Heterologous Expression and Biochemical Characterization of a Thermostable Endoglucanase (MtEG5-1) from Myceliophthora thermophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Chemicals
2.3. Bioinformatics Analysis of MtEG5-1
2.4. Expression Vector Construction
2.5. Transformation and Selection of Positive Transformants
2.6. Fermentation of MtEG5-1 in P. pastoris GS115
2.7. Enzymatic Assay of MtEG5-1
2.8. Activity Was Determined via Congo-Red Staining
2.9. Scanning Electron Microscopy (SEM) Analysis
2.10. Purification of Recombinant MtEG5-1 from P. pastoris GS115
2.11. Enzyme Characterization
2.12. Enzymatic Kinetics of MtEG5-1
3. Results and Discussion
3.1. Bioinformatics Analysis of MtEG5-1 and Construction of pPIC9K-mtEG5
3.2. Selection of P. pastoris GS115 Positive Transformants and Heterologous Expression
3.3. Scanning Electron Microscopy of Hydrolyzed Corn Straw
3.4. Characterization of Purified MtEG5-1
3.5. Enzyme Kinetic Parameters of Purified MtEG5-1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, D.; Zhao, X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 2021, 146, 111169. [Google Scholar] [CrossRef]
- Xia, Z.; Li, J.; Zhang, J.; Zhang, X.; Zheng, X.; Zhang, J. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 2020, 5, 79–95. [Google Scholar] [CrossRef]
- Tan, J.; Li, Y.; Tan, X.; Wu, H.; Li, H.; Yang, S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front. Chem. 2021, 9, 696030. [Google Scholar] [CrossRef]
- Kadowaki, M.A.S.; Higasi, P.; de Godoy, M.O.; Prade, R.A.; Polikarpov, I. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila. FEBS J. 2018, 285, 559–579. [Google Scholar] [CrossRef] [PubMed]
- Himmel, M.E.; Ruth, M.F.; Wyman, C.E. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 1999, 10, 358–364. [Google Scholar] [CrossRef]
- Yang, W.; Fan, H.; Zhou, M.; Zhou, Z.; Yan, L.; Ju, X.; Li, L. Synergistic effect of ionic liquid and surfactant for enzymatic hydrolysis of lignocellulose by Paenibacillus sp. LLZ1 cellulase. Biomass Bioenergy 2020, 142, 105760. [Google Scholar] [CrossRef]
- Hamalainen, V.; Barajas Lopez, J.D.; Berlina, Y.; Alvarez Rafael, R.; Birikh, K. New thermostable endoglucanase from Spirochaeta thermophila and its mutants with altered substrate preferences. Appl. Microbiollogy Biotechnol. 2021, 105, 1133–1145. [Google Scholar] [CrossRef]
- Singh, B. Myceliophthora thermophila syn. Sporotrichum thermophile: A thermophilic mould of biotechnological potential. Crit. Rev. Biotechnol. 2016, 36, 59–69. [Google Scholar] [CrossRef]
- Chen, X.T.; Li, W.G.; Ji, P.; Zhao, Y.; Hua, C.Y.; Han, C. Engineering the conserved and noncatalytic residues of a thermostable beta-1,4-endoglucanase to improve specific activity and thermostability. Sci. Rep. 2018, 8, 2954. [Google Scholar] [CrossRef]
- Javanmard, A.S.; Matin, M.M.; Bahrami, A.R. Polycistronic cellulase gene expression in Pichia pastoris. Biomass Convers. Biorefinery 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Kumar, S.; Nussinov, R. How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. CMLS 2001, 58, 1216–1233. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa-Garzon, N.G.; Laure, H.J.; Rosa, J.C.; Cabral, H. Valorization of agricultural residues using Myceliophthora thermophila as a platform for production of lignocellulolytic enzymes for cellulose saccharification. Biomass Bioenergy 2022, 161, 106452. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Gong, Y.; Yu, S.; Liu, G. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1. J. Ind. Microbiol. Biotechnol. 2015, 42, 1233–1241. [Google Scholar] [CrossRef]
- Saxena, S.; Shrivastava, S.; Arora, R.; Hussain, S.; Jena, S.C.; Kumar, M.; Vasu, R.K.; Srivastava, S.; Sharma, P.; Kumar, N.; et al. Development of Real-Time PCR Assays for Detecting Matrix Metalloproteinases-2 & 9 Over-expression in Canine Mammary Tumours. Adv. Anim. Vet. Sci. 2016, 4, 342–345. [Google Scholar] [CrossRef]
- Tambor, J.H.; Ren, H.; Ushinsky, S.; Zheng, Y.; Riemens, A.; St-Francois, C.; Tsang, A.; Powlowski, J.; Storms, R. Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-beta-glucanases that efficiently hydrolyse cellulosic substrates. Appl. Microbiol. Biotechnol. 2012, 93, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Karnaouri, A.; Muraleedharan, M.N.; Dimarogona, M.; Topakas, E.; Rova, U.; Sandgren, M.; Christakopoulos, P. Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol. Biofuels 2017, 10, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)—Current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q. 2020, 40, 68–76. [Google Scholar] [CrossRef]
- Reynolds, S.M.; Käll, L.; Riffle, M.E.; Bilmes, J.A.; Noble, W.S. Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks. PLOS Comput. Biol. 2008, 4, e1000213. [Google Scholar] [CrossRef]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, 252–258. [Google Scholar] [CrossRef]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020, 235, 5867–5881. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.D.; Straka, J.G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem. 1988, 170, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Gavande, P.V.; Basak, A.; Sen, S.; Lepcha, K.; Murmu, N.; Rai, V.; Mazumdar, D.; Saha, S.P.; Das, V.; Ghosh, S. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci. Rep. 2021, 11, 3032. [Google Scholar] [CrossRef]
- Sun, N.; Rahman, M.; Qin, Y.; Maxim, M.L.; Rodríguez, H.; Rogers, R.D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009, 11, 646–655. [Google Scholar] [CrossRef]
- Sorn, V.; Chang, K.-L.; Phitsuwan, P.; Ratanakhanokchai, K.; Dong, C.-D. Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour. Technol. 2019, 293, 121929. [Google Scholar] [CrossRef]
- Sahoo, D.; Ummalyma, S.B.; Okram, A.K.; Pandey, A.; Sankar, M.; Sukumaran, R.K. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresour. Technol. 2018, 253, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, J.; Wang, Y.; Sun, J.; Huang, P.; Chang, K. Effect of ultrasound on ionic liquid-hydrochloric acid pretreatment with rice straw. Biomass Convers. Biorefinery 2020, 11, 1749–1757. [Google Scholar] [CrossRef]
- Ghorbani, S.; Eyni, H.; Bazaz, S.R.; Nazari, H.; Asl, L.S.; Zaferani, H.; Kiani, V.; Mehrizi, A.A.; Soleimani, M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polym. Sci. Ser. A 2018, 60, 707–722. [Google Scholar] [CrossRef]
- Dalal, S.; Raghava, S.; Gupta, M. Single-step purification of recombinant green fluorescent protein on expanded beds of immobilized metal affinity chromatography media. Biochem. Eng. J. 2008, 42, 301–307. [Google Scholar] [CrossRef]
- Lindmo, T.; Boven, E.; Cuttitta, F.; Fedorko, J.; Bunn, P.A., Jr. Determination of the immunoreactive function of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J. Immunol. Methods 1984, 72, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.; Mamo, G.; Karlsson, E.N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Factories 2007, 6, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wierenga, R. The TIM-barrel fold: A versatile framework for efficient enzymes. FEBS Lett. 2001, 492, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Aspeborg, H.; Coutinho, P.M.; Wang, Y.; Brumer, H.; Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 2012, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, K.; Nath, P.; Goyal, A. Role of glycine 256 residue in improving the catalytic efficiency of mutant endoglucanase of family 5 glycoside hydrolase from Bacillus amyloliquefaciens SS35. Biotechnol. Bioeng. 2020, 117, 2668–2682. [Google Scholar] [CrossRef]
- Tu, T.; Pan, X.; Meng, K.; Luo, H.; Ma, R.; Wang, Y.; Yao, B. Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochem. 2016, 51, 1230–1238. [Google Scholar] [CrossRef]
- Zhai, X.; Amyes, T.L.; Richard, J.P. Role of loop-clamping side chains in catalysis by triosephosphate isomerase. J. Am. Chem. Soc. 2015, 137, 15185–15197. [Google Scholar] [CrossRef]
- Gromiha, M.M.; Pujadas, G.; Magyar, C.; Selvaraj, S.; Simon, I. Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins 2004, 55, 316–329. [Google Scholar] [CrossRef]
- Badieyan, S.; Bevan, D.R.; Zhang, C. Study and design of stability in GH5 cellulases. Biotechnol. Bioeng. 2012, 109, 31–44. [Google Scholar] [CrossRef]
- Silva, T.P.; de Albuquerque, F.S.; Nascimento Ferreira, A.; Santos, D.; Santos, T.V.D.; Meneghetti, S.M.P.; Franco, M.; Luz, J.; Pereira, H.J.V. Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a Botrytis ricini endoglucanase. Biotechnol. Appl. Biochem. 2022, 70, 184–192. [Google Scholar] [CrossRef]
- Beckham, G.T.; Dai, Z.; Matthews, J.F.; Momany, M.; Payne, C.M.; Adney, W.S.; Baker, S.E.; Himmel, M.E. Harnessing glycosylation to improve cellulase activity. Curr. Opin. Biotechnol. 2012, 23, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Karnaouri, A.; Topakas, E.; Antonopoulou, I.; Christakopoulos, P. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front. Microbiol. 2014, 5, 281. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wang, Q.Q.; Sun, Y.X.; Yang, R.R.; Liu, M.Y.; Wang, S.Q.; Liu, Y.F.; Zhou, L.F.; Li, D.C. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol. Biofuels 2020, 13, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Heine, A.; Klebe, G.; Klein, C.D. Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: A critical view of the relevance of in vitro metalloenzyme assays. Angew. Chem. Int. Ed. 2005, 44, 3620–3623. [Google Scholar] [CrossRef]
- Shoichet, B.K.; Baase, W.A.; Kuroki, R.; Matthews, B.W. A relationship between protein stability and protein function. BIochemistry 1995, 92, 452–456. [Google Scholar] [CrossRef]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Acta Crystallogr. Sect. F 2016, 72, 72–95. [Google Scholar] [CrossRef]
- Bianchetti, C.M.; Brumm, P.; Smith, R.W.; Dyer, K.; Hura, G.L.; Rutkoski, T.J.; Phillips Jr, G.N. Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. J. Mol. Biol. 2013, 425, 4267–4285. [Google Scholar] [CrossRef]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef]
- Niyonzima, F.N. Detergent-compatible fungal cellulases. Folia Microbiol. 2021, 66, 25–40. [Google Scholar] [CrossRef]
- Ma, L.; Aizhan, R.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lu, X. Cloning and characterization of low-temperature adapted GH5-CBM3 endo-cellulase from Bacillus subtilis 1AJ3 and their application in the saccharification of switchgrass and coffee grounds. AMB Express 2020, 10, 42. [Google Scholar] [CrossRef]
- Salehi, M.E.; Asoodeh, A. Extraction, Purification, and Biochemical Characterization of an Alkalothermophilic Endoglucanase from Bacterial Flora in Gastrointestinal Tract of Osphranteria coerulescens Larvae. Waste Biomass Valorization 2022, 14, 1251–1265. [Google Scholar] [CrossRef]
Primers | Sequence (5′-3′) Restriction Italic/Underlined | Restriction Sites |
---|---|---|
EcoRI-mtEG5-F | CTGAAGCTTACGTAGAATTC a GGTCCGTGGCAGCAATGTGG | EcoRI a |
EcoRI-mtEG5-R | CGGCCGCCCTAGGGAATTC a TTAATGGTGATGGTGATGATG b CGGCAAGTACTTCTTCAAGA | EcoRI a |
YmtEG5-F | CGATGTTGCTGTTTTGCCAT | |
YmtEG5-R | GGTTACAAATAAAAAAGTAT |
Metal Ion | Relative Activity (%) | Metal Ion | Relative Activity (%) |
---|---|---|---|
None | 100 | Cu2+ | 100.2 ± 2.9 |
Na+ | 86.1 ± 2.4 | K+ | 76.1 ± 1.6 |
Mg2+ | 97.4 ± 1.3 | Fe2+ | 123.3 ± 3.8 |
Mn2+ | 142.6 ± 2.5 | Ni2+ | 87.6 ± 2.2 |
Karnaouri [17] | Tambor [16] | This Study | |
---|---|---|---|
The optimum temperature | 70 | 70 | 70 |
The optimum pH | 5–6 | 6 | 5 |
Source of mtEG5 gene | Genomic DNA | RNA to cDNA | RNA to cDNA |
Host strain | P. pastoris X33 | A. niger | P. pastoris GS115 |
The expression of the vector | pPICZαC | pDONR201 and pGBFIN-GTW | pPIC9K |
The molecular weight of MtEG5-1 | 75 kDa | -- | 55 kDa |
The relative activity of MtEG5-1 was above 80% at different temperatures (pH 5) for 2 h | 60–75 | 60–70 | 60–80 |
Comparison of the stability of MtEG5-1 | 25% residual activity after 2 h at 65 °C | inactivity after 2 h at 60 °C | 88% residual activity after 2 h at 70 °C |
The relative activity of MtEG5-1 was above 80% at different pH for 24 h at 4 °C | 4–6 | 5.5–6.5 (2 h, 37 °C) | 4–6 |
Maximum level obtained MtEG5-1 expression | 0.98 g/L | >0.3 g/L | 1.15 g/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Tong, S.; Amin, F.R.; Chen, W.; Cai, J.; Li, D. Heterologous Expression and Biochemical Characterization of a Thermostable Endoglucanase (MtEG5-1) from Myceliophthora thermophila. Fermentation 2023, 9, 462. https://doi.org/10.3390/fermentation9050462
Zhou W, Tong S, Amin FR, Chen W, Cai J, Li D. Heterologous Expression and Biochemical Characterization of a Thermostable Endoglucanase (MtEG5-1) from Myceliophthora thermophila. Fermentation. 2023; 9(5):462. https://doi.org/10.3390/fermentation9050462
Chicago/Turabian StyleZhou, Wenyuan, Sheng Tong, Farrukh Raza Amin, Wuxi Chen, Jinling Cai, and Demao Li. 2023. "Heterologous Expression and Biochemical Characterization of a Thermostable Endoglucanase (MtEG5-1) from Myceliophthora thermophila" Fermentation 9, no. 5: 462. https://doi.org/10.3390/fermentation9050462
APA StyleZhou, W., Tong, S., Amin, F. R., Chen, W., Cai, J., & Li, D. (2023). Heterologous Expression and Biochemical Characterization of a Thermostable Endoglucanase (MtEG5-1) from Myceliophthora thermophila. Fermentation, 9(5), 462. https://doi.org/10.3390/fermentation9050462