Delignification of Halophyte Atriplex crassifolia by Green Recyclable Deep Eutectic Solvents for Enhanced Production of Biogas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Anaerobic Sludge/Inoculum
2.2. Preparation of Deep Eutectic Solvents
2.3. Pretreatment Optimization of Atriplex crassifolia
2.4. Biogas Production via Anaerobic Digestion
2.5. Recovery and Reuse of Deep Eutectic Solvents
2.6. Analytical Methods
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Hydrogen Bond Donors Type
3.2. Effect of Molar Ratio of DES Constituents
3.3. Effect of Solid-to-Liquid Ratio
3.4. Effect of Water Addition
3.5. FTIR Analysis of ChCl: LA Treated and Untreated Substrate
3.6. Recovery and Reuse of ChCl: LA DES
3.7. Biogas Potential of ChCl: LA Pretreated Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mercure, J.F.; Pollitt, H.; Vinuales, J.E.; Edwards, N.R.; Holden, P.B.; Chewpreecha, U.; Salas, P.; Sognnaes, I.; Lam, A.; Knobloch, F. Macroeconomic impact of stranded fossil fuel assets. Nat. Clim. Change 2018, 8, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Alexander, R.A.; Innasimuthu, G.M.; Rajaram, S.K.; Jeganathan, P.M.; Sonnasundarar, S.C. Process optimization of microwave-assisted alkali pretreatment for enhanced delignification of Prosopis juliflora biomass. Environ. Prog. Sustain. Energy 2020, 39, 13289. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Ha, G.S.; El-Dalatony, M.M.; Kim, D.H.; Salama, E.S.; Kurade, M.B.; Roh, H.S.; Abomohra, A.; Jeon, B.H. Biocomponent-based microalgal transformations into biofuels during the pretreatment and fermentation process. Bioresour. Technol. 2020, 302, 122809. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; Assad, M.E.H.; Hajilounezhad, T.; Jamali, D.H.; Hmida, A.; et al. A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Rai, A.K.; Al Makishah, N.H.; Wen, Z.; Gupta, G.; Pandit, S.; Prasad, R. Recent developments in lignocellulosic biofuels, a renewable source of bioenergy. Fermentation 2022, 8, 161. [Google Scholar] [CrossRef]
- Smith, C. One-Fifth of Global Farm Soil Degraded by Salt—Our World. Available online: https://ourworld.unu.edu/en/onefifth-of-global-farm-soil-degraded-by-salt (accessed on 20 September 2022).
- Joshi, A.; Kanthaliya, B.; Arora, J. Halophytes of Thar Desert: Potential source of nutrition and feedstuff. Int. J. Bioassays 2018, 8, 5674–5683. [Google Scholar]
- Fugol, M.; Prask, H.; Szlachta, J.; Dyjakon, A.; Pasławska, M.; Szufa, S. Improving the energetic efficiency of biogas plants using enzymatic additives to anaerobic digestion. Energies 2023, 16, 1845. [Google Scholar] [CrossRef]
- Li, W.; Chai, B.; Lu, Y.; Wang, M. Anaerobic co-digestion of grass, alfalfa, and red clover for methane production and the kinetic analysis. BioResources 2023, 18, 1742. [Google Scholar] [CrossRef]
- Rajput, A.A.; Sheikh, Z. Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw. Sustain. Environ. Res. 2019, 29, 4. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Ind. Crops Prod. 2020, 148, 112326. [Google Scholar] [CrossRef]
- Turcios, A.E.; Cayenne, A.; Uellendah, H.; Papenbrock, J. Halophyte plants and their residues as feedstock for biogas production—Chances and challenges. Appl. Sci. 2021, 11, 2746. [Google Scholar] [CrossRef]
- Akinshina, N.; Azizov, A.; Karasyova, T.; Klose, E. On the issue of halophytes as energy plants in saline environment. Biomass-Bioenergy 2016, 91, 306–311. [Google Scholar] [CrossRef]
- Haldar, D.; Sen, D.; Gayen, K. Enzymatic hydrolysis of banana stems (Musa acuminata): Optimization of process parameters and inhibition characterization. Int. J. Green Energy 2018, 15, 406–413. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sustain. Energy Rev. 2017, 80, 330–340. [Google Scholar] [CrossRef]
- Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Xiaoming, S.; Shiwei, L.; Wende, T. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresour. Technol. 2020, 310, 123416. [Google Scholar] [CrossRef] [PubMed]
- Loow, Y.-L.; Wu, T.Y.; Yang, G.H.; Ang, L.Y.; New, E.K.; Siow, L.F.; Jahim, J.M.; Mohammad, A.W.; Teoh, W.H. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour. Technol. 2018, 249, 818–825. [Google Scholar] [CrossRef]
- Chen, Z.; Bai, X.; Lusi, A.; Jacoby, W.A.; Wan, C. One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresour. Technol. 2019, 289, 121708. [Google Scholar] [CrossRef]
- Morais, A.R.C.; Pinto, J.V.; Nunes, D.; Roseiro, L.B.; Oliveira, M.C.; Fortunato, E.; Bogel-Łukasik, R. Imidazole: Prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustain. Chem. Eng. 2016, 4, 1643–1652. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Xiao, L.P.; Song, G. Unraveling the structural transformation of wood lignin during deep eutectic solvent treatment. Front. Energy Res. 2020, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Y.; Gao, X.; Peng, X.P.; Gao, Y.F.; Liu, J.; Wen, J.L.; Yuan, T.Q. Microwave-assisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion. Ind. Crops Prod. 2021, 164, 113415. [Google Scholar] [CrossRef]
- Shen, X.J.; Wen, J.L.; Mei, Q.Q.; Chen, X.; Sun, D.; Yuan, T.Q.; Sun, R.C. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem. 2019, 21, 275–283. [Google Scholar] [CrossRef]
- Isci, A.; Kaltschmitt, M. Recovery and recycling of deep eutectic solvents in biomass conversions: A review. Biomass-Convers. Biorefinery 2021, 12, 197–226. [Google Scholar] [CrossRef]
- Olugbemide, A.D.; Oberlintner, A.; Novak, U.; Likozar, B. Lignocellulosic corn stover biomass pre-treatment by deep eutectic solvents (Des) for biomethane production process by bioresource anaerobic digestion. Sustainability 2021, 13, 10504. [Google Scholar] [CrossRef]
- Lima, F.; Branco, L.C.; Lapa, N.; Marrucho, I.M. Beneficial and detrimental effects of choline chloride–oxalic acid deep eutectic solvent on biogas production. Waste Manag. 2021, 131, 368–375. [Google Scholar] [CrossRef]
- Ware, A.; Power, N. What is the effect of mandatory pasteurisation on the biogas transformation of solid slaughterhouse wastes? Waste Manag. 2016, 48, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Ketsub, N.; Latif, A.; Kent, G.; Doherty, W.O.; O’Hara, I.M.; Zhang, Z.; Kaparaju, P. A systematic evaluation of biomethane production from sugarcane trash pretreated by different methods. Bioresour. Technol. 2021, 319, 124137. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Wang, L.; Huang, B.; Yu, Y.; Liu, J.; Li, T. Synthesis of green deep eutectic solvents for pretreatment wheat straw: Enhance the solubility of typical lignocellulose. Sustainability 2022, 14, 657. [Google Scholar] [CrossRef]
- Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crops Prod. 2018, 123, 271–277. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, G.; Ding, C.; Wu, B.; Lian, Z.; Lian, H. Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. Carbohydr. Polym. 2017, 176, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Park, J.G.; Shin, W.B.; Kim, B.S.; Byun, B.S.; Jun, H.B. Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes. Environ. Eng. Res. 2019, 24, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Cegri, V.; De la Rubia, M.A.; Raposo, F.; Borja, R. Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresour. Technol. 2012, 123, 424–429. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Yeganeh, L.P.; Angelidaki, I.; Nizami, A.S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. Renew. Sust. Energ. Rev. 2021, 35, 110173. [Google Scholar] [CrossRef]
- Wang, Z.K.; Li, H.; Lin, X.C.; Tang, L.; Chen, J.J.; Mo, J.W.; Yu, R.S.; Shen, X.J. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour. Technol. 2020, 307, 123237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 2016, 23, 9265–9275. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Laboratory Analytical Procedure NREL: Golden, CO, USA, 2008; pp. 1–16. [Google Scholar]
- Gopal, R.; Ranjhan, S.K. Laboratory Manual for Nutrition Research; Ronald Press (India) Private Ltd.: New Delhi, India, 1980; pp. 56–60. [Google Scholar]
- Van Soest, P.; Roberston, J. Systems of analysis for evaluating fibrous feeds. In Proceedings of the Standardization of Analytical Methodology for Feeds IDRC 1979, Ottawa, ON, Canada, 12–14 March 1979. [Google Scholar]
- APHA/AWWA/WEF Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Denver, CO, USA, 2017.
- Admasu, A.; Bogale, W.; Mekonnen, Y.S. Experimental and simulation analysis of biogas production from beverage wastewater sludge for electricity generation. Sci. Rep. 2022, 12, 9107. [Google Scholar] [CrossRef]
- Suopajarvi, T.; Ricci, P.; Karvonen, V.; Ottolina, G.; Liimatainen, H. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind. Crops Prod. 2019, 145, 111956. [Google Scholar] [CrossRef]
- Hou, X.; Li, A.; Lin, K.; Wang, Y.; Kuang, Z.; Cao, S. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour. Technol. 2018, 249, 261–267. [Google Scholar] [CrossRef]
- Hou, X.D.; Xu, J.; Li, N.; Zong, M.H. Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol. Bioeng. 2015, 112, 65–73. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Ali, M.; Abdeltawab, A.A.; Yakout, S.M.; Yu, G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef]
- Kumar, A.K.; Shah, E.; Patel, A.; Sharma, S.; Dixit, G. Physico-chemical characterization and evaluation of neat and aqueous mixtures of choline chloride plus lactic acid for lignocellulosic biomass fractionation, enzymatic hydrolysis and fermentation. J. Mol. Liq. 2018, 271, 540–549. [Google Scholar] [CrossRef]
- Oh, Y.; Park, S.; Jung, D.; Oh, K.K.; Lee, S.H. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromol. 2020, 165, 187–197. [Google Scholar] [CrossRef]
- Thi, S.; Lee, K.M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology. Bioresour. Technol. 2019, 282, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-L.; Hou, X.D.; Lin, K.P.; Zhang, X.; Fu, M.H. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J. Biosci. Bioeng. 2018, 126, 346–354. [Google Scholar] [CrossRef]
- Sai, Y.W.; Lee, K.M. Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose 2019, 26, 9517–9528. [Google Scholar] [CrossRef]
- Hou, X.-D.; Feng, G.J.; Ye, M.; Huang, C.M.; Zhang, Y. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour. Technol. 2017, 238, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Yiin, C.L.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol. 2016, 199, 258–264. [Google Scholar] [CrossRef] [PubMed]
- New, E.K.; Wu, T.Y.; Lee, C.B.T.L.; Poon, Z.Y.; Loow, Y.L.; Foo, L.Y.W.; Procentese, A.; Siow, L.F.; Teoh, W.H.; Daud, N.N.N.; et al. Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process. Saf. Environ. Prot. 2018, 123, 190–198. [Google Scholar] [CrossRef]
- Soares, B.; Da Costa Lopes, A.M.; Silvestre, A.J.; Pinto, P.C.R.; Freire, C.S.; Coutinho, J.A. Wood delignification with aqueous solutions of deep eutectic solvents. Ind. Crops Prod. 2021, 160, 113128. [Google Scholar] [CrossRef]
- Ramesh, R.; Nair, A.; Jayavel, A.; Sathiasivan, K.; Rajesh, M.; Ramaswamy, S.; Tamilarasan, K. Choline chloride-based deep eutectic solvents for efficient delignification of Bambusa bambos in bio-refinery applications. Chem. Pap. 2020, 74, 4533–4545. [Google Scholar] [CrossRef]
- Yu, Q.; Qin, L.; Liu, Y.; Sun, Y.; Xu, H.; Wang, Z.; Yuan, Z. In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresour. Technol. 2019, 271, 210–217. [Google Scholar] [CrossRef] [PubMed]
Characterizing Factors | Atriplex crassifolia | Anaerobic Sludge |
---|---|---|
Cellulose (%) | 37.5 ± 1.3 | - |
Hemicellulose (%) | 32.5 ± 1.1 | - |
Lignin (%) | 19.2 ± 0.4 | - |
pH | 5.5 ± 0.6 | 7.9 ± 0.1 |
TS (g/L) | 52.4 ± 1.5 | 24.3 ± 0.9 |
VS (g/L) | 41.8 ± 1.2 | 14.6 ± 0.2 |
tCOD (g O2/L) | 103 ± 3.5 | 28.5 ± 1.1 |
Carboxylic Acids | Polyols/Glycols | Amines/Amides |
---|---|---|
Acetic acid (AA) | Ethylene glycol (EG) | Urea (U) |
Oxalic acid (OA) | Glycerol (GLY) | Formamide (FM) |
Lactic acid (LA) | Xylitol (X) | Acetamide (Ac) |
Citric acid (CA) | 1,2-Propanediol (1,2-PDO) | Monoethanolamine (MEA) |
Levulinic acid (LVA) | 1,3-Propanediol (1,3-PDO) | Diethanolamine (DEA) |
Type of DESs | % Cellulose | % Hemicellulose | % Lignin | % Delignification |
---|---|---|---|---|
Carboxylic acid-based DES | ||||
ChCl: LVA | 54.6 ± 1.3 | 25.6 ± 0.5 | 6.5 ± 0.3 | 66.1 ± 2.1 |
ChCl: LA | 58.4 ± 1.7 | 21.6 ± 0.3 | 5.9 ± 0.2 | 69.3 ± 2.4 |
ChCl: AA | 50.3 ± 1.5 | 27.3 ± 0.7 | 7.8 ± 0.8 | 59.4 ± 1.8 |
ChCl: OA | 47.5 ± 1.4 | 29.4 ± 0.9 | 9.1 ± 0.7 | 52.6 ± 1.6 |
ChCl: CA | 43.2 ± 0.9 | 30.5 ± 1.4 | 9.7 ± 1.1 | 49.5 ± 1.5 |
Polyol/glycol-based DES | ||||
ChCl: EG | 49.3 ± 1.0 | 28.4 ± 1.1 | 8.2 ± 1.0 | 57.3 ± 0.9 |
ChCl: G | 42.5 ± 1.2 | 29.5 ± 0.7 | 9.7 ± 0.9 | 49.5 ± 1.3 |
ChCl: X | 38.1 ± 0.8 | 31.4 ± 1.3 | 11.4 ± 1.1 | 40.6 ± 0.7 |
ChCl: 1,2-PDO | 50.3 ± 1.1 | 27.3 ± 0.8 | 7.2 ± 0.5 | 62.3 ± 2.3 |
ChCl: 1,3-PDO | 52.2 ± 2.1 | 25.3 ± 0.5 | 7.6 ± 0.3 | 60.4 ± 2.2 |
Amine/amide-based DES | ||||
ChCl: U | 41.2 ± 0.7 | 29.3 ± 1.0 | 9.8 ± 1.0 | 48.9 ± 0.6 |
ChCl: FM | 45.3 ± 0.6 | 26.7 ± 1.1 | 8.0 ± 0.6 | 57.8 ± 1.1 |
ChCl: Ac | 86.4 ± 2.0 | 30.8 ± 1.2 | 11.6 ± 0.9 | 39.6 ± 1.2 |
ChCl: MEA | 76.2 ± 1.4 | 23.7 ± 0.1 | 6.6 ± 0.4 | 65.6 ± 1.9 |
ChCl: DEA | 78.2 ± 1.9 | 25.4 ± 0.6 | 7.4 ± 0.8 | 61.5 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.; Chaudhary, R.; Haq, I.U.; Fu, X.; Huang, R.; Mukhtar, H.; Jiang, K. Delignification of Halophyte Atriplex crassifolia by Green Recyclable Deep Eutectic Solvents for Enhanced Production of Biogas. Fermentation 2023, 9, 314. https://doi.org/10.3390/fermentation9030314
Nawaz A, Chaudhary R, Haq IU, Fu X, Huang R, Mukhtar H, Jiang K. Delignification of Halophyte Atriplex crassifolia by Green Recyclable Deep Eutectic Solvents for Enhanced Production of Biogas. Fermentation. 2023; 9(3):314. https://doi.org/10.3390/fermentation9030314
Chicago/Turabian StyleNawaz, Ali, Rida Chaudhary, Ikram Ul Haq, Xiaoliang Fu, Rong Huang, Hamid Mukhtar, and Kankan Jiang. 2023. "Delignification of Halophyte Atriplex crassifolia by Green Recyclable Deep Eutectic Solvents for Enhanced Production of Biogas" Fermentation 9, no. 3: 314. https://doi.org/10.3390/fermentation9030314
APA StyleNawaz, A., Chaudhary, R., Haq, I. U., Fu, X., Huang, R., Mukhtar, H., & Jiang, K. (2023). Delignification of Halophyte Atriplex crassifolia by Green Recyclable Deep Eutectic Solvents for Enhanced Production of Biogas. Fermentation, 9(3), 314. https://doi.org/10.3390/fermentation9030314