Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America
Abstract
:1. Generalities of Fermented Foods and Beverages
2. Fermented Foods and Beverages of Latin America
3. Nutritional Profile and Health Benefits of Traditional Fermented Foods and Beverages of Latin America
4. Risks of Fermented Foods’ Elaboration and Consumption
5. Novel Fermented Products Using Traditional Ingredients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagnostopoulos, D.A.; Tsaltas, D. Fermented foods and beverages. In Innovations in Traditional Foods, 1st ed.; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 257–291. [Google Scholar]
- Kandasamy, S.; Kavitake, D.; Shetty, P.H. Lactic Acid Bacteria and Yeasts as Starter Cultures for Fermented Foods and Their Role in Commercialization of Fermented Foods. In Innovations in Technologies for Fermented Food and Beverage Industries, 1st ed.; Panda, S.K., Shetty, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 25–52. [Google Scholar]
- Ramos, C.L.; Schwan, R.F. Technological and nutritional aspects of indigenous Latin America fermented foods. Curr. Opin. Food Sci. 2017, 13, 97–102. [Google Scholar] [CrossRef]
- Aşkin Uzel, R. Slow Food Movement and Sustainability. In Encyclopedia of Sustainable Management, 1st ed.; Idowu, S., Schmidpeter, R., Capaldi, N., Zu, L., Del Baldo, M., Abreu, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar]
- Bommel, K.V.; Spicer, A. Slow food as a social movement. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 94–99. [Google Scholar]
- Terefe, N.S.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2019, 60, 2887–2913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W.; et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- About the GRAS Notification Program. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/about-gras-notification-program (accessed on 7 February 2023).
- Rodzi, N.A.R.M.; Lee, L.K. Traditional fermented foods as vehicle of non-dairy probiotics: Perspectives in South East Asia countries. Food Res. Int. 2021, 150, 110814. [Google Scholar] [CrossRef]
- Tamang, J.P.; Thapa, N.; Tamang, B.; Rai, A.; Chettri, R. Microorganisms in fermented foods and beverages. In Health benefits of fermented foods and beverages, 1st ed.; Tamang, J.P., Ed.; CRC Press: New York, FL, USA, 2015; pp. 1–110. [Google Scholar]
- Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plant based products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Reale, A. A Holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables. Microorganisms 2020, 8, 1176. [Google Scholar] [CrossRef]
- Jung, S.-J.; Chae, S.-W.; Shin, D.-H. Fermented foods of Korea and their functionalities. Fermentation 2022, 8, 645. [Google Scholar] [CrossRef]
- Anal, A.K. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: A review. Fermentation 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, C.; Liu, F.; Jin, Z.; Xia, X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Liburdi, K.; Bernini, R.; Esti, M. Fermented beverages: Geographical distribution and bioactive compounds with health benefits. In New and Future Developments in Microbial Biotechnology and Bioengineering, 1st ed.; Gomes Rodrigues, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–151. [Google Scholar]
- Waters, D.M.; Mauch, A.; Coffey, A.; Arendt, E.K.; Zannini, E. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 503–520. [Google Scholar] [CrossRef]
- Jimenez, M.E.; O’Donovan, C.M.; de Ullivarri, M.F.; Cotter, P.D. Microorganisms present in artisanal fermented food from South America. Front. Microbiol. 2022, 13, 941866. [Google Scholar] [CrossRef] [PubMed]
- Chacón Mayorga, G.A.; Arias Palma, G.B.; Sandoval-Cañas, G.J.; Ordoñez-Araque, R.H. Ancestral fermented indigenous beverages from South America made from cassava (Manihot esculenta). Food Sci. Technol. 2021, 41, 360–367. [Google Scholar] [CrossRef]
- Faria-Oliveira, F.; Diniz, R.H.S.; Godoy-Santos, F.; Piló, F.B.; Mezadri, H.; Castro, I.M.; Brandão, R.L. The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In Food Production and Industry; Eissa, A., Ed.; IntechOpen: London, UK, 2015; pp. 107–135. [Google Scholar]
- Colehour, A.M.; Meadow, J.F.; Liebert, M.A.; Cepon-Robins, T.J.; Gildner, T.E.; Urlacher, S.S.; Bohannan, B.J.M.; Snodgrass, J.J.; Sugiyama, L.S. Local domestication of lactic acid bacteria via cassava beer fermentation. PeerJ 2014, 2, e479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciammaro, L.P.; Puppo, M.C.; Voget, C. “Aloja”: A pre-hispanic fermented beverage from Prosopis alba pods. In Prosopis as A Heat Tolerant Nitrogen Fixing Desert Food Legume, 1st ed.; Puppo, M.C., Felker, P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 341–351. [Google Scholar]
- Väkeväinen, K.; Valderrama, A.; Espinosa, J.; Centurión, D.; Rizo, J.; Reyes-Duarte, D.; Díaz-Ruiz, G.; von Wright, A.; Elizaquível, P.; Esquivel, K.; et al. Characterization of lactic acid bacteria recovered from atole agrio, a traditional Mexican fermented beverage. LWT 2018, 88, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Freire, A.L.; Ramos, C.L.; Souza, P.N.D.C.; Cardoso, M.G.B.; Schwan, R.F. Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast. Int. J. Food Microbiol. 2017, 248, 39–46. [Google Scholar] [CrossRef]
- Rosane, F.S.; Claudia, C.A.D.A.S.; Marianna, R.R.M.S.; Whasley, F.D.; Schwan, R.F.; Santos, C.C.A.D.A.; Duarte, W.F. Bacterial dynamics and chemical changes during the spontaneous production of the fermented porridge (Calugi) from cassava and corn. Afr. J. Microbiol. Res. 2014, 8, 839–849. [Google Scholar] [CrossRef]
- Ramos, C.L.; de Almeida, E.G.; Pereira, G.V.D.M.; Cardoso, P.G.; Dias, E.S.; Schwan, R.F. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2010, 140, 225–231. [Google Scholar] [CrossRef]
- Schwan, R.F.; Ramos, C.L.; de Almeida, E.G.; Alves, V.F.; De Martinis, E.C.P. Brazilian indigenous fermented food. In Fermented Foods of Latin America, 1st ed.; Penna, A.L.B., Nero, L.A., Todorov, S.D., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 224–236. [Google Scholar]
- Miguel, M.G.C.P.; Collela, C.F.; de Almeida, E.G.; Dias, D.R.; Schwan, R.F. Physicochemical and microbiological description of Caxiri—A cassava and corn alcoholic beverage. Int. J. Food Sci. Technol. 2015, 50, 2537–2544. [Google Scholar] [CrossRef]
- Elizaquível, P.; Pérez-Cataluña, A.; Yépez, A.; Aristimuño, C.; Jiménez, E.; Cocconcelli, P.S.; Vignolo, G.; Aznar, R. Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Int. J. Food Microbiol. 2015, 198, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Resende, L.V.; Pinheiro, L.K.; Miguel, M.G.D.C.P.; Ramos, C.L.; Vilela, D.M.; Schwan, R.F. Microbial community and physicochemical dynamics during the production of ‘Chicha’, a traditional beverage of Indigenous people of Brazil. World J. Microbiol. Biotechnol. 2018, 34, 46. [Google Scholar] [CrossRef] [PubMed]
- Chaves-López, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Linares, C.I.; Vallejo, M.; Lappe-Oliveras, P.; Casas, A. Traditional management of microorganisms in fermented beverages from cactus fruits in Mexico: An ethnobiological approach. J. Ethnobiol. Ethnomedicine 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Ramírez-Guzmán, K.N.; Torres-León, C.; Martinez-Medina, G.A.; de la Rosa, O.; Hernández-Almanza, A.; Alvarez-Perez, O.B.; Araujo, R.; González, L.R.; Londoño, L.; Ventura, J.; et al. Traditional Fermented Beverages in Mexico. In Fermented Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; Volume 5, pp. 605–635. [Google Scholar] [CrossRef]
- Rebaza-Cardenas, T.D.; Silva-Cajaleón, K.; Sabater, C.; Delgado, S.; Montes-Villanueva, N.D.; Ruas-Madiedo, P. “Masato de Yuca” and “Chicha de Siete Semillas” Two Traditional Vegetable Fermented Beverages from Peru as Source for the Isolation of Potential Probiotic Bacteria. Probiotics Antimicrob. Proteins 2021, 15, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Cereda, M.P.; dos Santos Brito, V.H. Fermented foods and beverages from cassava (Manihot esculenta Crantz) in South America. In Fermented Foods of Latin America, 1st ed.; Penna, A.L.B., Nero, L.A., Todorov, S.D., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 202–223. [Google Scholar]
- Bolaños-Núñez, S.; Santiago-Urbina, J.A.; Guyot, J.-P.; Díaz-Ruiz, G.; Wacher, C. Microbial interactions between amylolytic and non-amylolytic lactic acid bacteria strains isolated during the fermentation of Pozol. Foods 2021, 10, 2607. [Google Scholar] [CrossRef]
- Padonou, S.W.; Nielsen, D.S.; Akissoe, N.H.; Hounhouigan, J.D.; Nago, M.C.; Jakobsen, M. Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J. Appl. Microbiol. 2010, 109, 1402–1410. [Google Scholar] [CrossRef]
- Crispim, S.M.; Nascimento, A.M.A.; Costa, P.S.; Moreira, J.; Nunes, A.; Nicoli, J.; Lima, F.; Mota, V.; Nardi, R. Molecular identification of Lactobacillus spp. associated with puba, a Brazilian fermented cassava food. Braz. J. Microbiol. 2013, 44, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Escalante, A.; Giles-Gómez, M.; Hernández, G.; Córdova-Aguilar, M.S.; López-Munguíia, A.; Gosset, G.; Bolívar, F. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int. J. Food Microbiol. 2008, 124, 126–134. [Google Scholar] [CrossRef]
- Ramos, C.L.; de Sousa, E.S.O.; Ribeiro, J.; Almeida, T.M.; Santos, C.C.A.D.A.; Abegg, M.A.; Schwan, R.F. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation. Food Microbiol. 2015, 49, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Castillo, Á.E.; Méndez-Romero, J.I.; Reyes-Díaz, R.; Santiago-López, L.; Vallejo-Cordoba, B.; Hernández-Mendoza, A.; Sáyago-Ayerdi, S.G.; González-Córdova, A.F. Tejuino, a Traditional Fermented Beverage: Composition, Safety Quality, and Microbial Identification. Foods 2021, 10, 2446. [Google Scholar] [CrossRef] [PubMed]
- Freire, A.L.; Ramos, C.L.; de Almeida, E.G.; Duarte, W.F.; Schwan, R.F. Study of the physicochemical parameters and spontaneous fermentation during the traditional production of yakupa, an indigenous beverage produced by Brazilian Amerindians. World J. Microbiol. Biotechnol. 2014, 30, 567–577. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Platt, G. Fermented foods|Origins and Applications. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 1. [Google Scholar]
- Martins, G.N.; Ureta, M.M.; Tymczyszyn, E.E.; Castilho, P.C.; Gomez-Zavaglia, A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front. Nutr. 2019, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A.; Moreno, F.J.; Hernandez-Hernandez, O. Dietary carbohydrate digestibility and metabolic effects in human health. Front. Nutr. 2019, 6, 164. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, J.G.; de Moreno de LeBlanc, A. (Eds.) The Many Benefits of Lactic Acid Bacteria; Nova Science Publishers: Hauppauge, NY, USA, 2019. [Google Scholar]
- Jain, S.; Chatterjee, A.; Panwar, S.; Yadav, A.K.; Majumdar, R.S.; Kumar, A. Indigenous Fermented Foods as a Potential Source of Probiotic Foods. In Advances in Probiotics for Sustainable Food and Medicine; Goel, G., Kumar, A., Eds.; Springer: Singapore, 2021; pp. 45–61. [Google Scholar]
- Cuamatzin-García, L.; Rodríguez-Rugarcía, P.; El-Kassis, E.G.; Galicia, G.; Meza-Jiménez, M.D.L.; Baños-Lara, M.D.R.; Zaragoza-Maldonado, D.S.; Pérez-Armendáriz, B. Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022, 10, 1151. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2017, 59, 506–527. [Google Scholar] [CrossRef]
- Patel, P.; Butani, K.; Kumar, A.; Singh, S.; Prajapati, B.G. Effects of Fermented Food Consumption on Non-Communicable Diseases. Foods 2023, 12, 687. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, F.; Silvetti, T.; Brasca, M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef] [PubMed]
- Diosma, G.; De Antoni, G.L.; León Peláez, Á.M. Kefir: Un Alimento Probiótico a Costo Cero. 2016. Available online: http://sedici.unlp.edu.ar/handle/10915/91532 (accessed on 8 February 2023).
- Alitubeera, P.H.; Eyu, P.; Kwesiga, B.; Ario, A.R.; Zhu, B.P. Outbreak of cyanide poisoning caused by consumption of cassava flour—Kasese District, Uganda, September 2017. Morb. Mortal. Wkly. Rep. 2019, 68, 308–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fermented Food and Drinks Market by Product, Distribution Channel, and Geography—Forecast and Analysis 2023–2027. Available online: https://www.technavio.com/report/fermented-food-and-drinks-market-industry-analysis#:~:text=The%20fermented%20food%20and%20drinks,increase%20by%20USD%20846.73%20billion (accessed on 7 February 2023).
- Coelho, E.; Ballesteros, L.F.; Domingues, L.; Vilanova, M.; Teixeira, J.A. Production of a distilled spirit using cassava flour as raw material: Chemical characterization and sensory profile. Molecules 2020, 25, 3228. [Google Scholar] [CrossRef] [PubMed]
- Carrizo, S.L.; de LeBlanc, A.D.M.; LeBlanc, J.G.; Rollán, G.C. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res. Int. 2020, 127, 108735. [Google Scholar] [CrossRef] [PubMed]
Food (F)/Beverage (B) — Country | Raw Material | Lactic Acid Bacteria Present | Fermentation Time | Ethanol (%) | Reference |
---|---|---|---|---|---|
Aloja (B) — Argentina | White carob (Prosopis alba) | Lactiplantibacillus plantarum, Enterococcus faecium | 2–3 d | 6.5–7.5 | [26] |
Atole agrio (B) — Mexico | Corn (Zea mays) | Lactiplantibacillus plantarum, Leuconostoc, Enterococcus, Weissella cibaria, Weissella confusa | 6–12 h | 0 | [27] |
Calugi (B) — Brazil | Cassava (Manihot esculenta), corn (Zea mays), rice (Oryza sativa) | Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Streptococcus parasanguis, Streptococcus salivarius, Weissella cibaria, Weissella confusa | 48 h | 0 | [23,28,29] |
Cauim (B) — Brazil | Cassava (Manihot esculenta), corn (Zea mays), cotton seed (Gossypium), peanuts (Arachis hypogaea), pumpkin (Cucurbita), rice (Oryza sativa), sweet potato (Ipomoea batatas) | Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Lactobacillus pentosus, Leuconostoc pseudomesenteroides, Levilactobacillus brevis, Limosilactobacillus fermentum | 48 h | 0 | [23,30] |
Caxiri (B) — Brazil | Cassava (Manihot esculenta), corn (Zea mays), sweet potato (Ipomoea batatas) | Lactobacillus helveticus, Limosilactobacillus fermentum | 5 d | 10–11 | [22,31,32] |
Chicha (B) — Argentina | Corn (Zea mays) | Lactiplantibacillus plantarum, Leuconostoc lactis, Weissella viridescens | 2–8 d | 0–10 | [22,33] |
Chicha (B) — Brazil | Corn (Zea mays), sugar cane (Saccharum officinarum) | Weisella cibaria, Weisella confusa | 36 h | 0 | [34] |
Chicha (B) — Colombia | Corn (Zea mays) | Lactobacillus, Leuconostoc | 2–6 d | 2–12 | [35] |
Chicha (B) — Ecuador and Peru | Cassava (Manihot esculenta), corn (Zea mays), rice (Oryza sativa) | Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii, Limosilactobacillus fermentum, Limosilactobacillus reuteri | 48–72 h | 2–5 | [23,25] |
Colonche (B) — Mexico | Red tuna (Opuntia streptacantha Lem) | Lactobacillus, Leuconostoc | 3–4 d | 4–5 | [36,37] |
Masa agria (F) — Colombia | Corn (Zea mays) | Lactiplantibacillus plantarum, Lactobacillus coleohominis, Lactobacillus gallinarum, Lactobacillus panis, Lactobacillus pontis, Lactobacillus spp., Limosilactobacillus fermentum | 3–5 d | 0 | [35] |
Masato de yuca (F) — Perú | Cassava (Manihot esculenta) | Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Weissella confusa | NI | 0.2 | [38] |
Polvilho azedo (or Almidón Agrio) (F) — Brazil, Colombia, Paraguay | Cassava (Manihot esculenta) | Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lactobacillus spp. | 3–20 d | 0 | [39] |
Pozol (B) — Mexico | Corn (Zea mays) | Lactiplantibacillus plantarum, Leuconostoc, Streptococcus infantarius, Weissella confusa | 2–7 d | 0 | [13,37,40] |
Puba flour (F) — Brazil | Cassava (Manihot esculenta) | Lactiplantibacillus, Lactobacillus delbrueckii, Lactobacillus perolans, Lactobacillus sp., Leuconostoc sp., Levilactobacillus brevis, Limosilactobacillus fermentum | 3–7 d | 0 | [22,41,42] |
Pulque (B) — Mexico | Aguamiel (maguey sap) | Lactobacillus acidophilus, Lactobacillus hilgardii, Lactobacillus paracollinoides. Lactobacillus sanfranciscenci, Lactococcus sp., Leuconostoc citreum, Leuconostoc gasicomitatum, Leuconostoc kimchi, Leuconostoc mesenteroides | 7–28 d | 5–7 | [43] |
Tarubá (B) — Brazil | Cassava (Manihot esculenta) | Lactiplantibacillus plantarum, Leuconostoc lactis, Leuconostoc mesenteroides, Levilactobacillus brevis | 8–15 d | Dependent on the fermentation time | [5,23,31,44] |
Tejuino (B) — Mexico | Corn (Zea mays) | Lactiplantibacillus plantarum, Limosilactobacillus fermentum | 24 h | 0 | [39,45] |
Tocosh (F) — Perú | Potato (Solanum tuberosum) | Lacticaseibacillus casei, Lactobacillus farciminis, Lactobacillus sakei, Leuconostoc mesenteroides, Levilactobacillus. brevis, Limosilactobacillus fermentum | 12 m | 0 | [22] |
Yakupa (B) — Brazil | Cassava (Manihot esculenta), sweet potato (Ipomoea batatas) | Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Weissella cibaria, Weissella confusa | 24–48 h | 0 | [23,31,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carboni, A.D.; Martins, G.N.; Gómez-Zavaglia, A.; Castilho, P.C. Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America. Fermentation 2023, 9, 315. https://doi.org/10.3390/fermentation9040315
Carboni AD, Martins GN, Gómez-Zavaglia A, Castilho PC. Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America. Fermentation. 2023; 9(4):315. https://doi.org/10.3390/fermentation9040315
Chicago/Turabian StyleCarboni, Angela D., Gonçalo N. Martins, Andrea Gómez-Zavaglia, and Paula C. Castilho. 2023. "Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America" Fermentation 9, no. 4: 315. https://doi.org/10.3390/fermentation9040315
APA StyleCarboni, A. D., Martins, G. N., Gómez-Zavaglia, A., & Castilho, P. C. (2023). Lactic Acid Bacteria in the Production of Traditional Fermented Foods and Beverages of Latin America. Fermentation, 9(4), 315. https://doi.org/10.3390/fermentation9040315