Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions
Abstract
:1. Introduction
2. Skin Microbiome
3. Overview of Postbiotics
4. Postbiotic Production Process
5. Postbiotics Formulation
6. Applications and Effects of Postbiotics in the Treatment of Skin Condition
6.1. Alopecia
6.2. Acne Vulgaris
6.3. Atopic Dermatitis
6.4. Wound Healing
7. Patents in the Field of Postbiotics
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Brien, M.T.; O’Sullivan, O.; Claesson, M.J.; Cotter, P.D. The Athlete Gut Microbiome and Its Relevance to Health and Performance: A Review. Sports Med. 2022, 52, 119–128. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Hooks, K.B.; O’Malley, M.A. Contrasting Strategies: Human Eukaryotic versus Bacterial Microbiome Research. J. Eukaryot. Microbiol. 2020, 67, 279–295. [Google Scholar] [CrossRef]
- Boxberger, M.; Cenizo, V.; Cassir, N.; la Scola, B. Challenges in Exploring and Manipulating the Human Skin Microbiome. Microbiome 2021, 9, 125. [Google Scholar] [CrossRef]
- Bay, L.; Barnes, C.J.; Fritz, B.G.; Thorsen, J.; Restrup, M.E.M.; Rasmussen, L.; Sørensen, J.K.; Hesselvig, A.B.; Odgaard, A.; Hansen, A.J.; et al. Universal Dermal Microbiome in Human Skin. mBio 2020, 11, e02945-19. [Google Scholar] [CrossRef] [Green Version]
- Gueniche, A.; Perin, O.; Bouslimani, A.; Landemaine, L.; Misra, N.; Cupferman, S.; Aguilar, L.; Clavaud, C.; Chopra, T.; Khodr, A. Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022, 11, 121. [Google Scholar] [CrossRef]
- Duarte, M.; Oliveira, A.L.; Oliveira, C.; Pintado, M.; Amaro, A.; Madureira, A.R. Current Postbiotics in the Cosmetic Market—An Update and Development Opportunities. Appl. Microbiol. Biotechnol. 2022, 106, 5879–5891. [Google Scholar] [CrossRef]
- Lee, M.-J.; Zang, Z.-L.; Choi, E.-Y.; Shin, H.-K.; Ji, G.-E. Cytoskeleton Reorganization and Cytokine Production of Macrophages by Bifidobacterial Cells and Cell-Free Extracts. J. Microbiol. Biotechnol. 2002, 12, 398–405. [Google Scholar]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Ogai, K.; Nana, B.C.; Lloyd, Y.M.; Arios, J.P.; Jiyarom, B.; Awanakam, H.; Esemu, L.F.; Hori, A.; Matsuoka, A.; Nainu, F.; et al. Skin Microbiome Profile of Healthy Cameroonians and Japanese. Sci. Rep. 2022, 12, 1364. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071. [Google Scholar] [CrossRef]
- Howard, B.; Bascom, C.C.; Hu, P.; Binder, R.L.; Fadayel, G.; Huggins, T.G.; Jarrold, B.B.; Osborne, R.; Rocchetta, H.L.; Swift, D.; et al. Aging-Associated Changes in the Adult Human Skin Microbiome and the Host Factors That Affect Skin Microbiome Composition. J. Investig. Dermatol. 2022, 142, 1934–1946.e21. [Google Scholar] [CrossRef]
- Pistone, D.; Meroni, G.; Panelli, S.; D’auria, E.; Acunzo, M.; Pasala, A.R.; Zuccotti, G.V.; Bandi, C.; Drago, L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int. J. Mol. Sci. 2021, 22, 9846. [Google Scholar] [CrossRef]
- Pillsbury, D.M.; Shelley, W.B. Dermatology. Annu. Rev. Med. 1954, 5, 363–388. [Google Scholar] [CrossRef]
- Fredricks, D.N. Microbial Ecology of Human Skin in Health and Disease. J. Investig. Dermatol. Symp. Proc. 2001, 6, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Ederveen, T.H.A.; Smits, J.P.H.; Boekhorst, J.; Schalkwijk, J.; van den Bogaard, E.H.; Zeeuwen, P.L.J.M. Skin Microbiota in Health and Disease: From Sequencing to Biology. J. Dermatol. 2020, 47, 1110–1118. [Google Scholar] [CrossRef]
- Nelson, K.E.; Weinstock, G.M.; Highlander, S.K.; Worley, K.C.; Creasy, H.H.; Wortman, J.R.; Rusch, D.B.; Mitreva, M.; Sodergren, E.; Chinwalla, A.T.; et al. A Catalog of Reference Genomes from the Human Microbiome. Science 2010, 328, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Meslier, V.; Quinquis, B.; da Silva, K.; Plaza Oñate, F.; Pons, N.; Roume, H.; Podar, M.; Almeida, M. Benchmarking Second and Third-Generation Sequencing Platforms for Microbial Metagenomics. Sci. Data 2022, 9, 694. [Google Scholar] [CrossRef]
- Ferretti, P.; Farina, S.; Cristofolini, M.; Girolomoni, G.; Tett, A.; Segata, N. Experimental Metagenomics and Ribosomal Profiling of the Human Skin Microbiome. Exp. Dermatol. 2017, 26, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Hammoudi, N.; Cassagne, C.; Million, M.; Ranque, S.; Kabore, O.; Drancourt, M.; Zingue, D.; Bouam, A. Investigation of Skin Microbiota Reveals Mycobacterium Ulcerans-Aspergillus Sp. Trans-Kingdom Communication. Sci. Rep. 2021, 11, 3777. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Park, M.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef] [Green Version]
- Dekio, I.; Hayashi, H.; Sakamoto, M.; Kitahara, M.; Nishikawa, T.; Suematsu, M.; Benno, Y. Detection of Potentially Novel Bacterial Components of the Human Skin Microbiota Using Culture-Independent Molecular Profiling. J. Med. Microbiol. 2005, 54, 1231–1238. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D.; et al. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Capone, K.A.; Dowd, S.E.; Stamatas, G.N.; Nikolovski, J. Diversity of the Human Skin Microbiome Early in Life. J. Investig. Dermatol. 2011, 131, 2026–2032. [Google Scholar] [CrossRef] [Green Version]
- Chng, K.R.; Tay, A.S.L.; Li, C.; Ng, A.H.Q.; Wang, J.; Suri, B.K.; Matta, S.A.; McGovern, N.; Janela, B.; Wong, X.F.C.C.; et al. Whole Metagenome Profiling Reveals Skin Microbiome-Dependent Susceptibility to Atopic Dermatitis Flare. Nat. Microbiol. 2016, 1, 16106. [Google Scholar] [CrossRef]
- Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-Somarribas, M.; Sinkko, H.; et al. Microbe-Host Interplay in Atopic Dermatitis and Psoriasis. Nat. Commun. 2019, 10, 4703. [Google Scholar] [CrossRef] [Green Version]
- Alkema, W.; Boekhorst, J.; Eijlander, R.T.; Schnittger, S.; de Gruyter, F.; Lukovac, S.; Schilling, K.; Kortman, G.A.M. Charting Host-Microbe Co-Metabolism in Skin Aging and Application to Metagenomics Data. PLoS ONE 2021, 16, e0258960. [Google Scholar] [CrossRef]
- Ahle, C.M.; Stødkilde, K.; Poehlein, A.; Bömeke, M.; Streit, W.R.; Wenck, H.; Reuter, J.H.; Hüpeden, J.; Brüggemann, H. Interference and Co-Existence of Staphylococci and Cutibacterium acnes within the Healthy Human Skin Microbiome. Commun. Biol. 2022, 5, 923. [Google Scholar] [CrossRef]
- Saheb Kashaf, S.; Proctor, D.M.; Deming, C.; Saary, P.; Hölzer, M.; Mullikin, J.; Thomas, J.; Young, A.; Bouffard, G.; Barnabas, B.; et al. Integrating Cultivation and Metagenomics for a Multi-Kingdom View of Skin Microbiome Diversity and Functions. Nat. Microbiol. 2022, 7, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Barnard, E.; Shi, B.; Kang, D.; Craft, N.; Li, H. The Balance of Metagenomic Elements Shapes the Skin Microbiome in Acne and Health. Sci. Rep. 2016, 6, 39491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; Kong, H.H.; Segre, J.A.; Barnabas, B.; Blakesley, R.; Bouffard, G.; Brooks, S.; et al. Biogeography and Individuality Shape Function in the Human Skin Metagenome. Nature 2014, 514, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dréno, B.; Araviiskaia, E.; Berardesca, E.; Gontijo, G.; Sanchez Viera, M.; Xiang, L.F.; Martin, R.; Bieber, T. Microbiome in Healthy Skin, Update for Dermatologists. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, J.J.; Myeong, N.R.; Kim, T.; Kim, D.A.; An, S.; Kim, H.; Park, T.; Jang, S.I.; Yeon, J.H.; et al. Segregation of Age-Related Skin Microbiome Characteristics by Functionality. Sci. Rep. 2019, 9, 16748. [Google Scholar] [CrossRef] [Green Version]
- Roth, R.R.; James, W.D. Microbial Ecology of the Skin. Annu. Rev. Microbiol. 1988, 42, 441–464. [Google Scholar] [CrossRef]
- Paulino, L.C.; Tseng, C.H.; Strober, B.E.; Blaser, M.J. Molecular Analysis of Fungal Microbiota in Samples from Healthy Human Skin and Psoriatic Lesions. J. Clin. Microbiol. 2006, 44, 2933–2941. [Google Scholar] [CrossRef] [Green Version]
- Findley, K.; Grice, E.A. The Skin Microbiome: A Focus on Pathogens and Their with Skin Disease. PLoS Pathog. 2014, 10, e1004436. [Google Scholar] [CrossRef]
- Murillo, N.; Aubert, J.; Raoult, D. Microbiota of Demodex Mites from Rosacea Patients and Controls. Microb. Pathog. 2014, 71–72, 37–40. [Google Scholar] [CrossRef]
- Hannigan, G.D.; Meisel, J.S.; Tyldsley, A.S.; Zheng, Q.; Hodkinson, B.P.; Sanmiguel, A.J.; Minot, S.; Bushman, F.D.; Grice, E.A. The Human Skin Double-Stranded DNA Virome: Topographical and Temporal Diversity, Genetic Enrichment, and Dynamic Associations with the Host Microbiome. mBio 2015, 6, e01578-15. [Google Scholar] [CrossRef] [Green Version]
- Foulongne, V.; Sauvage, V.; Hebert, C.; Dereure, O.; Cheval, J.; Gouilh, M.A.; Pariente, K.; Segondy, M.; Burguière, A.; Manuguerra, J.C.; et al. Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing. PLoS ONE 2012, 7, e38499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chan, H.H.; Ni, M.Y.; Lam, W.W.; Chan, W.M.M.; Pang, H. Bacteriophage of the Skin Microbiome in Patients with Psoriasis and Healthy Family Controls. J. Investig. Dermatol. 2020, 140, 182–190.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Bushman, F.D. The Human Virome: Assembly, Composition and Host Interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, H.S.; Lee, S.H.; Kim, S. Characterization and Analysis of the Skin Microbiota in Acne: Impact of Systemic Antibiotics. J. Clin. Med. 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.F.; Oddos, T.; Stamatas, G. Deciphering the Role of Skin Surface Microbiome in Skin Health: An Integrative Multiomics Approach Reveals Three Distinct Metabolite—Microbe Clusters. J. Investig. Dermatol. 2022, 142, 469–479.e5. [Google Scholar] [CrossRef]
- Tett, A.; Pasolli, E.; Farina, S.; Truong, D.T.; Asnicar, F.; Zolfo, M.; Beghini, F.; Armanini, F.; Jousson, O.; de Sanctis, V.; et al. Unexplored Diversity and Strain-Level Structure of the Skin Microbiome Associated with Psoriasis. NPJ Biofilms Microbiomes 2017, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Alekseyenko, A.V.; Perez-Perez, G.I.; de Souza, A.; Strober, B.; Gao, Z.; Bihan, M.; Li, K.; Methé, B.A.; Blaser, M.J. Community Differentiation of the Cutaneous Microbiota in Psoriasis. Microbiome 2013, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Woo, Y.R.; Lee, S.H.; Cho, S.H.; Lee, J.D.; Kim, H.S. Characterization and Analysis of the Skin Microbiota in Rosacea: Impact of Systemic Antibiotics. J. Clin. Med. 2020, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Vallejo-Cordoba, B.; Castro-López, C.; García, H.S.; González-Córdova, A.F.; Hernández-Mendoza, A. Postbiotics and Paraprobiotics: A Review of Current Evidence and Emerging Trends. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 94, pp. 1–34. ISBN 9780128202180. [Google Scholar]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Martyniak, A.; Medyńska-Przęczek, A.; Wędrychowicz, A.; Skoczeń, S.; Tomasik, P.J. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef]
- Keshari, S.; Wang, Y.; Herr, D.R.; Wang, S.M.; Yang, W.C.; Chuang, T.H.; Chen, C.L.; Huang, C.M. Skin Cutibacterium acnes Mediates Fermentation to Suppress the Calcium Phosphate-induced Itching: A Butyric Acid Derivative with Potential for Uremic Pruritus. J. Clin. Med. 2020, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.V.d.M.; de Oliveira Coelho, B.; Magalhães Júnior, A.I.; Thomaz-Soccol, V.; Soccol, C.R. How to Select a Probiotic? A Review and Update of Methods and Criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Kim, J.H.; Baek, J.; Kim, W. Improvement of Cutaneous Wound Healing via Topical Application of Heat-Killed Lactococcus chungangensis Cau 1447 on Diabetic Mice. Nutrients 2021, 13, 2666. [Google Scholar] [CrossRef] [PubMed]
- Ácsová, A.; Hojerová, J.; Martiniaková, S. Efficacy of Postbiotics against Free Radicals and UV Radiation. Chem. Pap. 2022, 76, 2357–2364. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Kumar, A. Extraction and Characterization of Secondary Metabolites Produced by Bacteria Isolated from Industrial Wastewater. J. Water Process Eng. 2021, 40, 108. [Google Scholar] [CrossRef]
- Tantratian, S.; Pradeamchai, M. Select a Protective Agent for Encapsulation of Lactobacillus plantarum. LWT 2020, 123, 109075. [Google Scholar] [CrossRef]
- Willey, J.M.; Sherwood, L.M.; Woolverton, C.J. Prescott, Harley, and Klein’s Microbology, 7th ed.; Willey, J.M., Sherwood, L.M., Woolverton, C.J., Eds.; The McGraw-Hill Companies: New York, NY, USA, 2008; ISBN 978-0-07-299291-5. [Google Scholar]
- Tu, N.H.K.; Thien, P.V.M. Detection of N-Acetyl-D-Glucosamine in Hyaluronan by Thin Layer Chromatography. IFMBE Proc. 2013, 40 IFMBE, 174–177. [Google Scholar] [CrossRef]
- Ibáñez, A.B.; Bauer, S. Analytical Method for the Determination of Organic Acids in Dilute Acid Pretreated Biomass Hydrolysate by Liquid Chromatography-Time-of-Flight Mass Spectrometry. Biotechnol. Biofuels 2014, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Messi, P.; Bondi, M.; Sabia, C.; Battini, R.; Manicardi, G. Detection and Preliminary Characterization of a Bacteriocin (Plantaricin 35d) Produced by a Lactobacillus plantarum Strain. Artic. Int. J. Food Microbiol. 2001, 64, 193–198. [Google Scholar] [CrossRef]
- Choeisoongnern, T.; Sivamaruthi, B.S.; Sirilun, S.; Peerajan, S.; Choiset, Y.; Rabesona, H.; Haertlé, T.; Chaiyasut, C. Screening and Identification of Bacteriocin-like Inhibitory Substances Producing Lactic Acid Bacteria from Fermented Products. Food Sci. Technol. 2019, 40, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Cicenia, A.; Scirocco, A.; Carabotti, M.; Pallotta, L.; Marignani, M.; Severi, C. Postbiotic Activities of Lactobacilli-Derived Factors. J. Clin. Gastroenterol. 2014, 48, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, W.; Zhang, J.; Li, Z.; Ma, H.; Zhao, Z. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe. Anal. Chem. 2021, 93, 11775–11784. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, B. Common Cosmetic Ingredients: Chemistry, Actions, Safety and Products. In Cosmetic Formulation: Principles and Practice; Benson, H.A.E., Roberts, M.S., Leite-Silva, V.R., Walters, K.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 105–118. ISBN 9781482235395. [Google Scholar]
- Goyal, N.; Jerold, F. Biocosmetics: Technological Advances and Future Outlook. Environ. Sci. Pollut. Res. 2021, 1–22. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Natural Surfactants Used in Cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Controversy around Parabens: Alternative Strategies for Preservative Use in Cosmetics and Personal Care Products. Environ. Res. 2021, 198, 110488. [Google Scholar] [CrossRef]
- Lane, M.E. Skin Penetration Enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Mavranezouli, I.; Daly, C.H.; Welton, N.J.; Deshpande, S.; Berg, L.; Bromham, N.; Arnold, S.; Phillippo, D.M.; Wilcock, J.; Xu, J.; et al. A Systematic Review and Network Meta-Analysis of Topical Pharmacological, Oral Pharmacological, Physical and Combined Treatments for Acne Vulgaris. Br. J. Dermatol. 2022, 187, 639–649. [Google Scholar] [CrossRef]
- Bakshi, H.; Nagpal, M.; Singh, M.; Dhingra, G.A.; Aggarwal, G. Treatment of Psoriasis: A Comprehensive Review of Entire Therapies. Curr. Drug Saf. 2020, 15, 82–104. [Google Scholar] [CrossRef]
- Calabrese, G.; Licata, G.; Gambardella, A.; De Rosa, A.; Alfano, R.; Argenziano, G. Topical and Conventional Systemic Treatments in Atopic Dermatitis: Have They Gone Out of Fashion? Dermatol. Pract. Concept. 2022, 12, e2022155. [Google Scholar] [CrossRef]
- Otlewska, A.; Baran, W.; Batycka-Baran, A. Adverse Events Related to Topical Drug Treatments for Acne Vulgaris. Expert Opin. Drug Saf. 2020, 19, 513–521. [Google Scholar] [CrossRef]
- Frantz, T.; Wright, E.G.; Balogh, E.A.; Cline, A.; Adler-Neal, A.L.; Feldman, S.R. Topical and Oral Therapies for Childhood Atopic Dermatitis and Plaque Psoriasis. Children 2019, 6, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, B.; Künstner, A.; Fähnrich, A.; Bersuch, E.; Schmid-Grendelmeier, P.; Busch, H.; Glatz, M.; Bosshard, P.P. Dysbiosis of Skin Microbiota with Increased Fungal Diversity Is Associated with Severity of Disease in Atopic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Moosbrugger-Martinz, V.; Hackl, H.; Gruber, R.; Pilecky, M.; Knabl, L.; Orth-Höller, D.; Dubrac, S. Initial Evidence of Distinguishable Bacterial and Fungal Dysbiosis in the Skin of Patients with Atopic Dermatitis or Netherton Syndrome. J. Investig. Dermatol. 2021, 141, 114–123. [Google Scholar] [CrossRef]
- Dréno, B.; Dagnelie, M.A.; Khammari, A.; Corvec, S. The Skin Microbiome: A New Actor in Inflammatory Acne. Am. J. Clin. Dermatol. 2020, 21, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; You, Z.X.; Lin, Y.X.; Liu, H.Y.; Su, J. Skin Microbiome Differences Relate to the Grade of Acne Vulgaris. J. Dermatol. 2019, 46, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Stehlikova, Z.; Kostovcik, M.; Kostovcikova, K.; Kverka, M.; Juzlova, K.; Rob, F.; Hercogova, J.; Bohac, P.; Pinto, Y.; Uzan, A.; et al. Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-Occurrence of Fungal and Bacterial Communities. Front. Microbiol. 2019, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.J.E.; Kell, D.B.; Pretorius, E. Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris. Front. Cell Infect. Microbiol. 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golkar, N.; Ashoori, Y.; Heidari, R.; Omidifar, N.; Abootalebi, S.N.; Mohkam, M.; Gholami, A. A Novel Effective Formulation of Bioactive Compounds for Wound Healing: Preparation, in Vivo Characterization, and Comparison of Various Postbiotics Cold Creams in a Rat Model. Evid.-Based Complement. Altern. Med. 2021, 2021, 8577116. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Ali, F. Method of Producing Partially Purified Extracellular Metabolite Products from Bacillus Coagulans and Biological Applications Thereof. U.S. Patent 9,596,861, 21 March 2017. [Google Scholar]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Mundkur, L.; Rajalakshmi, H.R.; Shah, K.; Beede, K. Novel Topical Application of a Postbiotic, Lactosporin®, in Mild to Moderate Acne: A Randomized, Comparative Clinical Study to Evaluate Its Efficacy, Tolerability and Safety. Cosmetics 2020, 7, 70. [Google Scholar] [CrossRef]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef]
- Ashoori, Y.; Mohkam, M.; Heidari, R.; Abootalebi, S.N.; Mousavi, S.M.; Hashemi, S.A.; Golkar, N.; Gholami, A. Development and in Vivo Characterization of Probiotic Lysate-Treated Chitosan Nanogel as a Novel Biocompatible Formulation for Wound Healing. Biomed Res. Int. 2020, 2020, 8868618. [Google Scholar] [CrossRef] [PubMed]
- Catic, T.; Pehlivanovic, B.; Pljakic, N.; Balicevac, A. The Moisturizing Efficacy of a Proprietary Dermo-Cosmetic Product (CLS02021) versus Placebo in a 4-Week Application Period. Med. Arch. 2022, 76, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Kambara, T.; Murata, N.; Komori-Yamaguchi, J.; Matsukura, S.; Takahashi, Y.; Ikezawa, Z.; Aihara, M. Effects of Oral Administration of Lactobacillus acidophilus L-92 on the Symptoms and Serum Cytokines of Atopic Dermatitis in Japanese Adults: A Double-Blind, Randomized, Clinical Trial. Int. Arch. Allergy Immunol. 2014, 165, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Trink, A.; Pinto, D. Efficacy of Postbiotics in a PRP-Like Cosmetic Product for the Treatment of Alopecia Area Celsi: A Randomized Double-Blinded Parallel-Group Study. Dermatol. Ther. 2020, 10, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Hoang, B.X.; Shaw, G.; Pham, P.; Levine, S.A. Lactobacillus rhamnosus Cell Lysate in the Management of Resistant Childhood Atopic Eczema. Inflamm. Allergy-Drug Targets 2010, 9, 192–196. [Google Scholar] [CrossRef]
- Darwin, E.; Hirt, P.; Fertig, R.; Doliner, B.; Delcanto, G.; Jimenez, J. Alopecia Areata: Review of Epidemiology, Clinical Features, Pathogenesis, and New Treatment Options. Int. J. Trichology 2018, 10, 51–60. [Google Scholar] [CrossRef]
- Segal-Engelchin, D.; Shvarts, S. Does Severity of Hair Loss Matter? Factors Associated with Mental Health Outcomes in Women Irradiated for Tinea Capitis in Childhood. Int. J. Environ. Res. Public Health 2020, 17, 7388. [Google Scholar] [CrossRef]
- Chiang, K.S.; Mesinkovska, N.A.; Piliang, M.P.; Bergfeld, W.F. Clinical Efficacy of Diphenylcyclopropenone in Alopecia Areata: Retrospective Data Analysis of 50 Patients. J. Investig. Dermatol. Symp. Proc. 2015, 17, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Carviel, J.; Abramovits, W. Treating Alopecia Areata: Current Practices versus New Directions. Am. J. Clin. Dermatol. 2017, 18, 67–75. [Google Scholar] [CrossRef]
- Jahn-Bassler, K.; Bauer, W.M.; Karlhofer, F.; Vossen, M.G.; Stingl, G. Sequential High- and Low-Dose Systemic Corticosteroid Therapy for Severe Childhood Alopecia Areata. JDDG—J. Ger. Soc. Dermatol. 2017, 15, 42–47. [Google Scholar] [CrossRef]
- Darwin, E.; Arora, H.; Hirt, P.A.; Wikramanayake, T.C.; Jimenez, J.J. A Review of Monochromatic Light Devices for the Treatment of Alopecia Areata. Lasers Med. Sci. 2018, 33, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.; King, B.A. JAK Inhibitors in Dermatology: The Promise of a New Drug Class. J. Am. Acad. Dermatol. 2017, 76, 736–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, S.; Manchanda, S. Platelet-Rich Plasma-an “Elixir” for Treatment of Alopecia: Personal Experience on 117 Patients with Review of Literature. Stem. Cell Investig. 2017, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, F.; Marzani, B.; Pinto, D.; Sorbellini, E. Randomized Controlled Trial on a PRP-like Cosmetic, Biomimetic Peptides Based, for the Treatment of Alopecia Areata. J. Dermatol. Treat. 2019, 30, 588–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura-Ueki, M.; Oda, Y.; Oki, J.; Komi-Kuramochi, A.; Honda, E.; Asada, M.; Suzuki, M.; Imamura, T. Hair Cycle Resting Phase Is Regulated by Cyclic Epithelial FGF18 Signaling. J. Investig. Dermatol. 2012, 132, 1338–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Komi-Kuramochi, A.; Asada, M.; Suzuki, M.; Oki, J.; Jiang, J.; Imamura, T. Comprehensive Analysis of FGF and FGFR Expression in Skin: FGF18 Is Highly Expressed in Hair Follicles and Capable of Inducing Anagen from Telogen Stage Hair Follicles. J. Investig. Dermatol. 2005, 124, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, R.E. Platelet-Rich Plasma: Evidence to Support Its Use. J. Oral Maxillofac. Surg. 2004, 62, 489–496. [Google Scholar] [CrossRef]
- Giordano, S.; Romeo, M.; di Summa, P.; Salval, A.; Lankinen, P. A Meta-Analysis on Evidence of Platelet-Rich Plasma for Androgenetic Alopecia. Int. J. Trichology 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of Platelet Concentrates: From Pure Platelet-Rich Plasma (P-PRP) to Leucocyte- and Platelet-Rich Fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef]
- Marzani, B.; Pinto, D.; Minervini, F.; Calasso, M.; di Cagno, R.; Giuliani, G.; Gobbetti, M.; de Angelis, M. The Antimicrobial Peptide Pheromone Plantaricin A Increases Antioxidant Defenses of Human Keratinocytes and Modulates the Expression of Filaggrin, Involucrin, β-Defensin 2 and Tumor Necrosis Factor-α Genes. Exp. Dermatol. 2012, 21, 665–671. [Google Scholar] [CrossRef]
- Pinto, D.; Marzani, B.; Minervini, F.; Calasso, M.; Giuliani, G.; Gobbetti, M.; de Angelis, M. Plantaricin A Synthesized by Lactobacillus plantarum Induces in Vitro Proliferation and Migration of Human Keratinocytes and Increases the Expression of TGF-Β1, FGF7, VEGF-A and IL-8 Genes. Peptides 2011, 32, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. Novel Solid-State Fermentation of Bee-Collected Pollen Emulating the Natural Fermentation Process of Bee Bread. Food Microbiol. 2019, 82, 218–230. [Google Scholar] [CrossRef]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne Vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Bagatin, E.; Timpano, D.L.; Guadanhim, L.R.d.S.; Nogueira, V.M.A.; Terzian, L.R.; Steiner, D.; Florez, M. Acne Vulgaris: Prevalence and Clinical Forms in Adolescents from São Paulo, Brazil. An. Bras. Dermatol. 2014, 89, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.K.L.; Bhate, K. A Global Perspective on the Epidemiology of Acne. Br. J. Dermatol. 2015, 172, 3–12. [Google Scholar] [CrossRef]
- Toyoda, M.; Morohashi, M. Pathogenesis of Acne. Med. Electron. Microsc. 2001, 34, 29–40. [Google Scholar] [CrossRef]
- Chilicka, K.; Rusztowicz, M.; Rogowska, A.M.; Szyguła, R.; Asanova, B.; Nowicka, D. Efficacy of Hydrogen Purification and Cosmetic Acids in the Treatment of Acne Vulgaris: A Preliminary Report. J. Clin. Med. 2022, 11, 6269. [Google Scholar] [CrossRef]
- Chilicka, K.; Rogowska, A.M.; Szyguła, R.; Rusztowicz, M.; Nowicka, D. Efficacy of Oxybrasion in the Treatment of Acne Vulgaris: A Preliminary Report. J. Clin. Med. 2022, 11, 3824. [Google Scholar] [CrossRef]
- See, J.A.; Goh, C.L.; Hayashi, N.; Suh, D.H.; Casintahan, F.A. Optimizing the Use of Topical Retinoids in Asian Acne Patients. J. Dermatol. 2018, 45, 522–528. [Google Scholar] [CrossRef]
- Fluhr, J.W.; Degitz, K. Antibiotika, Azelainsäure Und Benzoylperoxid in Der Topische Aknetherapie. JDDG—J. Ger. Soc. Dermatol. 2010, 8, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Nast, A.; Dréno, B.; Bettoli, V.; Degitz, K.; Erdmann, R.; Finlay, A.Y.; Ganceviciene, R.; Haedersdal, M.; Layton, A.; López-Estebaranz, J.L.; et al. European Evidence-Based (S3) Guidelines for the Treatment of Acne. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J.S.; Krowchuk, D.P.; Leyden, J.J.; Lucky, A.W.; Shalita, A.R.; Siegfried, E.C.; Thiboutot, D.M.; van Voorhees, A.S.; Beutner, K.A.; Sieck, C.K.; et al. Guidelines of Care for Acne Vulgaris Management. J. Am. Acad. Dermatol. 2007, 56, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Simonart, T. Newer Approaches to the Treatment of Acne Vulgaris. Am. J. Clin. Dermatol. 2012, 13, 357–364. [Google Scholar] [CrossRef]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Lawrence, L.; Arumugam, S.; Mundkur, L. Skin Protective Activity of Lactosporin-the Extracellular Metabolite from Bacillus coagulans Mtcc 5856. Cosmetics 2020, 7, 76. [Google Scholar] [CrossRef]
- Lambrechts, I.A.; de Canha, M.N.; Lall, N. Exploiting Medicinal Plants as Possible Treatments for Acne Vulgaris. In Medicinal Plants for Holistic Health and Well-Being; Elsevier: Amsterdam, The Netherlands, 2017; pp. 117–143. ISBN 9780128124758. [Google Scholar]
- Chung, H.J.; Lee, H.; Kim, M.; Lee, J.W.; Saeed, M.; Lee, H.; Jung, S.H.; Shim, J.J.; Lee, J.L.; Heo, K.; et al. Development and Metabolic Profiling of a Postbiotic Complex Exhibiting Antibacterial Activity against Skin Microorganisms and Anti-Inflammatory Effect on Human Keratinocytes. Food Sci. Biotechnol. 2022, 31, 1325–1334. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Leung, D.Y.M. Pathophysiology of Atopic Dermatitis: Clinical Implications. Allergy Asthma Proc. 2019, 40, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Leung, D.Y.M. Epidermal Barrier in Atopic Dermatitis. Allergy Asthma Immunol. Res. 2012, 4, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, J.I. Public Health Burden and Epidemiology of Atopic Dermatitis. Dermatol. Clin. 2017, 35, 283–289. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Suárez-Fariñas, M.; Chiricozzi, A.; Nograles, K.E.; Shemer, A.; Fuentes-Duculan, J.; Cardinale, I.; Lin, P.; Bergman, R.; Bowcock, A.M.; et al. Broad Defects in Epidermal Cornification in Atopic Dermatitis Identified through Genomic Analysis. J. Allergy Clin. Immunol. 2009, 124, 1235–1244.e58. [Google Scholar] [CrossRef]
- Blicharz, L.; Rudnicka, L.; Czuwara, J.; Waśkiel-Burnat, A.; Goldust, M.; Olszewska, M.; Samochocki, Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis—An Update. Int. J. Mol. Sci. 2021, 22, 8403. [Google Scholar] [CrossRef]
- Brunner, P.M.; Leung, D.Y.M.; Guttman-Yassky, E. Immunologic, Microbial, and Epithelial Interactions in Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2018, 120, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic Dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef]
- Liang, Y.; Chang, C.; Lu, Q. The Genetics and Epigenetics of Atopic Dermatitis—Filaggrin and Other Polymorphisms. Clin. Rev. Allergy Immunol. 2016, 51, 315–328. [Google Scholar] [CrossRef]
- Renert-Yuval, Y.; Guttman-Yassky, E. New Treatments for Atopic Dermatitis Targeting beyond IL-4/IL-13 Cytokines. Ann. Allergy Asthma Immunol. 2020, 124, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Wollenberg, A.; Oranje, A.; Deleuran, M.; Simon, D.; Szalai, Z.; Kunz, B.; Svensson, A.; Barbarot, S.; von Kobyletzki, L.; Taieb, A.; et al. ETFAD/EADV Eczema Task Force 2015 Position Paper on Diagnosis and Treatment of Atopic Dermatitis in Adult and Paediatric Patients. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 729–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, S.; Torii, A.; Itoh, K.; Urisu, A.; Terada, A.; Fujisawa, T.; Yamada, K.; Suzuki, H.; Ishida, Y.; Nakamura, F.; et al. Effects of Oral Administration of Lactobacillus acidophilus L-92 on the Symptoms and Serum Markers of Atopic Dermatitis in Children. Int. Arch. Allergy Immunol. 2011, 154, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Nakamura, F.; Kanzato, H.; Sawada, D.; Yamamoto, N.; Kagata, H.; Oh-Ida, M.; Takeuchi, H.; Fujiwara, S. Effect of Milk Fermented with Lactobacillus acidophilus Strain L-92 on Symptoms of Japanese Cedar Pollen Allergy: A Randomized Placebo-Controlled Trial. Biosci. Biotechnol. Biochem. 2005, 69, 1652–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwana, R.; Yamamoto, N. Increases in GroES and GroEL from Lactobacillus acidophilus L-92 in Response to a Decrease in Medium PH, and Changes in Cytokine Release from Splenocytes: Transcriptome and Proteome Analyses. J. Biosci. Bioeng. 2012, 114, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.; Miyamoto, Y.; Yamada, Y.; Yamashita, H.; Tanaka, H.; Ezaki, T.; Nagai, H.; Inagaki, N. Orally Supplemented Lactobacillus acidophilus Strain L-92 Inhibits Passive and Active Cutaneous Anaphylaxis as Well as 2,4-Dinitroflurobenzene and Mite Fecal Antigen Induced Atopic Dermatitis-like Skin Lesions in Mice. Microbiol. Immunol. 2010, 54, 523–533. [Google Scholar] [CrossRef]
- Kanzato, H.; Fujiwara, S.; Ise, W.; Kaminogawa, S.; Sato, R.; Hachimura, S. Lactobacillus acidophilus Strain L-92 Induces Apoptosis of Antigen-Stimulated T Cells by Modulating Dendritic Cell Function. Immunobiology 2008, 213, 399–408. [Google Scholar] [CrossRef]
- Shah, M.M.; Saio, M.; Yamashita, H.; Tanaka, H.; Takami, T.; Ezaki, T.; Inagaki, N. Lactobacillus acidophilus Strain L-92 Induces CD4+CD25+Foxp3+ Regulatory T Cells and Suppresses Allergic Contact Dermatitis. Biol. Pharm. Bull. 2012, 35, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiouris, C.G.; Tsiouri, M.G. Human Microflora, Probiotics and Wound Healing. Wound Med. 2017, 19, 33–38. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, H.; Guo, B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. Nanomicro Lett. 2022, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Plichta, J.K.; Gamelli, R.L.; Radek, K.A. Dynamic Role of Host Stress Responses in Modulating the Cutaneous Microbiome: Implications for Wound Healing and Infection. Adv. Wound Care 2015, 4, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Percival, S.L.; McCarty, S.M.; Lipsky, B. Biofilms and Wounds: An Overview of the Evidence. Adv. Wound Care 2015, 4, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Derived Postbiotic | Product | Application | Reference |
---|---|---|---|---|
L. fermentum ATCC 9338 L. reuteri ATCC 23272 B. subtilis sp. Natto ATCC 15245 | Lyophilization | Topical cold cream | Formulation of cold creams containing postbiotics to accelerate the wound healing process | [81] |
L. acidophilus L-92 | Inactivated cell | Indeterminate | Postbiotic ingestion for the treatment of atopic dermatitis | [87] |
B. coagulans MTCC 5856 | Cell-Free Supernatants | LactoSporin | Formulation of a cream containing (LactoSporin) for the treatment of Acne vulgaris | [83] |
B. longum | Inactivated cell | Bifida Ferment Lysate | ||
Indeterminate | Fragmented cells | Moisturizing Cream (CLS02021) | CLS02021 has shown beneficial effects on skin moisture and increased elasticity, wrinkle depth, and reduced pore size. The cream can be applied as an anti-aging skin treatment | [86] |
L. kunkei | Bioactive peptides (PlnA) | TR-PRP plus-Celsi | Topical application for 3 months of a product containing a postbiotic resulted in a significant improvement in patients diagnosed with alopecia | [88] |
L. Rhamnosus | Fragmented cells | Indeterminate | Administration of cell lysate in pediatric patients showed a marked improvement in eczema symptoms | [89] |
Assignee (Country) | Postbiotic Composition | Main Application | Patent Number (Publication Year) |
---|---|---|---|
Eligo Bioscience (France/USA) | Microbial lysate of Lactobacillus or Escherichia bacteria, preferably of Lactobacillus rhamnosus GG, heterologously expressing bacteriocin(s) and/or endolysin(s), namely, lysostaphin | Cosmetic caring, controlling, and reducing body odor | WO2022195108-A2 (2022) |
Treating skin lesions associated with cutaneous T-cell lymphoma | WO2022195118-A1(2022) | ||
Treating acneiform rash | WO2022195112-A1 (2022) | ||
Treating inflammatory disorders, folliculitis, acne, atopic dermatitis | WO2022195109-A1 (2022) | ||
Treating cutaneous lupus erythematosus, anti-inflammatory | WO2022195115-A1 (2022) | ||
Chambio Co., Ltd. (Taiwan) | Extract obtained from a protein source, a probiotic, and a biopolymer | Skin regeneration, anti-aging | CN113925884-A (2022) US2022096573-A1 (2022) |
Preventing or treating arthritis | CN113925885-A (2022) | ||
Biowish Technologies Inc. (USA) | Mixture of prebiotics (inulin, fructo-oligosaccharides or gluco-oligosaccharides), probiotics (family Lactobacillaceae or Bifidobacterium), and postbiotics obtained from liquid fermentation medium | Treating rosacea, acne, eczema, dermatitis and psoriasis | US2017304377-A1 (2017) |
Composition of prebiotic, probiotic (Pediococcus acidilactici, Pediococcus pentosaceus and Lactobacillus plantarum), postbiotic prepared from the liquid fermentation medium, vitamin, mineral, sugar, botanical agent and fungal component (macromycete) | Treating skin disorders, such as rosacea, acne, psoriasis, eczema, or dermatitis, and improving wound healing | US2015320809-A1 (2015) | |
Dong A Pharm Co., Ltd. (Republic of Korea) | Exopolysaccharide from Bifidobacterium bifidum | Anti-aging, antioxidant activity | KR2421144-B1 (2022) |
Exopolysaccharide and Lactobacillus paracasei cells | Treating skin inflammatory disease | KR2374480-B1 (2022) | |
Eczacibasi Tuketim Urunleri Sanayi (Turkey) | Lactic acid | Skin disinfection | WO2022119533-A2 (2022) |
Lubricant gel | WO2022060334-A1 (2022) | ||
Gallinee (France) | Lactic acid | Solid cosmetic for washing the skin | FR3073142-A1 (2019) |
Acetic acid or its salts | Cosmetic care of the skin | FR3086170-A1 (2020) | |
Aileens Pharma Srl (Italy) | Cell wall and lysates of Cutibacterium acnes | Treatment of inflammatory or allergic diseases | WO2021165434-A1 (2021) |
Unilever (UK) | Lactic acid or its salts | Female intimate hygiene | WO2022219133-A1 (2022) |
Demeta and Rennes University (France) | Undefined | Cosmetic to modulate the skin microbiota | WO2021105638-A1 (2021) |
Dermbiont Inc. (USA) | Obtained from human-derived Janthinobacterium lividum | Treating or preventing skin disease associated with pathogenic microorganism | WO2020210553-A1 (2020) |
Dupont Nutrition Biosci Aps (Denmark) | Obtained from Bifidobacterium animalis | Anti-aging | EP3915537-A1 (2021) |
Fabre Dermo Cosmetique Pierre (France) | Bacterial extract of beta-Proteobacteria | Hydrating skin or scalp, and treating inflammatory skin disorder (dermatitis, pruritus, eczema, psoriasis or rosacea) | WO2022053770-A1 (2022) |
Microsintesis Inc. (USA) | Metabolite comprising a peptide, small molecule, lipid and/or sugar, derived from probiotic bacterial culture | Resensitizing an antibiotic-resistant infection to an antibiotic, sensitizing bacteria to oxidant killing | WO2021000046-A1 (2021) |
Nanjing Aurora Biotech Co., Ltd. (China) | Inactivated probiotics (Lactobacillus, Bifidobacterium, Streptococcus, Lactococcus, Leuconococcus, Propionibacterium, Pediococcus, Staphylococcus, Bacillus, and/or Kluyveromyces) | Treating bacterial infectious diseases | CN113637606-A 2021) |
Sethic Guangzhou Technology R&D Co. (China) | Lactobacillus/soybean milk fermentation product filtrate | Moisturizing and anti-aging | CN114099408-A (2022) |
Shandong Aiyidian Biotechnology Co., Ltd. (China) | Probiotic (Lactobacillus plantarum, L. casei, Bifidobacterium lactis, B. animalis and L. rhamnosus) fermentation liquid | Removing wrinkles, increasing skin elasticity, preventing inflammation, and repairing skin barrier | CN112980892-A (2021) |
Sifi Spa (Italy) | Fermented product of Lactobacillus casei and/or Lactobacillus paracasei species | Preventing or treating microbial eye infections, eye allergies, vernal keratoconjunctivitis, keratoconjunctivitis sicca, and blepharitis | WO2021111372-A1 (2021) |
SK Bioland Co., Ltd. Hyundai Bioland Co., Ltd. (Republic of Korea) | Hyaluronic acid or chitosan media with glucose fermented by lactic acid bacteria and thermally treated | Skin patch and face mask for skin moisturizing or skin regeneration of dermal cells; improving of aquaporin-3 and hyaluronan synthase-2 expression in epidermal cells | KR2149102-B1 (2020) |
Antwerpen University (Belgium) | New isolate of Limosilactobacillus reuteri for the preparation of postbiotics | Treating and/or preventing diseases associated with reduced levels of riboflavin, including skin diseases | WO2022112609-A1 (2021) |
University of California (USA) | Fermentation extract of a probiotic composition (Staphylococcus capitis N030E12, S. epidermidis AMT5C5, S. epidermidis N009G7, S. epidermidis N018F3) | Treating skin or mucosal infections, atopic dermatitis, psoriasis, mastitis, acne, or other disorders related to skin dysbiosis | WO2020056359-A1 (2020) |
Konkuk University Ind Coop Corp. (Republic of Korea) | Lactobacillus reuteri (live or dead) and its culture solution | Anti-aging, increasing oil and water content of skin, reducing transdermal water loss, skin roughness, skin depression, and wrinkles | KR2020028627-A (2020) |
With Bio Pharm Cospam Co., Ltd. (Republic of Korea) | Fermentation product of fermented lactic acid bacteria (Bifidobacterium longum SPM 1205, Lactobacillus plantarum KCTC 1048 and Pediococcus pentosaceus CBT SL4) culture medium treated at room temperature and at 80–90 °C; contains nano beta-glucan | Cosmetic composition for skin moisturizing, skin elasticity enhancement or skin protection | KR2021137739-A (2021) |
Yodi Sas (France) | Exopolysaccharides and postbiotics, preferably of Lactobacillus fermentum | Caring for the hair or the skin | WO2021110768-A1 (2021) |
A. La Marca (Individual) | Tyndallized bacteria of the species Lactobacillus acidophilus and/or Lactobacillus plantarum | Treating or preventing pathological condition of the female reproductive system caused by an imbalance in the microbiota | WO2021176387-A1 (2021) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation 2023, 9, 264. https://doi.org/10.3390/fermentation9030264
da Silva Vale A, de Melo Pereira GV, de Oliveira AC, de Carvalho Neto DP, Herrmann LW, Karp SG, Soccol VT, Soccol CR. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation. 2023; 9(3):264. https://doi.org/10.3390/fermentation9030264
Chicago/Turabian Styleda Silva Vale, Alexander, Gilberto Vinícius de Melo Pereira, Ana Caroline de Oliveira, Dão Pedro de Carvalho Neto, Leonardo Wedderhoff Herrmann, Susan Grace Karp, Vanete Thomaz Soccol, and Carlos Ricardo Soccol. 2023. "Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions" Fermentation 9, no. 3: 264. https://doi.org/10.3390/fermentation9030264
APA Styleda Silva Vale, A., de Melo Pereira, G. V., de Oliveira, A. C., de Carvalho Neto, D. P., Herrmann, L. W., Karp, S. G., Soccol, V. T., & Soccol, C. R. (2023). Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation, 9(3), 264. https://doi.org/10.3390/fermentation9030264