Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications
Abstract
:1. Introduction
2. Microbial Carotenoids: Natural Sources, Classification, and Properties
3. Carotenoid Production via Optimized Fermentation
3.1. Factors Affecting Microbial Growth and Carotenoid Production
3.1.1. Temperature
3.1.2. pH of Culture Medium
3.1.3. Carbon Source
3.1.4. Nitrogen Source
3.1.5. Aeration Rate
3.1.6. Light
3.1.7. Carbon/Nitrogen Ratio
3.1.8. Sonication
3.1.9. Chemical Supplements
3.1.10. Fermentation Modes
4. Metabolic Engineering for Improvised Production
5. Innovations in Fermentation for Higher Productivity
6. Applications in Health Care
6.1. Antioxidant Property
6.2. Anti-Inflammatory Property
6.3. Antibacterial Property
6.4. Property against Ophthalmic Infections
6.5. Anti-CVD (Cardiovascular Diseases) Activity
6.6. Anti-Cancerous Properties
6.7. Neurodegenerative Diseases
6.8. Ultra Violet Radiation
6.9. Antimalarial Property
6.10. Anti-Viral Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Rehman, S.; Shahzad, T.; Malik, A.; Shariati, M.A.; Laishevtcev, A.; Plygun, S.; Heydari, M.; et al. Xanthophyll: Health benefits and therapeutic insights. Life Sci. 2020, 240, 117104. [Google Scholar] [CrossRef]
- Global Carotenoid Market—Growth, Trends, and Forecast (2018–2023). 2018. Available online: ResearchandMarkets.com (accessed on 30 December 2022).
- Mata-Gómez, L.C.; Montañez, J.C.; Méndez-Zavala, A.; Aguilar, C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell Factories 2014, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Frengova, G.I.; Beshkova, D.M. Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol. 2009, 36, 163–180. [Google Scholar] [CrossRef]
- Bhatt, T.; Patel, K. Carotenoids: Potent to prevent diseases review. Nat. Prod. Bioprospect. 2020, 3, 109–117. [Google Scholar] [CrossRef]
- Soong, Y.V.; Liu, N.; Yoon, S.; Lawton, C.; Xie, D. Cellular and metabolic engineering of oleaginous yeast Yarrowia lipolytica for bioconversion of hydrophobic substrates into high-value products. Eng. Life Sci. 2019, 19, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Igreja, W.S.; Maia, F.D.; Lopes, A.S.; Chisté, R.C. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. Int. J. Mol. Sci. 2021, 22, 8819. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Husseiny, S.M.; Ali, A.A.A.; Sanad, H.M. Optimization of β-carotene production from agro-industrial byproducts by Serratia marcescens ATCC 27117 using PlackettBurman design and central composite design. Ann. Agric. Sci. 2016, 61, 87–96. [Google Scholar] [CrossRef]
- Paul, D.; Arora, A.; Verma, M.L. Editorial: Advances in Microbial Biofuel Production. Front. Microbiol. 2021, 12, 746216. [Google Scholar] [CrossRef]
- Buzzini, P.; Martini, A. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour. Technol. 2000, 71, 41–44. [Google Scholar] [CrossRef]
- Nagaraj, Y.N.; Burkina, V.; Okmane, L.; Blomqvist, J.; Rapoport, A.; Sandgren, M.; Pickova, J.; Sampels, S.; Passoth, V. Identification, quantification and kinetic study of carotenoids and lipids in Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate. Fermentation 2022, 8, 300. [Google Scholar] [CrossRef]
- Bell, J.G.; McEvoy, J.; Tocher, D.R.; Sargent, J.R. Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. J. Nutr. 2000, 130, 1800–1808. [Google Scholar] [CrossRef]
- Olatunde, A.; Tijjani, H.; Ishola, A.A.; Egbuna, C.; Hassan, S.; Akram, M. Carotenoids as functional bioactive compounds. In Functional Foods and Nutraceuticals; Springer: Cham, Switzerland, 2020; pp. 415–444. [Google Scholar] [CrossRef]
- Singh, A.; Mukherjee, T. Application of carotenoids in sustainable energy and green electronics. Mater. Adv. 2021, 3, 1341–1358. [Google Scholar] [CrossRef]
- Domonkos, I.; Kis, M.; Gombos, Z.; Ughy, B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 2013, 52, 539–561. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.A. Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; ISBN 1578810728. [Google Scholar]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Carotenoids. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. ISBN 9780128052570. [Google Scholar]
- Foong, L.C.; Loh, C.W.L.; Ng, H.S.; Lan, J.C.W. Recent development in the production strategies of microbial carotenoids. World J. Microbiol. Biotechnol. 2021, 37, 12. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.A.; Johnson, E.A. Singlet Oxygen and Peroxyl Radicals Regulate Carotenoid Biosynthesis in Phaffia rhodozyma. J. Biol. Chem. 1995, 270, 18374–18379. [Google Scholar] [CrossRef]
- Aguilar, C.P.; González, M.; Cifuentes, A.S.; Silva, M. Growth and accumulation of total carotenoids in two strains of Dunaliella salina Teod. (Chlorophyceae) from the northern and central coast of Perú. J. Chil. Chem. Soc. 2004, 49, 69–74. [Google Scholar] [CrossRef]
- Fazeli, M.R.; Tofighi, H.; Samadi, N.; Jamalifar, H. Effects of salinity on β-carotene production by Dunaliella tertiolecta DCCBC26 isolated from the Urmia salt lake, north of Iran. Bioresour. Technol. 2006, 97, 2453–2456. [Google Scholar] [CrossRef]
- Orosa, M.; Franqueira, D.; Cid, A.; Abalde, J.J. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour. Technol. 2005, 96, 373–378. [Google Scholar] [CrossRef]
- Luengo, E.; Martínez, J.M.; Bordetas, A.; Álvarez, I.; Raso, J. Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innov. Food Sci. Emerg. Technol. 2015, 29, 15–22. [Google Scholar] [CrossRef]
- Singh, D.; Barrow, C.J.; Mathur, A.S.; Tuli, D.K.; Puri, M. Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters. Biocatal. Agric. Biotechnol. 2015, 4, 166–173. [Google Scholar] [CrossRef]
- Kim, D.Y.; Vijayan, D.; Praveenkumar, R.; Han, J.I.; Lee, K.; Park, J.Y.; Chang, W.S.; Lee, J.S.; Oh, Y.K. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Fontana, J.D.; Czeczuga, B.; Bonfim, T.M.; Chociai, M.B.; Oliveira, B.H.; Guimaraes, M.F.; Baron, M. Bioproduction of carotenoids: The comparative use of raw sugarcane juice and depolymerized bagasse by Phaffia rhodozyma. Bioresour. Technol. 1996, 58, 121–125. [Google Scholar] [CrossRef]
- Dias Rodrigues, T.V.; Amore, T.D.; Teixeira, E.C.; de Medeiros Burkert, J.F. Carotenoid production by Rhodotorula mucilaginosa in batch and fed-batch fermentation using agroindustrial byproducts. Food Technol. Biotechnol. 2019, 57, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Davoli, P.; Mierau, V.; Weber, R.W. Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl. Biochem. Microbiol. 2004, 40, 392–397. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wu, J.Y.; Ho, K.P. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem. Eng. J. 2006, 27, 331–335. [Google Scholar] [CrossRef]
- Valduga, E.; Valério, A.; Treichel, H.; Júnior, A.F.; Di Luccio, M. Optimization of the production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food Bioprocess Technol. 2009, 2, 415–421. [Google Scholar] [CrossRef]
- Mezzomo, N.; Ferreira, S.R. Carotenoids functionality, sources, and processing by supercritical technology: A review. J. Chem. 2016, 2016, 3164312. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Zhao, H. Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front. Microbiol. 2017, 8, 2185. [Google Scholar] [CrossRef]
- Lamers, D.; van Biezen, N.; Martens, D.; Peters, L.; van de Zilver, E.; Jacobs-van Dreumel, N.; Wijffels, R.H.; Lokman, C. Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol. 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, L.; Xia, Y.; Zhuang, X.; Chu, W. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Mar. Drugs 2019, 17, 161. [Google Scholar] [CrossRef]
- Malisorn, C.; Suntornsuk, W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour. Technol. 2008, 99, 2281–2287. [Google Scholar] [CrossRef]
- Vijayalakshmi, G.; Shobha, B.; Vanajakshi, V.; Divakar, S.; Manohar, B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis. Eur. Food Res. Technol. 2001, 213, 234–239. [Google Scholar] [CrossRef]
- Frengova, G.I.; Simova, E.D.; Beshkova, D.M. Carotenoid production by lactose-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate. Z. Naturforsch. 2003, 58, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Hayman, E.P.; Yokoyama, H.; Chichester, C.O.; Simpson, K.L. Carotenoid biosynthesis in Rhodotorula glutinis. J. Bacteriol. 1974, 120, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Latha, B.V.; Jeevaratnam, K.; Murali, H.S.; Manja, K.S. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source Indian. J. Biotechnol. 2005, 4, 353–357. [Google Scholar]
- Nasrabadi, M.R.; Razavi, S.H. Optimization of β-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum from whey ultrafiltrate. Food Sci. Biotechnol. 2011, 20, 445–454. [Google Scholar] [CrossRef]
- Allahkarami, S.; Sepahi, A.A.; Hosseini, H.; Razavi, M.R. Isolation and identification of carotenoid-producing Rhodotorula sp. from Pinaceae forest ecosystems and optimization of in vitro carotenoid production. Biotechnol. Rep. 2021, 32, e00687. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Yang, C.F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J. Taiwan Inst. Chem. Eng. 2016, 61, 270–275. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis—Potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef]
- Sinha, S.; Singh, G.; Paul, D. Lipid and carotenoid production by Rhodosporodium toruloides ATCC 204091 using C5 and C6 sugars obtained from lignocellulosic hydrolysate. J. Environ. Biol. 2021, 42, 938–944. [Google Scholar] [CrossRef]
- Buzzini, P. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol. 2001, 90, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yang, M.; Yang, Z. Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresour. Technol. 2005, 96, 1183–1187. [Google Scholar] [CrossRef]
- Singh, G.; Jawed, A.; Paul, D.; Bandyopadhyay, K.K.; Kumari, A.; Haque, S. Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology. Front. Microbiol. 2016, 7, 1686. [Google Scholar] [CrossRef]
- Singh, G.; Sinha, S.; Kumar, K.K.; Gaur, N.A.; Bandyopadhyay, K.K.; Paul, D. High density cultivation of oleaginous yeast isolates in ‘mandi’ waste for enhanced lipid production using sugarcane molasses as feed. Fuel 2020, 276, 118073. [Google Scholar] [CrossRef]
- Wiebe, M.G.; Koivuranta, K.; Penttilä, M.; Ruohonen, L. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol. 2012, 12, 26. [Google Scholar] [CrossRef]
- Huang, X.F.; Liu, J.N.; Lu, L.J.; Peng, K.M.; Yang, G.X.; Liu, J. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Bioresour. Technol. 2016, 206, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; O’Brien, M.; Nelson, R.; Chen, X.; Lowell, A.; Dowe, N. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol. Biofuels 2016, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultrafltrate. J. Ind. Microbiol. Biotechnol. 2004, 31, 115–121. [Google Scholar] [CrossRef]
- Kanzy, H.M.; Nasr, N.F.; El-Shaz, H.A.M.; Barakat, O.S. Optimization of carotenoids production by yeast strains of Rhodotorula using salted cheese whey. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 456–469. [Google Scholar]
- Lau, W.X.; Zarrabal, O.C.; Hipolito, C.N.; Kohei, M.; Gregory, Z.A.; Abdullah, M.O.; Toh, S.C.; Lihan, S. Production of pigments by Rhodotorula mucilaginosa. Malays. J. Microbiol. 2018, 14, 344–350. [Google Scholar]
- Marova, I.; Carnecka, M.; Halienova, A.; Certik, M.; Dvorakova, T.; Haronikova, A. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manag. 2011, 95, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Muniraj, I.K.; Xiao, L.; Hu, Z.; Zhan, X.; Shi, J. Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res. 2013, 47, 3477–3483. [Google Scholar] [CrossRef] [PubMed]
- Hladnik, L.; Vicente, F.A.; Grilc, M.; Likozar, B. β-Carotene production and extraction: A case study of olive mill wastewater bioremediation by Rhodotorula glutinis with simultaneous carotenoid production. Biomass Convers. Bioref. 2022, 1–9. [Google Scholar] [CrossRef]
- Schneider, T.; Graeff-Hönninger, S.; French, W.T.; Hernandez, R.; Merkt, N.; Claupein, W.; Hetrick, M.; Pham, P. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy 2013, 61, 34–43. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, X.; Zhao, J.; Wu, S.; Zhao, Z.K. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 2009, 100, 4843–4847. [Google Scholar] [CrossRef]
- Kitahara, Y.; Yin, T.; Zhao, X.; Wachi, M.; Du, W.; Liu, D. Isolation of oleaginous yeast (Rhodosporidium toruloides) mutants tolerant of sugarcane bagasse hydrolysate. Biosci. Biotechnol. Biochem. 2014, 78, 336–342. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, Q.; Shen, H.; Hu, C.; Jin, G.; Zhao, Z.K. Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour. Technol. 2012, 117, 20–24. [Google Scholar] [CrossRef]
- Economou, C.N.; Aggelis, G.; Pavlou, S.; Vayenas, D.V. Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol. Bioeng. 2011, 108, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Ji, L.; Liu, Y.; Zhou, P.; Yu, L. Kinetic model for optimal feeding strategy in astaxanthin production by Xanthophyllomyces dendrorhous. Chin. J. Biotechnol. 2008, 24, 1937–1942. [Google Scholar]
- Baraka, A.A.; Abeer, E.A.; Mohamed, E.A. Using whey for Pro-duction of Carotenoids by Rhodotorula glutinis. Middle East J. Appl. Sci. 2014, 4, 385–391. [Google Scholar]
- Omar, S.A.; Selim, M.A. Agro-industrial orange waste as a low cost substrate for carotenoids production by Rhodotorula mucilagenosa. Assiut J. Agric. Sci. 2019, 50, 62–74. [Google Scholar]
- Ni, H.; Chen, Q.H.; Ruan, H.; Yang, Y.F.; Li, L.J.; Wu, G.B.; Hu, Y.; He, G.Q. Studies on optimization of nitrogen sources for astaxanthin production by Phaffia rhodozyma. J. Zhejiang Univ. Sci. B 2007, 8, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Aksu, Z.; Eren, A.T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 2005, 40, 2985–2991. [Google Scholar] [CrossRef]
- Han, D.; Li, Y.; Qiang, H. Biology and Commercial Aspects of Haematococcus pluvialis. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 388–405. [Google Scholar] [CrossRef]
- Solovchenko, A.E. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth. Res. 2015, 125, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei cocultures in whey ultrafiltrate. Z. Für Nat. C 2003, 58, 225–229. [Google Scholar] [CrossRef]
- Goodwin, T.W. Biosynthesis of carotenoids: An overview. Methods Enzymol. 1993, 214, 330–340. [Google Scholar]
- Yen, H.W.; Zhang, Z. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour. Technol. 2011, 102, 9279–9281. [Google Scholar] [CrossRef]
- Fu, M.J.; Wang, X.J. Accumulation of carotenoid in Colletotrichum gloeosporioides induced by blue light. Acta Microbiol. Sin. 2005, 45, 795–797. [Google Scholar]
- An, G.H.; Johnson, E.A. Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Leeuwenhoek 1990, 57, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Singh, G.; Arora, A.; Paul, D. Carotenoid production by red yeast isolates grown in Agricultural and “Mandi” waste. Waste Biomass Valorization 2021, 12, 3939–3949. [Google Scholar] [CrossRef]
- Tkáčová, J.; Čaplová, J.; Klempová, T.; Čertík, M. Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis. Ann. Microbiol. 2017, 67, 541–551. [Google Scholar] [CrossRef]
- Braunwald, T.; Schwemmlein, L.; Graeff-Hönninger, S.; French, W.T.; Hernandez, R.; Holmes, W.E.; Claupein, W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013, 97, 6581–6588. [Google Scholar] [CrossRef]
- Yamane, Y.; Higashida, K.; Nakashimada, Y.; Kakizono, T.; Nishio, N. Influence of oxygen and glucose on primary metabolism and astaxanthin production by phaffia rhodozyma in batch and fed-batch cultures: Kinetic and stoichiometric analysis. Appl. Environ. Microbiol. 1997, 63, 4471–4478. [Google Scholar] [CrossRef] [Green Version]
- Batghare, A.H.; Singh, N.; Moholkar, V.S. Investigations in ultrasound-induced enhancement of astaxanthin production by wild strain Phaffia rhodozyma MTCC 7536. Bioresour. Technol. 2018, 254, 166–173. [Google Scholar] [CrossRef]
- Komemushi, S.; Sakaki, H.; Yokoyama, H.; Fujita, T. Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis N21. J. Antibact. Antifung. Agents 1994, 22, 583–587. [Google Scholar]
- Buzzini, P.; Martini, A.; Gaetani, M.; Turchetti, B.; Pagnoni, U.M.; Davoli, P. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzym. Microb. Technol. 2005, 36, 687–692. [Google Scholar] [CrossRef]
- Gu, W.L.; An, G.H.; Johnson, E.A. Ethanol increases carotenoid production in Phaffia rhodozyma. J. Ind. Microbiol. Biotechnol. 1997, 19, 114–117. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, G.J.; Park, D.H.; Ryu, Y.W. High-level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 2003, 13, 175–181. [Google Scholar]
- Broach, J.R. Nutritional control of growth and development in yeast. Genetics 2012, 192, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, F.; Yamane, T.; Nakamoto, K.I. Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnol. Bioeng. 1973, 15, 257–270. [Google Scholar] [CrossRef]
- Mondala, A.H.; Hernandez, R.; French, T.; McFarland, L.; Santo Domingo, J.W.; Meckes, M.; Ryu, H.; Iker, B. Enhanced lipid and biodiesel production from glucose-fed activated sludge: Kinetics and microbial community analysis. AIChE J. 2012, 58, 1279–1290. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, X.; Shen, H.; Wang, Q.; Zhao, Z.K. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour. Technol. 2011, 102, 1803–1807. [Google Scholar] [CrossRef]
- Moreten, R.S. Physiology of lipid accumulation yeast. In Single Cell Oil; Moreton, R.S., Ed.; Longman: London, UK, 1988; pp. 1–32. [Google Scholar]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar]
- Hsieh, C.H.; Wu, W.T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 2009, 100, 3921–3926. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.K.; Bai, F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym. Microb. Technol. 2007, 41, 312–317. [Google Scholar] [CrossRef]
- Tramontin, L.R.; Kildegaard, K.R.; Sudarsan, S.; Borodina, I. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway. Microorganisms 2019, 7, 472. [Google Scholar]
- Bessadok, B.; Santulli, A.; Brück, T.; Breuck, T.; Sadok, S. Species disparity response to mutagenesis of marine yeasts for the potential production of biodiesel. Biotechnol. Biofuels 2019, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Lee, S.; Song, K.B. Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation. Int. J. Food Microbiol. 2004, 94, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Steensels, J.; Snoek, T.; Meersman, E.; Picca Nicolino, M.; Voordeckers, K.; Verstrepen, K.J. Improving industrial yeast strains: Exploiting natural and artificial diversity. FEMS Microbiol. Rev. 2014, 38, 947–995. [Google Scholar] [CrossRef] [PubMed]
- Begum, H.; Yusoff, F.M.D.; Banerjee, S.; Khatoon, H.; Shariff, M. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 2016, 56, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
- Torres-Haro, A.; Verdín, J.; Kirchmayr, M.R.; Arellano-Plaza, M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb. Cell Factories 2021, 20, 175. [Google Scholar] [CrossRef]
- Park, P.; Kim, E.; Chu, K. Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep. Purif. Technol. 2007, 53, 148–152. [Google Scholar] [CrossRef]
- Qi, D.D.; Jin, J.; Liu, D.; Jia, B.; Yuan, Y.J. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast. Microb. Cell Factories 2020, 19, 103. [Google Scholar] [CrossRef]
- Palágyi, Z.S.; Ferenczy, L.; Vágvölgyi, C. Carbon-source assimilation pattern of the astaxanthin-producing yeast Phaffia rhodozyma. World J. Microbiol. Biotechnol. 2001, 17, 95–97. [Google Scholar] [CrossRef]
- Araya-Garay, J.M.; Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Sánchez Perez, A.; Villa, T.G. Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Exp. 2012, 2, 24. [Google Scholar] [CrossRef]
- Ungureanu, C.; Ferdes, M.; Chirvase, A.A. Torularhodin biosynthesis and extraction by yeast cells of Rhodotorula rubra. Rev. Chim. 2012, 63, 316–318. [Google Scholar]
- Maury, J.; Asadollahi, M.A.; Moller, K.; Clark, A.; Nielsen, J. Microbial isoprenoid production: An example of green chemistry through metabolic engineering. Adv. Biochem. Eng. Biotechnol. 2005, 100, 19–51. [Google Scholar]
- Bhataya, A.; Schmidt-Dannert, C.; Lee, P.C. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem. 2009, 44, 1095–1102. [Google Scholar] [CrossRef]
- Miura, Y.; Kondo, K.; Saito, T.; Shimada, H.; Fraser, P.D.; Misawa, N. Production of carotenoids lycopene, β -carotene and astaxanthin in food yeast Candida utilis. Appl. Environ. Microbiol. 1998, 64, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misawa, N.; Shimada, H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 1998, 59, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Kildegaard, K.R.; Adiego-Perez, B.; Domenech Belda, D.; Khangura, J.K.; Holkenbrink, C.; Borodina, I. Engineering of Yarrowia lipolytica for production of astaxanthin. Synth. Syst. Biotechnol. 2017, 2, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Larroude, M.; Celinska, E.; Back, A.; Thomas, S.; Nicaud, J.M.; Ledesma-Amaro, R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol. Bioeng. 2018, 115, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, J.; Ye, J.; Qi, Q.; Hou, J. Morphological and Metabolic Engineering of Yarrowia lipolytica to Increase beta-Carotene Production. ACS Synth. Biol. 2021, 10, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, L.; Pyne, M.E.; Martin, V.J.J. A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast. ACS Synth. Biol. 2018, 7, 2675–2685. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Wang, Q.; Xu, J.; Dong, F.; Yang, S.; Yang, J.; Zhang, Z.; Qian, Y.; Chen, J.; et al. Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. ACS Synth. Biol. 2020, 9, 1998–2008. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, M.; Chen, J.; Wei, L.; Hua, Q. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J. Biotechnol. 2019, 289, 46–54. [Google Scholar] [CrossRef]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.; Wyss, M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- Hundle, B.S.; O’Brien, D.A.; Alberti, M.; Beyer, P.; Hearst, J.E. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc. Natl. Acad. Sci. USA 1992, 89, 9321–9325. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lim, X.; Bouin, A.; Lautier, T.; Zhang, C. High-level de novo biosynthesis of glycosylated zeaxanthin and astaxanthin in Escherichia coli. Bioresour. Bioprocess. 2021, 8, 67. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, G.; Dong, J.; Xing, X.H.; Dai, J.; Zhang, C. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab. Eng. 2018, 47, 294–302. [Google Scholar] [CrossRef]
- Bailey, R.B.; Madden, K.T.; Trueheart, J. Production of Carotenoids in Oleaginous Yeast and Fungi. Patent No. US8288149B2, 16 October 2012. [Google Scholar]
- Sharpe, P.L.; Ye, R.W.; Zhu, Q.Q. Carotenoid Production in a Recombinant Oleaginous Yeast. Patent No. US8846374B2, 30 September 2014. [Google Scholar]
- Shemesh, P.; Cohen, T.; Lifshitz, Y.; Khutorian, M.; Harari, Y. Astaxanthin over-producing strains of Phaffia rhodozyma. Patent No. EP3839056A1, 6 February 2021. [Google Scholar]
- Vijayalakshmi, G.; Vanajahshi, V. A Process for the Production of Carotenoid from Microbial Source Using Wheat Bran Extract, 382/DEL/2001. In Proceedings of the Council of Scientific and Industrial Research, New Delhi, India, 27 March 2009. [Google Scholar]
- Shotaro, U.; Dohi, H.; Kentaro, S.; Tomoyuki, I.; Toshiyuki, T. Method for Production of Carotenoid. Patent No. EP2192191A4, 15 March 2017. [Google Scholar]
- Haigh, W.G. A High Purity Beta Carotene. Patent No. US5310554A, 10 May 1994. [Google Scholar]
- Vyas, V.K.; Barrasa, M.I.; Fink, G.R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 2015, 1, e1500248. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.Z.; Ciccaglione, K.M.; Tournier, V.; Zaratiegui, M. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun. 2014, 5, 5344. [Google Scholar] [CrossRef]
- DiCarlo, J.E.; Norville, J.E.; Mali, P.; Rios, X.; Aach, J.; Church, G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.A.; Walter, J.M.; Schubert, M.G.; Kung, S.H.; Hawkins, K.; Platt, D.M.; Hernday, A.D.; Mahatdejkul-Meadows, T.; Szeto, W.; Chandran, S.S.; et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015, 1, 88–96. [Google Scholar] [CrossRef]
- Wong, L.; Engel, J.; Jin, E.; Holdridge, B.; Xu, P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab. Eng. Commun. 2017, 5, 68–77. [Google Scholar] [CrossRef]
- Wagner, J.M.; Williams, E.V.; Alper, H.S. Developing a piggyBac transposon system and compatible selection markers for insertional mutagenesis and genome engineering in Yarrowia lipolytica. Biotechnol. J. 2018, 13, e1800022. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Zhuang, C.; Yuan, J.; Du, Y.; Zeng, J.; Sun, Y.; Wu, Y.; Gao, X.H.; Chen, H.D. Effects of Oral Carotenoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Studies in the Recent 20 Years. Front Nutr. 2022, 9, 754707. [Google Scholar] [CrossRef] [PubMed]
- Merhan, O. The Biochemistry and Antioxidant Properties of Carotenoids. In Carotenoids; Intechopen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, Y.; Wu, Y.; Zhang, Y.; Wang, Z.; Liu, X. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Mol. Nutr. Food Res. 2015, 59, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Yoo, A.Y.; Alnaeeli, M.; Park, J. Production control and characterization of antibacterial carotenoids from yeast Rhodotorula mucilaginosa AY-01. Process Biochem. 2016, 51, 463–473. [Google Scholar] [CrossRef]
- Keceli, T.M.; Erginkaya, Z.; Turkkan, E.; Kaya, U. Antioxidant and Antibacterial Effects of Carotenoids extracted from Rhodotorula glutinis Ssrains. Asian J. Chem. 2013, 25, 42–46. [Google Scholar] [CrossRef]
- Widjaja-Adhi, M.A.K.; Ramkumar, S.; von Lintig, J. Protective role of carotenoids in the visual cycle. FASEB J. 2018, 32, fj201800467R. [Google Scholar] [CrossRef]
- Berendschot, T.T.; Plat, J. Plant stanol and sterol esters and macular pigment optical density. In Handbook of Nutrition, Diet and the Eye; Academic Press: Cambridge, MA, USA, 2014; Volume 1, pp. 441–449. [Google Scholar]
- Abdalla, D.S. Coronary Heart Disease|Antioxidant Status, Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press: New York, NY, USA, 2003; pp. 1654–1663. [Google Scholar]
- Di Pietro, N.; Di Tomo, P.; Pandolfi, A. Carotenoids in cardiovascular disease prevention. JSM Atheroscler. 2016, 1, 1002. [Google Scholar]
- Lim, J.Y.; Wang, X.D. Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158652. [Google Scholar] [CrossRef]
- Bodade, R.G.; Bodade, A.G. Microencapsulation of bioactive compounds and enzymes for therapeutic applications. Biopolym. -Based Formul. 2020, 1, 381–404. [Google Scholar]
- Sinha, S.; Das, S.; Saha, B.; Paul, D.; Basu, B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Front. Microbiol. 2022, 13, 1088477. [Google Scholar] [CrossRef]
- Rzajew, J.; Radzik, T.; Rebas, E. Calcium-involved action of phytochemicals: Carotenoids and monoterpenes in the brain. Int. J. Mol. Sci. 2020, 21, 1428. [Google Scholar] [CrossRef]
- Thirumalaiarasu, S.R.; Rajeswari, P.N. Enhancing carotenoid production of marine Rhodotorula mucilaginosa YM with fruit peel extract recycling market waste using central composite design. Int. J. Appl. Res. 2022, 8, 259–267. [Google Scholar] [CrossRef]
- Sinha, S.; Chakrabarti, A.; Singh, G.; Kumar, K.K.; Gaur, N.A.; Arora, A.; Singh, K.N.; Singh, S.; Paul, D. Isolation and identification of carotenoid-producing yeast and evaluation of antimalarial activity of the extracted carotenoid (s) against P. falciparum. Biol. Futur. 2021, 72, 325–337. [Google Scholar] [CrossRef]
- Khalil, A.; Tazeddinova, D.; Aljoumaa, K.; Kazhmukhanbetkyzy, Z.A.; Orazov, A.; Toshev, A.D. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev. Nutr. Food Sci. 2021, 26, 241–261. [Google Scholar] [CrossRef]
- Yim, S.K.; Kim, I.; Warren, B.; Kim, J.; Jung, K.; Ku, B. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro. Int. J. Mol. Sci. 2021, 22, 6481. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.K.; Lee, S.J.; Na, H.J.; Ha, K.S.; Han, J.A.; Lee, H.; Kwon, Y.G.; Chung, C.K.; Kim, Y.M. β-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κB activation. Exp. Mol. Med. 2005, 37, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Méndez, M.Á.; Montañez, J.; Contreras-Esquivel, J.C.; Salmerón, I.; Koutinas, A.; Morales-Oyervides, L. Coproduction of microbial oil and carotenoids within the circular bioeconomy concept: A sequential solid-state and submerged fermentation approach. Fermentation 2022, 8, 258. [Google Scholar] [CrossRef]
- Singh, G.; Sinha, S.; Bandyopadhyay, K.K.; Lawrence, M.; Paul, D. Triauxic growth of an oleaginous red yeast Rhodosporidium toruloides on waste ‘extract’ for enhanced and concomitant lipid and β-carotene production. Microb. Cell Factories 2018, 17, 182. [Google Scholar] [CrossRef]
- Parasar, D.P.; Ramakrishnan, E.; Kabilan, S.; Kotoky, J.; Sarma, H.K. Characterization of β-cryptoxanthin and other carotenoid derivatives from Rhodotorula taiwanensis, a novel yeast isolated from traditional starter culture of Assam. Chem. Biodivers. 2020, 17, e2000198. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Name | Type of Carotenoids | Reference |
---|---|---|---|
Cyanobacteria | Anabaena variabilis | canthaxanthin | [21] |
Cyanobacteria | Aphanizomenon flos-aquae | canthaxanthin | [21] |
Bacteria | Mycobacterium brevicaie | canthaxanthin | [21] |
Bacteria | Mycobacterium lacticola | astaxanthin | [21] |
Bacteria | Streptomyces chrestomyceticus | canthaxanthin, | [21] |
Algae | Chlorella pyrenoidosa | lutein | [21] |
Algae | Dictycoccus cinnabarinus | canthaxanthin | [21] |
Algae | Dunaliella salina | β-carotene | [22] |
Algae | Dunaliella tertiolecta | β-carotene | [23] |
Algae | Haematococcus pluvialis | astaxanthin | [24] |
Algae | Spongiococcum excetricum | lutein | [21] |
Microalgae | Chlorella vulgaris | lutein | [25] |
Microalgae | Chlorella saccharophila | Zeaxanthin | [26] |
Microalgae | Chlorella vulgaris | astaxanthin | [27] |
Microalgae | Haematococcus pluvialis | astaxanthin | [27] |
Yeast | Blakeslea trispora | lycopene | [21] |
Yeast | Xanthophyllomyces dendrorhous | astaxanthin | [28] |
Yeast | Rhodotorula mucilaginosa | β-carotene and torularhodin | [29] |
Yeast | Sporobolomyces roseus | β-carotene, torulene, torularhodin | [30] |
Yeast | Phaffia rhodozyma | astaxanthin and β-carotene | [31] |
Yeast | Rhodosporidium sp. | torulene and β-carotene | [21] |
Yeast | Rhodotorula glutinis | β-carotene, torulene, torularhodin | [30] |
Yeast | Rhodotorula graminis | torulene and β-carotene | [21] |
Yeast | Sporidiobolus salmonicolor | β-carotene | [32] |
Patent No | Title | Inventor (s) | Company | Ref. |
---|---|---|---|---|
US8288149B2 | Production of carotenoids in oleaginous yeast and fungi | Richard B. Bailey, Kevin T. Madden, Joshua Trueheart | NA | [120] |
US8846374B2 | Carotenoid production in a recombinant oleaginous yeast | Pamela L. Sharpe, Rick W. Ye, Quinn Qun Zhu | EI Du Pont de Nemours and Co | [121] |
EP 3 839 056 A1 | Astaxanthin over-producing strains of Phaffia rhodozyma | Shemesh, Paz, Cohen, Tzafra, Lifshitz, Yael, Khutorian, Marina, Harari, Yaniv | NextFerm Technologies Ltd. 2069208 Yokneam Illit (IL) EP 3 839 056 A1 | [122] |
382/DEL/2001 | A process for the production of carotenoid from microbial source using wheat bran extract | Govindaswamy Vijayalakshmi, Vasudeva Vanajahshi | COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH | [123] |
EP2192191A4 | Method for production of carotenoid | Uchizawa, Shotaro; Hideyuki Dohi; Shimizu, Kentaro; Ishizaki, Tomoyuki; Takahashi, Toshiyuki | NIPPON OIL CORPORATION | [124] |
US-5310554-A | A high Purity Beta carotene | Haigh W Geoffrey | Natural Carotene Corp | [125] |
Company | Compound | Source/Strain | Applications | Web Links |
---|---|---|---|---|
Angel Yeast Company (China) | β-carotene | Red yeasts (Monascus spp.) | Large-scale production of carotenoid compounds from red yeasts for widespread pharmaceutical and nutraceutical and cosmetic applications | en.angelyeast.com (accessed on 11 December 2022) |
Kemin Industries Inc., California, USA | Cryptoxanthin | Yeast (Rhodotorula taiwanensis) | Carotenoid derivatives from having potential applications in food, nutraceutical, pharmaceutical, and cosmetic sectors | www.kemin.com (accessed on 11 December 2022) |
NextFerm Technologies Ltd. | Astaxanthin | Yeast (Phaffia rhodozyma) | Astaxanthin is the strongest naturally occurring antioxidant and is considered the best among radical scavengers | www.nextferm.com (accessed on 11 December 2022) |
Lycored | Carotenoids | Fungi (Blakeslea trispora) | A range of carotenoids find applications in food, nutraceutical, pharmaceutical, and cosmetic sectors. | www.lycored.com (accessed on 11 December 2022) |
Made-In-China | Astaxanthin | Algae(Haematococcus pluvialis) | Astaxanthin is the strongest naturally occurring antioxidant and is considered the best among radical scavengers | www.made-in-china.com (accessed on 11 December 2022) |
Lycored | Carotenoids | Algae(Haematococcus pluvialis) | A range of carotenoids find applications in food, nutraceutical, pharmaceutical, and cosmetic sectors. | www.lycored.com (accessed on 11 December 2022) |
Biolifescience | Astaxanthin | Algae (Haematococcus pluvialis) | The natural carotenoid, astaxanthin, is the strongest naturally occurring antioxidant and is considered the best among radical scavengers | www.biolifesciences.com (accessed on 11 December 2022) |
Allied Biotech Corporation (Taiwan) | Beta carotene, beta -opo-8- carotenal, lycopene, canthaxanthin, lutein | Algae (Dunaliella salina) | Natural Beta Carotene Powder 20% (Extract). This product naturally produces high level of carotenoids to help increase survival in harsh conditions | www.altratene.com/en (accessed on 11 December 2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, D.; Kumari, P.K.; Siddiqui, N. Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation 2023, 9, 147. https://doi.org/10.3390/fermentation9020147
Paul D, Kumari PK, Siddiqui N. Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation. 2023; 9(2):147. https://doi.org/10.3390/fermentation9020147
Chicago/Turabian StylePaul, Debarati, Panda Kusuma Kumari, and Nahid Siddiqui. 2023. "Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications" Fermentation 9, no. 2: 147. https://doi.org/10.3390/fermentation9020147
APA StylePaul, D., Kumari, P. K., & Siddiqui, N. (2023). Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation, 9(2), 147. https://doi.org/10.3390/fermentation9020147