Implementation of Novel Autochthonous Microencapsulated Strains of Lactiplantibacillus plantarum, Lactococcus lactis, and Lamb’s Rennet in the Production of Traditional “Paški Sir” Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microencapsulation
2.1.1. Microscopic Observations
2.1.2. Swelling Degree and Release of Rennet from Microsphere Formulation
2.1.3. Determination of Electrostatic Charge, Zeta Potential, and Size of Aggregates in Mixtures of Natural Rennet/Bacterial Cultures and Calcium-Chloride Solutions
2.2. Cheese Production
2.3. Microbiological Analysis
2.4. Molecular Analysis
2.5. Physicochemical Cheese Analysis
2.6. Statistical Analysis
3. Results
3.1. Microsphere Morphology, Shape, and Size
3.2. Effect of Calcium-Ion Concentration on Bacterial Cultures and Rennet Mixtures in Solutions
3.3. Kinetic and Mechanism of Natural Rennet Release from Microspheres
3.4. Isolation and Identification of Lactic-Acid Bacteria
3.5. Molecular Analysis of the L. plantarum Isolates
3.6. Physicochemical Cheese Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peanparkdee, M.; Iwamoto, S.; Yamauchi, R. Microencapsulation: A review of applications in the food and pharmaceutical industries. Rev. Agric. Sci. 2016, 4, 56–65. [Google Scholar] [CrossRef]
- Do Amaral, P.H.R.; Lopes Andrade, P.; Costa De Conto, L. Microencapsulation and Its Uses in Food Science and Technology: A review. In Microencapsulation-Processes, Technologies and Industrial Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Yang, M.; Liang, Z.; Wang, L.; Qi, M.; Luo, Z.; LI, L. Microencapsulation Delivery System in Food Industry-Challenge and the Way Forward. Adv. Polym. Technol. 2020, 2020, 7531810. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Masondole, L. Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. Aust. J. Dairy Technol. 2005, 60, 252–258. [Google Scholar]
- Özer, B.; Uzun, Y.S.; Kirmaci, H.A. Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int. J. Dairy Technol. 2008, 61, 237–244. [Google Scholar] [CrossRef]
- De Prisco, A.; Van Valenberg, H.J.F.; Fogliano, V.; Mauriello, G. Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features. Food Bioprocess Technol. 2017, 10, 1767–1777. [Google Scholar] [CrossRef]
- Oštarić, F.; Antunac, N.; Cubric-Curik, V.; Curik, I.; Jurić, S.; Kazazić, S.; Kiš, M.; Vinceković, M.; Zdolec, N.; Špoljarić, J.; et al. Challenging Sustainable and Innovative Technologies in Cheese Production: A Review. Processes 2022, 10, 529. [Google Scholar] [CrossRef]
- Mrkonjić Fuka, M.; Žgomba Maksimović, A.; Hulak, N.; Kos, I.; Marušić Radovčić, N.; Jurić, S.; Tanuwidjaja, I.; Karolyi, D.; Vinceković, M. The survival rate and efficiency of non- encapsulated and encapsulated native starter cultures to improve the quality of artisanal game meat sausages. J. Food Sci. Technol. 2021, 58, 710–719. [Google Scholar] [CrossRef]
- Ribeiro, L.L.S.M.; Araújo, G.P.; de Oliveira Ribeiro, K.; Torres, I.M.S.; De Martinis, E.C.P.; Marreto, R.N.; Alves, V.F. Use of encapsulated lactic acid bacteria as bioprotective cultures in fresh Brazilian cheese. Braz. J. Microbiol. 2021, 52, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Kiš, M.; Kazazić, S.; Vinceković, M.; Dobranić, V.; Oštarić, F.; Mikulec, N.; Zdolec, N. Potential of microencapsulation in cheese production: Selection of indigenous dairy culture for Pag cheese. In Proceedings of the Veterinarski dani 2021, Vodice, Croatia, 26–29 September 2021; pp. 363–370. [Google Scholar]
- Green, M.L. Preparation and properties of rennets from lamb’s and kid’s abomasa. J. Dairy Res. 1980, 47, 221–230. [Google Scholar] [CrossRef]
- ISO 23058:2006; Milk and Milk Products—Ovine and Caprine Rennets—Determination of Total Milk-Clotting Activity. ISO: Geneva, Switzerland, 2006.
- ISO 15163:2012; Milk and Milk Products—Calf Rennet and Adult Bovine Rennet—Determination by Chromatography of Chymosin and Bovine Pepsin Contents. ISO: Geneva, Switzerland, 2006.
- Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- HRN EN ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. Croatian Standard Institute: Zagreb, Croatia, 2017.
- HRN EN ISO 5534:2008; Cheese and Processed Cheese—Determination of the Total Solids Content (Reference Method). Croatian Standard Institute: Zagreb, Croatia, 2008.
- HRN EN ISO 8968-1:2014; Milk and Milk Products—Determination of Nitrogen Content, Part 1: Kjeldahl Principle and Crude Protein Calculation. Croatian Standard Institute: Zagreb, Croatia, 2014.
- HRN ISO ISO 3433:2008; Cheese—Determination of Fat Content—Van Gulik Method. Croatian Standard Institute: Zagreb, Croatia, 2008.
- HRN EN ISO 5943:2007; Cheese and Processed Cheese—Determination of Chloride Content—Potentiometric Titration Method. Croatian Standard Institute: Zagreb, Croatia, 2007.
- Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 2007, 121, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jurić, S.; Tanuwidjaja, I.; Mrkonjić Fuka, M.; Vlahoviček Kahlina, K.; Marijan, M.; Boras, A.; Udiković Kolić, N.; Vinceković, M. Encapsulation of two fermentation agents, Lactobacillus sakei and calcium ions in microspheres. Colloids Surf. B Biointerfaces 2020, 197, 111387. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Kapadia, J.R. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin. Drug Deliv. 2015, 12, 1283–1299. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.H.; Champagne, C.P.; St-Gelais, D.; Britten, M.; Fustier, P.; Lacroix, M. Viability of Bifidobacterium longum in cheddar cheese curd during manufacture and storage: Effect of microencapsulation and point of inoculation. Dairy Sci. Technol. 2011, 91, 599–614. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control. 2019, 100, 8–16. [Google Scholar] [CrossRef]
- Kavas, N.; Kavas, G.; Kinik, Ö.; Ates, M.; Kaplan, M.; Satir, G. Symbiotic microencapsulation to enhance Bifidobacterium longum and Lactobacillus paracasei survival in goat cheese. Food Sci. Technol. 2020, 42, e55620. [Google Scholar] [CrossRef]
- Song, A.A.L.; In, L.L.A.; Lim, S.H.E.; Rahim, R.A. A review on Lactococcus lactis: From food to factory. Microb. Cell Factories 2017, 16, 55. [Google Scholar] [CrossRef]
- Yilmaz, B.; Bangar, S.P.; Echegaray, N.; Suri, S.; Tomasević, I.; Lorenzo, J.M.; Melekoglu, E.; Rocha, J.M.; Ozogul, F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022, 10, 826. [Google Scholar] [CrossRef]
- Pajač, L.; Kiš, M.; Kazazić, S.; Zdolec, N. Characterization and selection of Lactococcus lactis strains from ewe’s milk as potential cheese starter culture. In Proceedings of the International Congress Veterinary Science and Profession 2021, Zagreb, Croatia, 9 October 2021; Available online: https://www.bib.irb.hr/1149224 (accessed on 1 April 2023).
- Dujmović, H. Functional Properties of Lactiplantibacillus plantarum S3 from Lamb’s Abomasum—Potential Application in Dairy. Master Thesis, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia, 2022. (In Croatian). Available online: https://repozitorij.vef.unizg.hr/islandora/object/vef:1039 (accessed on 1 April 2023).
- Blandino, A.; Macias, M.; Cantero, D. Glucose oxidase release from calcium alginate gel capsules. Enzym. Microb. Technol. 2000, 27, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Ouwerx, C.; Velings, N.; Mestdagh, M.M.; Axelos, M.A.V. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Netw. 1998, 6, 393–408. [Google Scholar] [CrossRef]
- Sandra, S.; Cooper, C.; Alexander, M.; Corredig, M. Coagulation properties of ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy. Food Res. Int. 2011, 44, 951–956. [Google Scholar] [CrossRef]
- Pawlos, M.; Znamirowska, A.; Szajnar, K. Effect of Calcium Compound Type and Dosage on the Properties of Acid Rennet Goat’s Milk Gels. Molecules 2021, 26, 5563. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.P.; Kulakauskas, S. Cell wall structure and function in lactic acid bacteria. Microb. Cell Fact. 2014, 29, 13. [Google Scholar] [CrossRef]
- Larsen, N.; Nissen, P.; Willats, W.G.T. The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus ssp. and E. coli O138. Int. J. Food Microbiol. 2007, 114, 113–119. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Bianco-Peled, H. A quantitative analysis of alginate swelling. Carbohydr. Polym. 2010, 79, 1020–1027. [Google Scholar] [CrossRef]
- Rokstad, A.M.A.; Lacík, I.; de Vos, P.; Strand, B.L. Advances in biocompatibility and physicochemical characterization of microspheres for cell encapsulation. Adv. Drug Deliv. Rev. 2014, 67–68, 111–130. [Google Scholar] [CrossRef]
- Cui, J.H.; Goh, J.S.; Kim, P.H.; Choi, S.H.; Lee, B.J. Survival and stability of bifidobacteria loaded in alginate poly-l-lisine microparticles. Int. J. Pharm. 2000, 210, 51–59. [Google Scholar] [CrossRef]
- Iyer, C.; Kailasapathy, K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 2005, 70, 18–23. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Sinigaglia, M. Shelf life of alginate beads containing lactobacilli and bifidobacteria: Characterisation of microspheres containing Lactobacillus delbrueckii subsp. bulgaricus. Int. J. Food Sci. Technol. 2011, 46, 2212–2217. [Google Scholar] [CrossRef]
- Goderska, K.; Zybała, M.; Czarnecki, Z. Characterisation of Microencapsulated Lactobacillus rhamnosus LR7 Strain. Pol. J. Food Nutr. Sci. 2003, 53, 21–24. [Google Scholar]
- Corbo, M.R.; Bevilacqua, A.; Gallo, M.; Speranza, B.; Sinigaglia, M. Immobilization and microencapsulation of Lactobacillus plantarum: Performances and in vivo applications. Innov. Food Sci. Emerg. Technol. 2013, 18, 196–201. [Google Scholar] [CrossRef]
- Özer, B.; Kirmaci, H.A.; Shenel, E.; Atamer, M.; Hayaloglu, A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int. Dairy J. 2009, 19, 22–29. [Google Scholar] [CrossRef]
- Salazar-Montoya, J.A.; Gonzales-Cuello, R.; Flores-Giron, E.; Ramos-Ramirez, E.G. Effect of free and microencapsulated Lactococcus lactis on composition and rheological properties of Manchego-type cheeses during ripening. Food Res. Int. 2017, 105, 59–64. [Google Scholar] [CrossRef]
- Karakas-Sen, A.; Kararakas, E. Isolation, identification and technological properties of lactic acid bacteria from raw cow milk. Biosci. J. 2018, 34, 385–399. [Google Scholar] [CrossRef]
- Tormo, H.; Ali Haimoud Lekhal, D.; Roques, C. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect on farming practices on the dominant species of lactic acid bacteria. Int. J. Food Microbiol. 2019, 210, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Harboe, M.K.; Broe, M.L.; Qvist, K.B. The Production, Action and Application of Rennet and Coagulants. In Technology of Cheesemaking, 2nd ed.; Law, B.A., Tamime, A.Y., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 98–129. [Google Scholar]
- Oštarić, F.; Antunac, N.; Prpić, Z.; Mikulec, N. Influence of the Rennet Type on the Pag Island Cheese (Croatian: Paški sir). Mljekarstvo 2015, 65, 101–110. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) | Length (nts) | Cycle |
---|---|---|---|
M13 | GAG GGT GGC GGT TCT | 15 | 35 cycles of: |
94 °C × 1 min | |||
45 °C × 20 s | |||
Ramp to 72 °C at 0.5 °C/s | |||
72 °C × 2 min | |||
D11344 | AGT GAA TTC GCG GTG AGA TGC CA | 23 | 94 °C × 2 min |
35 cycles of: | |||
94 °C × 1 min | |||
42 °C × 1 min | |||
72 °C × 1 min and 30 s | |||
Final step at 72 °C × 10 min |
Sample | d/nm | ζ/mV |
---|---|---|
Natural rennet | 35.26 ± 7.67 a | −14.38 ± 1.402 a |
A mixture of bacterial cultures | 1175 ± 39.83 b | −22.27 ± 0.4727 b |
A mixture of natural rennet/bacterial cultures | 833.7 ± 90.42 c | −18.58 ± 0.2809 b |
A mixture of natural rennet and 2% of calcium ions solutions | 1263 ± 36.65 b | −8.472 ± 0.436 c |
A mixture of natural rennet/bacterial cultures and 2% of calcium ions solutions | 1389 ± 74.1 b | −12.67 ± 0.403 a |
Microsphere Formulations | k/min | n | R2 |
---|---|---|---|
ALG/Ca/bacterial cultures | 3.24 | 0.3550 | 0.9942 |
ALG/Ca/natural rennet | 0.095 | 0.1014 | 0.9971 |
ALG/Ca/bacterial cultures + natural rennet | 0.123 | 0.047 | 0.9985 |
Cheese Group | Sampling Day | ||||
---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | |
S1 | 8.25 ± 0.60 | 8.34 ± 0.24 | 8.02 ± 0.32 | 7.30 ± 0.40 | 6.98 ± 0.42 |
S2 | 8.34 ± 0.39 | 8.37 ± 0.12 | 8.11 ± 0.16 | 7.48 ± 0.14 | 6.57 ± 0.39 |
S3 | 8.48 ± 0.53 | 8.31 ± 0.31 | 7.91 ± 0.48 | 7.53 ± 0.14 | 6.95 ± 0.32 |
Mean ± SD | 8.36 ± 0.49 | 8.34 ± 0.22 | 8.01 ± 0.33 | 7.44 ± 0.26 | 6.83 ± 0.41 |
Min | 7.44 | 7.74 | 7.00 | 6.77 | 5.84 |
Max | 9.19 | 8.67 | 8.44 | 7.76 | 7.66 |
Group | Sampling Day | Total Solids (%) | Milk Fat (%) | Protein (%) | NaCl (%) | pH | N |
---|---|---|---|---|---|---|---|
S1 | 0. | 53.14 ± 0.84 a | 27.81 ± 0.24 a | 22.75 ± 0.78 a | 0.87 ± 0.31 a | 5.85 ± 0.30 a | 6 |
30. | 63.44 ± 1.30 b | 33.17 ± 3.47 b | 26.18 ± 0.72 b | 1.40 ± 0.14 ab | 5.21 ± 0.14 b | 6 | |
60. | 65.25 ± 1.30 bc | 32.77 ± 1.64 b | 26.21 ± 0.89 b | 2.16 ± 0.52 ced | 5.17 ± 0.17 b | 6 | |
90. | 68.64 ± 2.18 c | 34.08 ± 1.23 b | 28.60 ± 1.19 c | 1.82 ± 0.13 bcd | 5.31 ± 0.10 b | 6 | |
120. | 74.07 ± 3.39 d | 36.31 ± 2.87 b | 30.21 ± 1.63 c | 1.84 ± 0.45 bce | 5.34 ± 0.17 b | 6 | |
R2 | 0.93 | 0.64 | 0.76 | 0.66 | 0.67 | ||
S2 | 0. | 54.34 ± 1.34 a | 25.12 ± 1.38 a | 22.83 ± 1.55 a | 0.74 ± 0.37 a | 5.65 ± 0.16 a | 6 |
30. | 61.57 ± 1.30 b | 30.33 ± 1.72 b | 26.11 ± 1.12 b | 1.68 ± 0.26 b | 5.07 ± 0.06 b | 6 | |
60. | 65.42 ± 0.62 c | 33.44 ± 2.00 c | 26.69 ± 0.60 bc | 1.87 ± 0.21 b | 5.12 ± 0.05 b | 6 | |
90. | 68.53 ± 0.83 d | 34.25 ± 1.80 cd | 28.37 ± 0.68 cd | 1.71 ± 0.25 b | 5.14 ± 0.04 b | 6 | |
120. | 74.45 ± 2.50 e | 37.12 ± 1.59 de | 30.47 ± 2.27 de | 1.61 ± 0.47 b | 5.14 ± 0.16 b | 6 | |
R2 | 0.96 | 0.87 | 0.80 | 0.64 | 0.83 | ||
S3 | 0. | 51.09 ± 1.77 a | 24.77 ± 1.89 a | 21.32 ± 1.64 a | 0.75 ± 0.19 a | 5.64 ± 0.30 a | 6 |
30. | 61.03 ± 1.33 b | 31.08 ± 1.43 b | 25.09 ± 0.51 b | 1.78 ± 0.25 b | 5.02 ± 0.04 b | 6 | |
60. | 65.17 ± 1.41 c | 32.50 ± 1.70 b | 26.46 ± 0.82 bc | 1.66 ± 0.27 b | 5.08 ± 0.06 b | 6 | |
90. | 68.81 ± 0.85 d | 32.83 ± 2.24 b | 28.23 ± 0.49 c | 1.68 ± 0.14 b | 5.13 ± 0.09 b | 6 | |
120. | 73.21 ± 2.42 e | 35.87 ± 0.90 c | 30.36 ± 1.58 d | 1.55 ± 0.23 b | 5.14 ± 0.06 b | 6 | |
R2 | 0.96 | 0.85 | 0.90 | 0.77 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiš, M.; Zdolec, N.; Kazazić, S.; Vinceković, M.; Jurić, S.; Dobranić, V.; Oštarić, F.; Marić, I.; Mikulec, N. Implementation of Novel Autochthonous Microencapsulated Strains of Lactiplantibacillus plantarum, Lactococcus lactis, and Lamb’s Rennet in the Production of Traditional “Paški Sir” Cheese. Fermentation 2023, 9, 441. https://doi.org/10.3390/fermentation9050441
Kiš M, Zdolec N, Kazazić S, Vinceković M, Jurić S, Dobranić V, Oštarić F, Marić I, Mikulec N. Implementation of Novel Autochthonous Microencapsulated Strains of Lactiplantibacillus plantarum, Lactococcus lactis, and Lamb’s Rennet in the Production of Traditional “Paški Sir” Cheese. Fermentation. 2023; 9(5):441. https://doi.org/10.3390/fermentation9050441
Chicago/Turabian StyleKiš, Marta, Nevijo Zdolec, Snježana Kazazić, Marko Vinceković, Slaven Jurić, Vesna Dobranić, Fabijan Oštarić, Ivan Marić, and Nataša Mikulec. 2023. "Implementation of Novel Autochthonous Microencapsulated Strains of Lactiplantibacillus plantarum, Lactococcus lactis, and Lamb’s Rennet in the Production of Traditional “Paški Sir” Cheese" Fermentation 9, no. 5: 441. https://doi.org/10.3390/fermentation9050441
APA StyleKiš, M., Zdolec, N., Kazazić, S., Vinceković, M., Jurić, S., Dobranić, V., Oštarić, F., Marić, I., & Mikulec, N. (2023). Implementation of Novel Autochthonous Microencapsulated Strains of Lactiplantibacillus plantarum, Lactococcus lactis, and Lamb’s Rennet in the Production of Traditional “Paški Sir” Cheese. Fermentation, 9(5), 441. https://doi.org/10.3390/fermentation9050441