Effect and Mechanism of Lepista nuda Mycelia Obtained via In Vitro Culture on the Lifespan of Drosophila melanogaster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Insects
2.1.2. Macrofungi Strain
2.2. Methods
2.2.1. Isolation and Purification of Mycelia
2.2.2. Experimental Design and Grouping
2.2.3. Determination of Lethal Effect against D. melanogaster
2.2.4. Measurement of D. melanogaster Lifespan
2.2.5. Determination of Antioxidant Enzyme Activity and Peroxidation Product Content in D. melanogaster
2.2.6. Determination the Relative amounts of Transcripts in D. melanogaster
2.2.7. Statistical Analysis
3. Results
3.1. Lethal Effects of L. nuda Mycelium-Supplemented Diets on D. melanogaster
3.2. Effects of L. nuda Mycelium-Supplemented Diets on the Lifespan of D. melanogaster
3.3. Effects of L. nuda Mycelium-Supplemented Diets on the Antioxidant Activity of D. melanogaster
3.4. Effects of L. nuda Mycelium-Supplemented Diets on Peroxidation Product Content of D. melanogaster
3.5. Effects of L. nuda Mycelium-Supplemented Diets on the Levels of Antioxidant-Related Gene Transcripts in D. melanogaster
3.6. Effects of L. nuda Mycelium-Supplemented Diets on Levels of Signaling Pathway Gene Transcripts in D. melanogaster
3.7. Effects of L. nuda Mycelium-Supplemented Diets on the Levels of Lifespan-Related Gene Transcripts in D. melanogaster
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curtsinger, J.W. Reproductive homeostasis and senescence in Drosophila melanogaster. J. Gerontol. Ser. A 2019, 74, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Ji, X.; Jiang, J.; Zhang, Y.; Liang, J.; Li, B. An ecological indicator to evaluate the effect of chemical insecticide pollution management on complex ecosystems. Ecol. Indic. 2015, 53, 11–17. [Google Scholar] [CrossRef]
- Van Timmeren, S.; Mota-Sanchez, D.; Wise, J.C.; Isaacs, R. Baseline susceptibility of spotted wing Drosophila (Drosophila suzukii) to four key insecticide classes. Pest Manag. Sci. 2018, 74, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Deans, C.; Hutchison, W.D. Propensity for resistance development in the invasive berry pest, spotted-wing drosophila (Drosophila suzukii), under laboratory selection. Pest Manag. Sci. 2022, 78, 5203–5212. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef]
- Palavecino-De-La-Fuente, F.; Silva-Aguayo, G.; Figueroa-Cares, I.; Gerding, M.; Concepcion Rodriguez-Maciel, J.M.A.L.; Castaneda-Ramirez, G.S.; Sotelo-Leyva, C.; Curkovic, T.; Aguilar-Marcelino, L. Insecticidal effect of hydroalcoholic extracts of Pleurotus ostreatus against Sitophilus zeamais. Chil. J. Agric. Res. 2022, 82, 399–406. [Google Scholar] [CrossRef]
- Riahi, H.; Sargazi, F.; Sheidai, M. Insecticidal activities of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) extract against Tribolium castaneum and Drosophila melanogaster. Int. J. Med. Mushrooms 2009, 11, 329–334. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Kryukova, N.A.; Tyurin, M.V.; Yaroslavtseva, O.N.; Kryukov, V.Y.; Glupov, V.V. Insecticidal and immunosuppressive effect of ascomycete Cordyceps militaris on the larvae of the Colorado potato beetle Leptinotarsa decemlineata. Biol. Bull. 2014, 41, 276–283. [Google Scholar] [CrossRef]
- Kim, J.; Yeon, S.; Kim, H.; Ahn, Y. Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris. Pest Manag. Sci. 2002, 58, 713–717. [Google Scholar] [CrossRef]
- Cárcamo, M.C.; Carapeto, L.P.; Duarte, J.P.; Bernardi, E.; Ribeiro, P.B. Larvicidal efficiency of the mushroom Amanitamuscaria (Agaricales, Amanitaceae) against the mosquito Culexquinquefasciatus (Diptera, Culicidae). Rev. Soc. Bras. Med. Trop. 2016, 49, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Lumpert, M.; Kreft, S. Catching flies with Amanita muscaria: Traditional recipes from Slovenia and their efficacy in the extraction of ibotenic acid. J. Ethnopharmacol. 2016, 187, 1–8. [Google Scholar] [CrossRef]
- Mier, N.; Canete, S.; Klaebe, A.; Chavant, L.; Fournier, D. Insecticidal properties of mushroom and toadstool carpophores. Phytochemistry 1996, 41, 1293–1299. [Google Scholar] [CrossRef]
- Noel-Suberville, C.; Cruz, C.; Guinberteau, J.; Montury, M. Correlation between fatty acid content and aromatic compound release in fresh blewit (Lepista nuda). J. Agric. Food Chem. 1996, 44, 1180–1183. [Google Scholar] [CrossRef]
- Beattie, K.D.; Ulrich, R.; Grice, I.D.; Uddin, S.J.; Blake, T.B.; Wood, K.A.; Steele, J.; Iu, F.; May, T.W.; Tiralongo, E. Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro. Mycologia 2011, 103, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Mercan, N.; Duru, M.E.; Turkoglu, A.; Gezer, K.; Kivrak, I.; Turkoglu, H. Antioxidant and antimicrobial properties of ethanolic extract from Lepista nuda (Bull.) Cooke. Ann. Microbiol. 2006, 56, 339–344. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, G.; Meng, L.; Wang, H.; Gao, K.; Ng, T. Purification and characterization of a white laccase with pronounced dye decolorizing ability and HIV-1 reverse transcriptase inhibitory activity from Lepista nuda. Molecules 2016, 21, 415. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.; Ferreira, I.; Lourenço, I.; Costa, E.; Martins, A.; Pintado, M. Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens 2014, 3, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Pohleven, J.; Kos, J.; Sabotic, J. Medicinal Properties of the Genus Clitocybe and of Lectins from the Clouded Funnel Cap Mushroom, C. nebularis (Agaricomycetes): A Review. Int. J. Med. Mushrooms 2016, 18, 965–975. [Google Scholar] [CrossRef]
- Wang, M.; Trigueros, V.; Paquereau, L.; Chavant, L.; Fournier, D. Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J. Econ. Entomol. 2002, 95, 603–607. [Google Scholar] [CrossRef]
- Sheikha, A.F.E. Can mushrooms and their derivatives be efficient bioalternatives to conventional synthetic insecticides? Int. J. Med. Mushrooms 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.; Li, I.; Jiang, Y.; Chen, C. Toxicological evaluation of Lepista nuda (Bull. ex Fr) cooke mycelium produced by an in vitro culture methodology. Int. J. Pharm. Pharm. Sci. 2015, 7, 363–370. [Google Scholar]
- Manjula, P.S.; Sarojini, B.K.; Raj, C.G.D.; Sanjeev, G. In vivo antioxidative stress measurement of a 1, 2, 4-Triazole derivative in Drosophila melanogaster oregon K flies. Der Pharma Chem. 2015, 11, 70–78. [Google Scholar]
- Huang, S.; Li, Z.; Wang, X.; Wang, Q.; Hu, F. Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster. Ecotox. Environ. Safe. 2010, 73, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, Y.; Cai, Y.; Xu, M. The role of mitochondria in mTOR-regulated longevity. Biol. Rev. 2015, 90, 167–181. [Google Scholar] [CrossRef]
- Soto-Burgos, J.; Zhuang, X.; Jiang, L.; Bassham, D.C. Dynamics of autophagosome formation. Plant Physiol. 2018, 176, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Bohmann, D.; Jasper, H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev. Cell 2003, 5, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Debbab, A.; Proksch, P. Fifty years of drug discovery from fungi. Fungal Divers. 2011, 50, 3–19. [Google Scholar] [CrossRef]
- Yaoita, Y.; Kohata, R.; Kakuda, R.; Machida, K.; Kikuchi, M. Ceramide constituents from five mushrooms. Chem. Pharm. Bull. 2002, 50, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Yaoita, Y.; Matsuki, K.; Iijima, T.; Nakano, S.; Kakuda, R.; Machida, K.; Kikuchi, M. New sterols and triterpenoids from four edible mushrooms. Chem. Pharm. Bull. 2001, 49, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Mizushina, Y.; Takahashi, N.; Hanashima, L.; Koshino, H.; Esumi, Y.; Uzawa, J.; Sugawara, F.; Sakaguchi, K. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorgan. Med. Chem. 1999, 7, 2047–2052. [Google Scholar] [CrossRef]
- Pohleven, J.; Brzin, J.; Vrabec, L.; Leonardi, A.; Čokl, A.; Štrukelj, B.; Kos, J.; Sabotič, J. Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Appl. Microbiol. Biot. 2011, 91, 1141–1148. [Google Scholar] [CrossRef]
- Wang, X.; Lin, M.; Xu, D.; Lai, D.; Zhou, L. Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules 2017, 22, 2069. [Google Scholar] [CrossRef] [Green Version]
- Kubo, I.; Kim, M.; Hood, W.F.; Naoki, H. Clitocine, a new insecticidal nucleoside from the mushroom Clitocybe inversa. Tetrahedron Lett. 1986, 27, 4277–4280. [Google Scholar] [CrossRef]
- Šmid, I.; Rotter, A.; Gruden, K.; Brzin, J.; Buh Gašparič, M.; Kos, J.; Žel, J.; Sabotič, J. Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic. Biochem. Phys. 2015, 122, 59–66. [Google Scholar] [CrossRef]
- Avanzo, P.; Sabotič, J.; Anžlovar, S.; Popovič, T.; Leonardi, A.; Pain, R.H.; Kos, J.; Brzin, J. Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiol. 2009, 155, 3971–3981. [Google Scholar] [CrossRef] [Green Version]
- Žurga, S.; Pohleven, J.; Kos, J.; Sabotič, J. β-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J. Biochem. 2015, 158, 83–90. [Google Scholar] [CrossRef]
- Cetin, H.; Demir, E.; Kocaoglu, S.; Koya, B. Insecticidal activity of some synthetic pyrethroids with different rates of piperonyl butoxide (PBO) combinations on Drosophila melanogaster (Diptera: Drosophilidae). Ekoloji 2010, 19, 27–32. [Google Scholar] [CrossRef]
- Solovev, I.; Shegoleva, E.; Fedintsev, A.; Shaposhnikov, M.; Moskalev, A. Circadian clock genes’ overexpression in Drosophila alters diet impact on lifespan. Biogerontology 2019, 20, 159–170. [Google Scholar] [CrossRef]
- Shaposhnikov, M.V.; Zakluta, A.S.; Zemskaya, N.V.; Guvatova, Z.G.; Shilova, V.Y.; Yakovleva, D.V.; Gorbunova, A.A.; Koval, L.A.; Ulyasheva, N.S.; Evgen’ev, M.B.; et al. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech. Ageing Dev. 2022, 203, 111656. [Google Scholar] [CrossRef]
- Li, J.; Duan, D.; Zhang, J.; Zhou, Y.; Qin, X.; Du, G.; Gao, L. Bioinformatic prediction of critical genes and pathways involved in longevity in Drosophila melanogaster. Mol. Genet. Genom. 2019, 294, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.M.; Lei, L.; Liu, Y.; Wang, X.; Ma, K.Y.; Chen, Z. Cranberry anthocyanin extract prolongs lifespan of fruit flies. Exp. Gerontol. 2015, 69, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Chen, D.; Riddle, D.L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004, 131, 3897–3906. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Tatar, M. Drosophila diet restriction in practice: Do flies consume fewer nutrients? Mech. Ageing Dev. 2006, 127, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Zhang, Y.; Jia, J.; Ren, X.; Wang, Y. Extraction, purification and properties of water-soluble polysaccharides from mushroom Lepista nuda. Int. J. Biol. Macromol. 2019, 128, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Gao, X.; Xu, N.; Lin, L.; Zhao, H.; Jia, S.; Jia, L. Purification, characterization and anti-aging capacity of mycelia zinc polysaccharide by Lentinus edodes SD-08. BMC Complem. Altern. Med. 2015, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Xiaoyi, C.; Tiantian, D.; Yangni, D.; Zihua, Z.; Qian, L.; Gong, G.; Shuang, S.; Fangli, M.; Linjuan, H.; et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster. Food Funct. 2019, 10, 4231–4241. [Google Scholar] [CrossRef]
Groups | 6 h | 12 h | 18 h | 24 h | ||||
---|---|---|---|---|---|---|---|---|
MR/% | CMR/% | MR/% | CMR/% | MR/% | CMR/% | MR/% | CMR/% | |
CK | 0.00 ± 0.00 c | ─ | 0.00 ± 0.00 c | ─ | 0.00 ± 0.00 c | ─ | 1.67 ± 0.72 d | ─ |
A | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.83 ± 0.72 c | 0.83 ± 0.72 c | 1.67 ± 0.72 d | 0.00 ± 0.00 d |
B | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.42 ± 0.72 c | 0.42 ± 0.72 c | 2.08 ± 1.44 d | 0.43 ± 0.74 d |
C | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 2.08 ± 0.72 c | 2.08 ± 0.72 c | 5.83 ± 0.72 c | 4.24 ± 0.72 c |
D | 5.00 ± 1.25 b | 5.00 ± 1.25 b | 8.75 ± 2.50 b | 8.75 ± 2.50 b | 11.25 ± 2.50 b | 11.25 ± 2.50 b | 17.08 ± 2.60 b | 15.67 ± 3.11 b |
E | 8.75 ± 1.25 a | 8.75 ± 1.25 a | 20.83 ± 1.91 a | 20.83 ± 1.91 a | 31.25 ± 2.17 a | 31.25 ± 2.17 a | 42.92 ± 3.15 a | 41.96 ± 2.82 a |
Groups | LT50/h | MLS/h | MMLS/h | LIR/% |
---|---|---|---|---|
CK | 1360.00 ± 45.83 c | 1418.00 ± 54.11 b | 1956.00 ± 70.74 b | ─ |
A | 1340.00 ± 45.83 c | 1426.00 ± 51.73 b | 1970.00 ± 60.00 b | −0.61 ± 3.46 d |
B | 1492.00 ± 58.28 b | 1660.00 ± 39.04 a | 2096.00 ± 54.11 a | −17.15 ± 4.29 c |
C | 1582.00 ± 40.84 a | 1716.00 ± 26.15 a | 2152.00 ± 58.28 a | −21.18 ± 6.45 c |
D | 518.00 ± 42.14 d | 558.00 ± 30.00 c | 852.00 ± 45.30 c | 60.59 ± 3.03 b |
E | 42.00 ± 12.00 e | 50.00 ± 15.10 d | 96.00 ± 18.00 d | 96.50 ± 0.93 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Huang, Y.; Wang, D.; Zhu, N.; Qiao, X. Effect and Mechanism of Lepista nuda Mycelia Obtained via In Vitro Culture on the Lifespan of Drosophila melanogaster. Fermentation 2023, 9, 212. https://doi.org/10.3390/fermentation9030212
Li J, Huang Y, Wang D, Zhu N, Qiao X. Effect and Mechanism of Lepista nuda Mycelia Obtained via In Vitro Culture on the Lifespan of Drosophila melanogaster. Fermentation. 2023; 9(3):212. https://doi.org/10.3390/fermentation9030212
Chicago/Turabian StyleLi, Jinzhe, Yaqin Huang, Dezhi Wang, Nailiang Zhu, and Xinrong Qiao. 2023. "Effect and Mechanism of Lepista nuda Mycelia Obtained via In Vitro Culture on the Lifespan of Drosophila melanogaster" Fermentation 9, no. 3: 212. https://doi.org/10.3390/fermentation9030212
APA StyleLi, J., Huang, Y., Wang, D., Zhu, N., & Qiao, X. (2023). Effect and Mechanism of Lepista nuda Mycelia Obtained via In Vitro Culture on the Lifespan of Drosophila melanogaster. Fermentation, 9(3), 212. https://doi.org/10.3390/fermentation9030212