Biotechnological Production of Fumaric Acid by Rhizopus arrhizus—Reaching Industrially Relevant Final Titers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Inoculum Preparation
2.2. Pre-Culture Conditions
2.3. Batch Fermentations
2.4. Fed-Batch Fermentations
2.5. Analytical Methods
- YP/S—product yield coefficient (g/g);
- cFAt—fumaric acid concentration at time t (g/L);
- cS0—initial concentration of the substrate (g/L);
- cSt—substrate concentration at time t (g/L).
- P—productivity (g/(L∙h));
- cFAt—fumaric acid concentration at time t (g/L);
- cFA0—initial concentration of fumaric acid (g/L);
- Δt—cultivation period (h).
3. Results and Discussion
3.1. Optimizing Cultivation Parameters
- Influence of process steps
- Influence of spore concentration
- Influence of corn steep liquor
- Influence of tartaric acid
- Influence of calcium carbonate
- Influence of ammonium and phosphate
- Influence of initial glucose concentration
3.2. Direct Spore Inoculation Compared to Pre-Culture Inoculation with Optimized Parameters
3.3. Fed-Batch Cultivation
3.3.1. Glucose Feed
3.3.2. Glucose and Ammonium Feed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Gulik, W.M.; van der Wielen, L.A.M. Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 2008, 78, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, G.T.; Cao, N.J.; Du, J.; Gong, C.S. Production of multifunctional organic acids from renewable resources. In Recent Progress in Bioconversion of Lignocellulosics; Springer: Berlin/Heidelberg, Germany, 1999; pp. 243–280. [Google Scholar]
- Das, R.K.; Brar, S.K.; Verma, M. Chapter 8—Fumaric acid: Production and application aspects. In Platform Chemical Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 133–157. [Google Scholar]
- Goldberg, I.; Rokem, J.S.; Pines, O. Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- McGinn, S.; Beauchemin, K.; Coates, T.; Colombatto, D. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Weißert, R. Multiple Sklerose-Risiken und Nutzen der neuen antiinflammatorischen Substanzen. J. für Neurol. Neurochir. und Psychiatr. 2014, 16, 95–101. [Google Scholar]
- Smith, D. Fumaric acid esters for psoriasis: A systematic review. Ir. J. Med. Sci. 2017, 186, 161–177. [Google Scholar] [CrossRef]
- Das, R.K.; Brar, S.K.; Verma, M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol. Rep. 2016, 68, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Waksman, S.A. Process for the Production of Fumaric Acid. US Patent 2,326,986 (to Merck & Co., Inc. and Pfizer & Co., Inc.), 1943. [Google Scholar]
- Lubowitz, H.R.; La, R.E.G. Fumaric Acid Fermentation Process. US Patent 2,861,922 (to National Distillers and Chemical Corporation), 1958. [Google Scholar]
- Goldberg, I.; Stieglitz, B. Fermentation Process for Production of Carboxylic Acids. US Patent 4,564,594 (to E. I. Du Pont de Nemours and Company, Wilmington, Del.), 1986. [Google Scholar]
- Ling, L.B.; Ng, T.K. Fermentation Process for Carboxylic Acids. US Patent 4,877,731 (to E. I. Du Pont de Nemours and Company, Wilmington, Del.), 1989. [Google Scholar]
- Xu, Q.; Li, S.; Huang, H.; Wen, J. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 2012, 30, 1685–1696. [Google Scholar] [CrossRef]
- Kenealy, W.; Zaady, E.; du Preez, J.C.; Stieglitz, B.; Goldberg, I. Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl. Environ. Microbiol. 1986, 52, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, B.; Yang, S.T. Production of citric, itaconic, fumaric and malic acids in filamentous fungal fermentations. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 375–397. [Google Scholar]
- Martin-Dominguez, V.; Cabrera, P.I.A.; Eidt, L.; Pruesse, U.; Kuenz, A.; Ladero, M.; Santos, V.E. Production of Fumaric Acid by Rhizopus arrhizus NRRL 1526: A Simple Production Medium and the Kinetic Modelling of the Bioprocess. Fermentation 2022, 8, 64. [Google Scholar] [CrossRef]
- Martin-Dominguez, V.; Estevez, J.; Ojembarrena, F.D.B.; Santos, V.E.; Ladero, M. Fumaric Acid Production: A Biorefinery Perspective. Fermentation 2018, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Byrne, G.S.; Ward, O.P. Growth of Rhizopus arrhizus in fermentation media. J. Ind. Microbiol. 1989, 4, 155–161. [Google Scholar] [CrossRef]
- Kosakai, Y.; Soo Park, Y.; Okabe, M. Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 1997, 55, 461–470. [Google Scholar] [CrossRef]
- Ilica, R.A.; Kloetzer, L.; Galaction, A.I.; Caşcaval, D. Fumaric acid: Production and separation. Biotechnol. Lett. 2018, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Du, G.; Hua, Z.; Zhou, J.; Chen, J. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 2011, 102, 9345–9349. [Google Scholar] [CrossRef]
- Sebastian, J.; Hegde, K.; Kumar, P.; Rouissi, T.; Brar, S.K. Bioproduction of fumaric acid: An insight into microbial strain improvement strategies. Crit. Rev. Biotechnol. 2019, 39, 817–834. [Google Scholar] [CrossRef]
- Eidt, L. Nutzung Nachwachsender Rohstoffe für die Biotechnologische Produktion von Fumarsäure. Ph.D. Thesis, Technical University of Braunschweig, Braunschweig, Germany, 2021. [Google Scholar] [CrossRef]
- Roa Engel, C.A.; van Gulik, W.M.; Marang, L.; van der Wielen, L.A.M.; Straathof, A.J.J. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb. Technol. 2011, 48, 39–47. [Google Scholar] [CrossRef]
- Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 2004, 22, 189–259. [Google Scholar] [CrossRef]
- Papadaki, A.; Androutsopoulos, N.; Patsalou, M.; Koutinas, M.; Kopsahelis, N.; Castro, A.M.d; Papanikolaou, S.; Koutinas, A.A. Biotechnological production of fumaric acid: The effect of morphology of Rhizopus arrhizus NRRL 2582. Fermentation 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, R.A.; Lagoda, A.A.; Misenheimer, T.J.; Smith, M.L.; Anderson, R.F.; Jackson, R.W. Production of fumaric acid in 20-liter fermentors. Appl. Microbiol. 1962, 10, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, Y.; Frear, C.; Chen, S. A new approach of pellet formation of a filamentous fungus—Rhizopus oryzae. " Bioresour. Technol. 2007, 98, 3415–3423. [Google Scholar] [CrossRef]
- Riscaldati, E.; Moresi, M.; Federici, F.; Petruccioli, M. Direct ammonium fumarate production by Rhizopus arrhizus under phosphorous limitation. Biotechnol. Lett. 2000, 22, 1043–1047. [Google Scholar] [CrossRef]
- Das, R.K.; Brar, S.K.; Verma, M. Valorization of egg shell biowaste and brewery wastewater for the enhanced production of fumaric acid. Waste Biomass Valorization 2015, 6, 535–546. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Li, S.; Chen, Y.; Xu, Q.; Huang, H.; Sheng, X.Y. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Appl. Biochem. Biotechnol. 2010, 162, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, S.; Dou, C.; Yu, Y.; Huang, H. Production of fumaric acid by Rhizopus oryzae: Role of carbon–nitrogen ratio. Appl. Biochem. Biotechnol. 2011, 164, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Xu, Q.; Huang, H.; Li, S. Alternative respiration and fumaric acid production of Rhizopus oryzae. Appl. Microbiol. Biotechnol. 2014, 98, 5145–5152. [Google Scholar] [CrossRef] [PubMed]
- Klotz, S. Biotechnisch Hergestellte D-Milchsäure—Substitution von Hefeextrakt Durch Agrarische Rohstoffhydrolysate. Ph.D. Thesis, Technical University of Braunschweig, Braunschweig, Germany, 2017. [Google Scholar] [CrossRef]
- Yu, S.; Huang, D.; Wen, J.; Li, S.; Chen, Y.; Jia, X. Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresour. Technol. 2012, 114, 610–615. [Google Scholar] [CrossRef]
- Wang, G.; Huang, D.; Qi, H.; Wen, J.; Jia, X.; Chen, Y. Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour. Technol. 2013, 137, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Brar, S.K.; Verma, M. Application of calcium carbonate nanoparticles and microwave irradiation in submerged fermentation production and recovery of fumaric acid: A novel approach. RSC Adv. 2016, 6, 25829–25836. [Google Scholar] [CrossRef] [Green Version]
- Eidt, L.; Kuenz, A.; Prüße, U. Biotechnologische Produktion von Fumarsäure: Prozessoptimierung und Kontrolle der Morphologie. Chem. Ing. Tech. 2018, 90, 1272. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Xu, Q.; Li, S.; Huang, H.; Chen, Y. A novel multi-stage preculture strategy of Rhizopus oryzae ME-F12 for fumaric acid production in a stirred-tank reactor. World J. Microbiol. Biotechnol. 2009, 25, 1871–1876. [Google Scholar] [CrossRef]
- Xu, Q.; He, S.; Jiang, L.; Li, S.; Wen, J.; Guan, R.; Huang, H. Extractive fermentation for fumaric acid production by Rhizopus oryzae. Sep. Sci. Technol. 2017, 52, 1512–1520. [Google Scholar] [CrossRef]
- Swart, R.M.; Ronoh, D.K.; Brink, H.; Nicol, W. Continuous Production of Fumaric Acid with Immobilised Rhizopus oryzae: The Role of pH and Urea Addition. Catalysts 2022, 12, 82. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, J.; Tsao, G.T. Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess. Biosyst. Eng. 2002, 25, 179–181. [Google Scholar] [PubMed]
- Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas Energy Efficiency and Renewable Energy; PNLL: Richland, WA, USA, 1992. [Google Scholar]
- Esteban, J.; Ladero, M. Food waste as a source of value-added chemicals and materials: A biorefinery perspective. Int. J. Food Sci.Technol. 2018, 53, 1095–1108. [Google Scholar] [CrossRef]
- Di Lorenzo, R.D.; Serra, I.; Porro, D.; Branduardi, P. State of the Art on the Microbial Production of Industrially Relevant Organic Acids. Catalysts 2022, 12, 234. [Google Scholar] [CrossRef]
Experiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
Initial glucose | (g/L) | 40 | 60 | 80 | 100 | 130 | 160 | 200 |
C/N-ratio | (gC/gN) | 63 | 94 | 126 | 157 | 204 | 252 | 314 |
Morphology | - | clumps | mycelium | mycelium | mycelium | mycelium | mycelium | mycelium |
Duration | (d) | 2 | 3 | 4 | 6 | 7 | 11 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuenz, A.; Eidt, L.; Prüße, U. Biotechnological Production of Fumaric Acid by Rhizopus arrhizus—Reaching Industrially Relevant Final Titers. Fermentation 2023, 9, 588. https://doi.org/10.3390/fermentation9070588
Kuenz A, Eidt L, Prüße U. Biotechnological Production of Fumaric Acid by Rhizopus arrhizus—Reaching Industrially Relevant Final Titers. Fermentation. 2023; 9(7):588. https://doi.org/10.3390/fermentation9070588
Chicago/Turabian StyleKuenz, Anja, Laslo Eidt, and Ulf Prüße. 2023. "Biotechnological Production of Fumaric Acid by Rhizopus arrhizus—Reaching Industrially Relevant Final Titers" Fermentation 9, no. 7: 588. https://doi.org/10.3390/fermentation9070588
APA StyleKuenz, A., Eidt, L., & Prüße, U. (2023). Biotechnological Production of Fumaric Acid by Rhizopus arrhizus—Reaching Industrially Relevant Final Titers. Fermentation, 9(7), 588. https://doi.org/10.3390/fermentation9070588