** | −0.170 | 0.638 | −0.881 * | 0.955 ** | 0.996 ** | 0.915 * | 1 | |
Bacteriovoracaceae | −0.562 | 0.501 | −0.133 | 0.988 ** | 0.526 | 0.247 | 0.901 * | −0.508 | −0.538 | 0.423 | 0.389 | −0.389 | 0.392 | 0.516 | 0.628 | 0.414 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Shi, Y.; Gao, H.; Liu, P.; Liu, X. Bio-Augmentation of S2− Oxidation for a Heavily Polluted River by a Mixed Culture Microbial Consortium. Fermentation 2023, 9, 592. https://doi.org/10.3390/fermentation9070592
Song C, Shi Y, Gao H, Liu P, Liu X. Bio-Augmentation of S2− Oxidation for a Heavily Polluted River by a Mixed Culture Microbial Consortium. Fermentation. 2023; 9(7):592. https://doi.org/10.3390/fermentation9070592
Chicago/Turabian StyleSong, Chen, Yajun Shi, Hongjie Gao, Ping Liu, and Xiaoling Liu. 2023. "Bio-Augmentation of S2− Oxidation for a Heavily Polluted River by a Mixed Culture Microbial Consortium" Fermentation 9, no. 7: 592. https://doi.org/10.3390/fermentation9070592
APA StyleSong, C., Shi, Y., Gao, H., Liu, P., & Liu, X. (2023). Bio-Augmentation of S2− Oxidation for a Heavily Polluted River by a Mixed Culture Microbial Consortium. Fermentation, 9(7), 592. https://doi.org/10.3390/fermentation9070592