The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Seed Procyanidin
2.2. Total Mixed Rations
2.3. Rumen Fluid Collection
2.4. Experimental Design and In Vitro Batch Culture
2.5. DNA Extraction, 16S rDNA Gene Amplification and Illumina Sequencing
2.6. Sequencing Data Processing and Analysis
2.7. Quantitative Realtime PCR Analysis
2.8. Calculations
2.9. Statistical Analysis
3. Results
3.1. Kinetic Gas Production
3.2. Fermentation Characteristics
3.3. CH4 Production along with IVDMD, Total VFA and GP48
3.4. The Abundance Ratio of Total Bacteria to Methanogens (B:M)
3.5. Archaeal Diversity and the Abundance of Related Enzymes with Methanogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Saminathan, M.; Sieo, C.C.; Gan, H.M.; Abdullah, N.; Wong, C.M.V.L.; Ho, Y.W. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim. Feed Sci. Technol. 2016, 216, 146–160. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; Gong, X.; Le, L.; Zhu, D.; Xiang, D.; Geng, F.; Zhu, H.; Peng, L.; Zou, L.; Zhao, G.; et al. Prospects for Proanthocyanidins from Grape Seed: Extraction Technologies and Diverse Bioactivity. Food Rev. Int. 2023, 39, 349–368. [Google Scholar] [CrossRef]
- Chen, M.; Yu, S. Lipophilized Grape Seed Proanthocyanidin Derivatives as Novel Antioxidants. J. Agric. Food Chem. 2017, 65, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Garg, A.; Krohn, R.L.; Bagchi, M.; Bagchi, D.J.; Balmoori, J.; Stohs, S.J. Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants against TPA-induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice. Gen. Pharmacol. 1998, 30, 771–776. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Torok, V.A.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.H.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [Green Version]
- Hixson, J.L.; Durmic, Z.; Vadhanabhuti, J.; Vercoe, P.E.; Smith, P.A.; Wilkes, E.N. Exploiting compositionally similar grape marc samples to achieve gradients of condensed tannin and fatty acids for modulating in vitro methanogenesis. Molecules 2018, 23, 1793. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Rasmussen, J.; Harrison, A. The Benefits of Supplementary Fat in Feed Rations for Ruminants with Particular Focus on Reducing Levels of Methane Production. ISRN Vet. Sci. 2011, 2011, 613172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unusan, N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J. Funct. Foods 2020, 67, 103861. [Google Scholar] [CrossRef]
- Ogden, B.E.; Wanyong, P.W.; Takashi, A.; Byeong, H.L. Laboratory Animal Laws, Regulations, Guidelines and Standards in China Mainland, Japan, and Korea. ILAR J. 2017, 57, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellikaan, W.F.; Stringano, E.; Leenaars, J.; Bongers, D.J.G.M.; Schuppen, L.V.; Plant, J.; Mueller-Harvey, I. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evaluation system (APES). Anim. Feed Sci. Technol. 2011, 166–167, 377–390. [Google Scholar] [CrossRef]
- Bai, S.; Cao, Z.J.; Cao, B.B.; Yang, H.J.; Li, S.L.; Liu, J.X. Effects of different forage combinations in total mixed rations on in vitro gas production kinetics, ruminal and milk fatty acid profiles of lactating cows. Meat Sci. 2018, 145, 51–57. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhuang, H.; Meng, X.K.; Zhang, D.F.; Cao, B.H. Effect of melamine on in vitro rumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures. J. Agric. Sci. 2014, 152, 686–696. [Google Scholar] [CrossRef]
- Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- Pang, D.G.; Yang, H.J.; Cao, B.B.; Wu, T.T.; Wang, J.Q. The beneficial effect of enterococcus faecium, on the in vitro, ruminal fermentation rate and extent of three typical total mixed rations in northern china. Livest. Sci. 2014, 167, 154–160. [Google Scholar] [CrossRef]
- Zhang, D.F.; Yang, H.J. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds, pyromellitic diimide and, 2-bromoethanesulphonate. Anim. Feed Sci. Technol. 2011, 163, 20–32. [Google Scholar] [CrossRef]
- Takai, K.; Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 2000, 66, 5066–5072. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Nan, X.M.; Chu, K.K.; Tong, J.J.; Yang, L.; Zheng, S.S.; Zhao, G.Y.; Jiang, L.S.; Xiong, B.H. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front. Microbiol. 2018, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Langille, M.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.; Clemente, J.; Burkepile, D.; Vega Thurber, R.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Ørskov, E.R. Manipulation of rumen fermentation for maximium food utilization. Wld. Rev. Nutr. Diet. 1975, 22, 152–182. [Google Scholar]
- Demeyer, D.; De Graeve, K. Differences in stoichiometry between rumen and hindgut fermentation. Adv. Anim. Physiol. Anim. Nutr. 1991, 22, 50–61. [Google Scholar]
- Luo, S.; Zhang, X.; Zhang, X.; Zhang, L. Extraction, Identification and Antioxidant Activity of Proanthocyanidins from Larix Gmelinii Bark. Nat. Prod. Res. 2014, 28, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.A.; Heeba, G.H.; Elwy, H.M.; Murali, C.; El-Awady, R.; Amin, A. Molecular Characterization of the Grape Seeds Extract’s Effect against Chemically Induced Liver Cancer: In Vivo and in Vitro Analyses. Sci. Rep. 2018, 8, 1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiesel, A.; Ehrmann, M.; Gessner, D.K.; Most, E.; Eder, K. Effects of Polyphenol-rich Plant Products from Grape or Hop as Feed Supplements on Iron, Zinc and Copper Status in Piglets. Arch. Anim. Nutr. 2015, 69, 276–284. [Google Scholar] [CrossRef]
- Du, H.; Wang, Q.; Li, T.; Ren, D.; Yang, X. Grape seed proanthocyanidins reduced the overweight of C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. Food Funct. 2021, 12, 8467–8477. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Sinz, S.; Kunz, C.; Liesegang, A.; Ueli, B.; Svenja, M.; Carla, R.S.; Michael, K. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech. J. Anim. Sci. 2018, 63, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Wischer, G.; Boguhn, J.; Steingaß, H.; Schollenberger, M.; Rodehutscord, M. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal 2013, 7, 1796–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes -Review. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Gordon, G.L.R.; Phillips, M.W. The role of anaerobic gut fungi in ruminants. Nutr. Res. Rev. 1998, 11, 133–168. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, R.; Uyeno, Y.; Tajima, K.; Takenaka, A.; Yabumoto, Y.; Nonaka, I.; Enishi, O.; Kurihara, M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009, 92, 5512–5522. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Li, Y.; Yao, H.; Chapman, S.J. Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil. Sci. Total Environ. 2022, 823, 153636. [Google Scholar] [CrossRef]
- Buenoa, I.C.S.; Brandia, R.A.; Franzolina, R.; Benetela, G.; Fagundesa, G.M.; Abdallab, A.L.; Louvandinib, H.; Muir, J.P. In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol. 2015, 205, 1–9. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L.; Stewart, C.S. Microbe-microbe interactions. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Blackie Academic & Professional: London, UK, 1997; pp. 467–491. [Google Scholar]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2005, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Cieslak, A.; Szumacher-Strabel, M.; Stochmal, A.; Oleszek, W. Plant components with specific activities against rumen methanogens. Animal 2013, 7, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Leahy, S.C.; Kelly, W.J.; Ronimus, R.S.; Wedlock, N.; Altermann, E.; Attwood, G.T. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 2013, 7, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Harms, U.; Thauer, R.K. Identification of the active site histidine in the corrinoid protein MtrA of the energy-conserving methyltransferase complex from Methanobacterium thermoautotrophicum. Eur. J. Biochem. 1997, 250, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duin, E.C.; Mckee, M.L. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. J. Phys. Chem. B 2008, 112, 2466–2482. [Google Scholar] [CrossRef] [PubMed]
Items | HY | LY |
---|---|---|
Ingredients, g/kg DM | ||
Corn silage | 476 | 506 |
Alfalfa hay | 87 | 101 |
Corn meal | 65 | 77 |
Steam-flaked corn | 60 | 0 |
Soybean meal | 32 | 39 |
Cottonseed meal | 22 | 32 |
Whole cottonseed | 38 | 0 |
Soybean hulls | 22 | 26 |
Brewers’ grains | 130 | 152 |
DDGS | 27 | 26 |
Molasses | 22 | 25 |
Fat powder | 4 | 0 |
Calcium salt of fatty acid | 3 | 0 |
Premix | 13 | 15 |
Total | 1000 | 1000 |
Nutrients | ||
Crude protein, g/kg DM | 160.7 | 160.1 |
Neutral detergent fiber, g/kg DM | 285.3 | 337.0 |
Acid detergent fiber, g/kg DM | 178.6 | 205.4 |
Ether extract, g/kg DM | 85.4 | 35.2 |
Starch, g/kg DM | 255.0 | 185.2 |
NEL, Mcal/kg DM | 1.82 | 1.76 |
Item 2 | TMR | GSP (mg/g) | SEM | p Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | TMR | GSP | L | Q | TMR × GSP | |||
IVDMD, g/kg | HY | 873 a | 886 a | 874 a | 837 b | 779 c | 0.67 | <0.01 | <0.01 | <0.01 | <0.01 | 0.22 |
LY | 850 a | 859 a | 834 ab | 822 b | 728 c | |||||||
GP48, mL/g DM | HY | 164 | 162 | 164 | 163 | 157 | 3.3 | 0.05 | 0.55 | 0.01 | 0.69 | 0.44 |
LY | 159 a | 165 a | 156 ab | 152 b | 145 b | |||||||
Gas production kinetic | ||||||||||||
A, mL/g DM | HY | 171 | 167 | 171 | 172 | 175 | 3.7 | 0.05 | 0.89 | 0.55 | 0.57 | 0.43 |
LY | 167 a | 167 a | 163 ab | 159 b | 159 b | |||||||
B | HY | 1.4 a | 1.4 a | 1.4 a | 1.4 a | 1.2 b | 0.03 | 0.01 | 0.02 | 0.05 | 0.48 | 0.12 |
LY | 1.4 ab | 1.5 a | 1.3 b | 1.4 ab | 1.4 ab | |||||||
C (h) | HY | 5.0 bc | 4.2 c | 4.3 c | 5.6 b | 8.4 a | 0.22 | 0.59 | 0.14 | <0.01 | <0.01 | 0.89 |
LY | 5.5 b | 5.0 b | 5.1 b | 5.6 b | 9.2 a | |||||||
RmaxG, mL/h | HY | 22 ab | 24 a | 24 a | 19 b | 14c | 0.88 | 0.27 | 0.11 | <0.01 | 0.01 | 0.78 |
LY | 19 a | 22a | 20 a | 17 a | 11 b | |||||||
TRmaxG, h | HY | 1.3 | 1.2 | 1.1 | 1.5 | 1.4 | 0.17 | 0.05 | 0.89 | 0.01 | 0.25 | 0.43 |
LY | 1.5 b | 1.8 ab | 1.3b | 1.6 b | 2.5 a | |||||||
RmaxS, g/h | HY | 0.16 bc | 0.18 a | 0.17 ab | 0.14c | 0.09 d | 0.01 | 0.61 | 0.04 | <0.01 | <0.01 | 0.88 |
LY | 0.14 a | 0.17 a | 0.15 a | 0.14 a | 0.09 b | |||||||
TRmaxS, h | HY | 2.4 | 2.2 | 2.1 | 2.8 | 2.7 | 0.28 | 0.05 | 0.98 | 0.01 | 0.23 | 0.47 |
LY | 2.8 b | 3.3 b | 2.4 b | 3.1b | 4.7 a | |||||||
Fermentation gas composition | ||||||||||||
H2, %, molar | HY | 0.24 a | 0.16 b | 0.15 b | 0.15 b | 0.14 b | 0.011 | 0.04 | <0.01 | <0.01 | 0.21 | <0.01 |
LY | 0.17 ab | 0.20 a | 0.18 ab | 0.14 b | 0.17 ab | |||||||
CH4, %, molar | HY | 22.0 a | 20.3 b | 19.2 b | 19.4 b | 18.4 b | 0.401 | 0.74 | <0.01 | <0.01 | 0.15 | 0.73 |
LY | 21.5 a | 19.9 b | 19.6 b | 18.9 b | 18.8 b | |||||||
CO2, %, molar | HY | 77.8 b | 79.5 ab | 80.7 a | 80.4 a | 81.5 a | 0.433 | 0.74 | <0.01 | <0.01 | 0.22 | 0.23 |
LY | 78.7 | 79.8 | 80.2 | 80.0 | 80.2 |
Item 2 | TMR | GSP (mg/g) | SEM | p Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | TMR | GSP | L | Q | TMR × GSP | |||
pH | HY | 6.69 | 6.68 | 6.69 | 6.68 | 6.67 | 0.03 | <0.01 | 0.92 | 0.63 | 0.77 | 0.82 |
LY | 6.79 | 6.77 | 6.81 | 6.78 | 6.84 | |||||||
NH3N, g/L | HY | 30 a | 30 a | 29 a | 28 a | 23 b | 0.61 | 0.09 | 0.05 | <0.01 | 0.08 | 0.92 |
LY | 31 a | 32 a | 30 a | 30 a | 25 b | |||||||
MCP, mg/mL | HY | 1.4 | 1.4 | 1.4 | 1.4 | 1.5 | 0.02 | 0.31 | 0.58 | 0.41 | 0.79 | 0.41 |
LY | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | |||||||
total VFA, mmol/L | HY | 114 a | 112 ab | 108 c | 109 bc | 103 d | 2 | <0.01 | <0.01 | <0.01 | 0.54 | 0.92 |
LY | 108 a | 105 a | 100 b | 101 b | 100 b | |||||||
VFA pattern, % molar | ||||||||||||
Acetate | HY | 57.0 c | 56.9 c | 58.0 bc | 58.5 b | 59.6 a | 0.15 | 0.49 | 0.02 | <0.01 | 0.99 | 0.8 |
LY | 56.7 c | 57.3 bc | 57.5 bc | 57.7 b | 59.2 a | |||||||
Propionate | HY | 25.2 | 25.8 | 25.3 | 25.1 | 24.1 | 0.20 | 0.71 | 0.25 | 0.01 | 0.99 | 0.51 |
LY | 25.3 a | 24.7 bc | 24.9 b | 24.5 c | 24.4 c | |||||||
Butyrate | HY | 10.9 a | 10.9 a | 10.5 ab | 10.6 a | 10.1 b | 0.07 | 0.47 | 0.11 | <0.01 | 0.08 | 0.62 |
LY | 10.9 a | 10.8 a | 10.7 a | 11.1 a | 10.1 b | |||||||
Valerate | HY | 1.48 a | 1.35 ab | 1.25 bc | 1.20 c | 1.27 bc | 0.68 | <0.01 | <0.01 | 0.01 | 0.22 | |
LY | 1.45 a | 1.43 a | 1.35 a | 1.33 ab | 1.21 b | |||||||
Isobutyrate | HY | 1.81 | 1.69 | 1.65 | 1.54 | 1.64 | 0.08 | 0.45 | 0.38 | 0.39 | 0.15 | |
LY | 1.84 | 1.98 | 1.87 | 1.87 | 1.86 | |||||||
Isovalerate | HY | 2.04 a | 1.93 a | 1.87 ab | 1.76 b | 1.87 ab | 0.17 | 0.04 | <0.01 | 0.26 | 0.52 | |
LY | 2.08 a | 2.10 a | 2.01 a | 2.01 a | 1.76 b | |||||||
NGR | HY | 2.97 | 2.93 | 3.06 | 3.16 | 3.18 | 0.04 | 0.82 | 0.03 | <0.01 | 0.11 | 0.86 |
LY | 2.95 b | 3.05 a | 3.02 ab | 3.11 a | 3.10 a | |||||||
2Hrec | HY | 0.87 a | 0.84 ab | 0.81 b | 0.84 ab | 0.79 b | 0.01 | 0.95 | <0.01 | <0.01 | 0.27 | 0.86 |
LY | 0.87 a | 0.83 ab | 0.82 ab | 0.83 ab | 0.79 b |
Item 2 | TMR | GSP (mg/g) | SEM | p Value 3 | |||
---|---|---|---|---|---|---|---|
0 | 30 | TMR | GSP | TMR × GSP | |||
OTU | HY | 454 | 459 | 24.3 | 0.91 | 0.66 | 0.53 |
LY | 467 | 440 | |||||
Coverage | HY | 0.99 | 0.99 | <0.001 | 0.73 | 0.81 | 0.08 |
LY | 0.99 | 0.99 | |||||
Shannon | HY | 1.71 | 1.65 | 0.073 | 0.32 | 0.74 | 0.68 |
LY | 1.75 | 1.76 | |||||
ACE | HY | 1810 | 2073 | 192.6 | 0.75 | 0.93 | 0.17 |
LY | 2027 | 1732 | |||||
Chao1 | HY | 1006 | 1099 | 59.4 | 0.92 | 0.31 | 0.02 |
LY | 1168 a | 950 b | |||||
Simpson | HY | 0.32 | 0.37 | 0.030 | 0.12 | 0.32 | 0.44 |
LY | 0.29 | 0.30 |
Item 2 | TMR | GSP (mg/g) | SEM | p Value 3 | |||
---|---|---|---|---|---|---|---|
0 | 30 | TMR | GSP | TMR × GSP | |||
PICRUSt from COG | |||||||
Formylmethanofuran dehydrogenaser, ×104 | HY | 4.73 | 4.45 | 0.102 | 0.89 | 0.19 | 0.19 |
LY | 4.60 | 4.60 | |||||
Formylmethanofuran: tetrahydromethanopterin formyltransferase, ×104 | HY | 1.57 | 1.48 | 0.035 | 0.85 | 0.18 | 0.22 |
LY | 1.53 | 1.52 | |||||
Coenzyme F420, ×104 | HY | 10.1 | 9.64 | 0.155 | 0.86 | 0.18 | 0.21 |
LY | 9.89 | 9.88 | |||||
Tetrahydromethanopterin S-methyltransferase, ×104 | HY | 7.06 | 6.64 | 0.157 | 0.84 | 0.18 | 0.22 |
LY | 6.89 | 6.87 | |||||
Methyl coenzyme M reductase, ×104 | HY | 4.71 | 4.44 | 0.104 | 0.88 | 0.19 | 0.20 |
LY | 4.60 | 4.59 | |||||
PICRUSt from KEGG | |||||||
Formylmethanofuran dehydrogenase, ×104 | HY | 7.07 | 6.65 | 0.155 | 0.86 | 0.18 | 0.20 |
LY | 6.89 | 6.88 | |||||
Formylmethanofuran--tetrahydromethanopterin N-formyltransferase, ×104 | HY | 1.57 | 1.48 | 0.035 | 0.85 | 0.19 | 0.22 |
LY | 1.53 | 1.52 | |||||
Coenzyme F420, ×104 | HY | 4.71 | 4.43 | 0.105 | 0.86 | 0.19 | 0.21 |
LY | 4.60 | 4.58 | |||||
Tetrahydromethanopterin S-methyltransferase, ×104 | HY | 7.06 | 6.64 | 0.157 | 0.84 | 0.18 | 0.22 |
LY | 6.89 | 6.87 | |||||
Methyl coenzyme M reductase system, component A2, ×104 | HY | 1.57 | 1.47 | 0.035 | 0.85 | 0.19 | 0.22 |
LY | 1.53 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, Z.; Wen, Y.; Wu, Q.; Zhang, L.; Li, S.; Yang, H. The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro. Fermentation 2023, 9, 513. https://doi.org/10.3390/fermentation9060513
Zhang F, Zhang Z, Wen Y, Wu Q, Zhang L, Li S, Yang H. The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro. Fermentation. 2023; 9(6):513. https://doi.org/10.3390/fermentation9060513
Chicago/Turabian StyleZhang, Fan, Zhenwei Zhang, Ya Wen, Qichao Wu, Luotong Zhang, Shengli Li, and HongJian Yang. 2023. "The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro" Fermentation 9, no. 6: 513. https://doi.org/10.3390/fermentation9060513
APA StyleZhang, F., Zhang, Z., Wen, Y., Wu, Q., Zhang, L., Li, S., & Yang, H. (2023). The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro. Fermentation, 9(6), 513. https://doi.org/10.3390/fermentation9060513