Therapeutic and Anti-Thrombotic Properties of Some Naturally Fermented Soybean Foods of the Eastern Himalayas
Abstract
:1. Introduction
2. Materials and Methods
Sample Collection
3. Therapeutic Properties
3.1. DPPH Radical Scavenging Assay
3.2. Anti-Inflammatory Activity
3.3. Quantification of Total Flavone/Isoflavone Content
3.4. Anti-Obesity (Pancreatic Lipase Inhibition)
3.5. Anti-Diabetic
4. Bacterial Isolation
5. Screening of Proteolytic Isolates
6. Qualitative Screening of Fibrinolytic Enzyme using Fibrin Plate Assay
7. Quantitative Screening of Fibrinolytic Enzyme Activity
8. In-Vitro Determination of Fibrinolytic Activity Using Whole Blood Clot
9. Determination of Molecular Weight by SDS-PAGE
10. Genotypic Identification of Bacterial Isolates
10.1. DNA Extraction
10.2. PCR Amplification
10.3. Purification of PCR Amplicons
10.4. 16S rRNA Gene Sequencing
11. Bioinformatics Analysis
12. Statistical Analysis
13. Results
13.1. Therapeutic Properties
13.2. Screening and Identification of Fibrinolytic Enzyme Producing Strains
14. Discussion
15. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamang, J.P. Dietary culture and antiquity of the Himalayan fermented foods and alcoholic fermented beverages. J. Ethn. Foods 2022, 9, 30. [Google Scholar] [CrossRef]
- Prado, F.G.D.; Pagnoncelli, M.G.B.; Pereira, G.V.D.M.; Karp, S.G.; Soccol, C.R. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 2022, 62, 1971–1989. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Anupma, A.; Shangpliang, H.N.J. Ethno-microbiology of Tempe, an Indonesian fungal-fermented soybean food and Koji, a Japanese fungal starter culture. Curr. Opin. Food Sci. 2022, 48, 100912. [Google Scholar] [CrossRef]
- Tamang, J.P.; Jeyaram, K.; Rai, A.K.; Mukherjee, P.K. Diversity of beneficial microorganisms and their functionalities in community-specific ethnic fermented foods of the Eastern Himalayas. Food Res. Int. 2021, 148, 110633. [Google Scholar] [CrossRef]
- Chettri, R.; Tamang, J.P. Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India. Int. J. Food Microbiol. 2015, 197, 72–76. [Google Scholar] [CrossRef]
- Tamang, J.P. Naturally fermented ethnic soybean foods of India. J. Ethn. Foods 2015, 2, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, C.; Li, L.; Chen, S.; Hu, X.; Xiang, H. Taste mechanism of umami peptides from Chinese traditional fermented fish (Chouguiyu) based on molecular docking using umami receptor T1R1/T1R3. Food Chem. 2022, 389, 133019. [Google Scholar] [CrossRef]
- Kharnaior, P.; Tamang, J.P. Bacterial and fungal communities and their predictive functional profiles in kinema, a naturally fermented soybean food of India, Nepal and Bhutan. Food Res. Int. 2021, 140, 110055. [Google Scholar] [CrossRef]
- Kharnaior, P.; Tamang, J.P. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front. Microbiol. 2022, 13, 868383. [Google Scholar] [CrossRef]
- Gopikrishna, T.; Kumar, H.K.S.; Perumal, K.; Elangovan, E. Impact of Bacillus in fermented soybean foods on human health. Ann. Microbiol. 2021, 71, 30. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yu, D.; Wang, Z.; Hou, J.; Tyagi, R.; Liang, Y.; Hu, Y. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Sci. Rep. 2019, 9, 9235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Pinontoan, R.; Elvina; Sanjaya, A.; Jo, J. Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Biosci. Microbiota Food Health 2021, 40, 144–149. [Google Scholar] [CrossRef]
- Alkarithi, G.; Duval, C.; Shi, Y.; Macrae, F.L.; Ariëns, R.A. Thrombus Structural Composition in Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 2370–2383. [Google Scholar] [CrossRef]
- Yogesh, D.; Halami, P.M. Fibrinolytic enzymes of Bacillus spp.: An overview. Int. Food Res. J. 2017, 24, 35–47. [Google Scholar]
- Nozue, M.; Shimazu, T.; Charvat, H.; Mori, N.; Mutoh, M.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Inoue, M.; Kokubo, Y.; et al. Fermented soy products intake and risk of cardiovascular disease and total cancer incidence: The Japan Public Health Center-based Prospective study. Eur. J. Clin. Nutr. 2021, 75, 954–968. [Google Scholar] [CrossRef]
- Altaf, F.; Wu, S.; Kasim, V. Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Front. Mol. Biosci. 2021, 8, 680397. [Google Scholar] [CrossRef]
- Sharma, C.; Osmolovskiy, A.; Singh, R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021, 13, 1880. [Google Scholar] [CrossRef]
- Diwan, D.; Usmani, Z.; Sharma, M.; Nelson, J.W.; Thakur, V.K.; Christie, G.; Molina, G.; Gupta, V.K. Thrombolytic Enzymes of Microbial Origin: A Review. Int. J. Mol. Sci. 2021, 22, 10468. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Yang, Y.; Fan, J.; Ma, C.; Liu, X.; Wang, Y.; Wang, B.; Sun, Z.; McClements, D.J.; Zhang, J.; et al. Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: Developments and challenges. Crit. Rev. Food Sci. Nutr. 2022, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Yao, J.; Sparks, S.; Wang, K.Y. Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. Int. J. Mol. Sci. 2017, 18, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yang, L.; Li, X.; Li, H.; Tu, Z.; Wang, X. Genome sequencing, purification, and biochemical characterization of a strongly fibrinolytic enzyme from Bacillus amyloliquefaciens Jxnuwx-1 isolated from Chinese traditional douchi. J. Gen. Appl. Microbiol. 2020, 66, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tang, X.; Chen, L.; Xu, X.; Li, J. Characterization of a Nattokinase from the Newly Isolated Bile Salt-Resistant Bacillus mojavensis LY-06. Foods 2022, 11, 2403. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, X.; Shim, J.M.; Lee, K.W.; Kim, H.J.; Kim, J.H. Properties of a fibrinolytic enzyme secreted by Bacillus amy-loliquefaciens RSB34, isolated from doenjang. J. Microbiol. Biotechnol. 2017, 27, 9–18. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Heo, K.; Park, J.Y.; Lee, K.W.; Park, J.-Y.; Joo, S.H.; Kim, J.H. Characterization of AprE176, a Fibrinolytic Enzyme from Bacillus subtilis HK176. J. Microbiol. Biotechnol. 2015, 25, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.A.; Devi, K.R.; Ahmed, G.; Jeyaram, K. Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res. Int. 2014, 55, 356–362. [Google Scholar] [CrossRef]
- El Euch, S.K.; Bouajila, J.; Bouzouita, N. Chemical composition, biological and cytotoxic activities of Cistus salviifolius flower buds and leaves extracts. Ind. Crop. Prod. 2015, 76, 1100–1105. [Google Scholar] [CrossRef]
- Bekir, J.; Mars, M.; Souchard, J.P.; Bouajila, J. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem. Toxicol. 2013, 55, 470–475. [Google Scholar] [CrossRef]
- Jaradat, N.; Zaid, A.N.; Hussein, F.; Zaqzouq, M.; Aljammal, H.; Ayesh, O. Anti-Lipase Potential of the Organic and Aqueous Extracts of Ten Traditional Edible and Medicinal Plants in Palestine; a Comparison Study with Orlistat. Medicines 2017, 4, 89. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Chukwuma, C.I.; Islam, M.S. Raffia palm (Raphia hookeri) wine: Qualitative sugar profile, functional chemistry, and antidiabetic properties. Food Biosci. 2019, 30, 100423. [Google Scholar] [CrossRef]
- Chukeatirote, E.; Arfarita, N.; Niamsup, P.; Kanghae, A. Phenotypic and Genetic Characterization of Bacillus Species Exhibiting Strong Proteolytic Activity Isolated from Terasi, An Indonesian Fermented Seafood Product. J. Northeast. Agric. Univ. 2015, 22, 15–22. [Google Scholar] [CrossRef]
- Jap, L.; Raharjo, P.F.; Elvina, E.; Florencia, L.; Susanti, A.I.; Pinontoan, R. Clot Lysis Activity of Bacillus subtilis G8 Isolated from Japanese Fermented Natto Soybeans. Appl. Food Biotechnol. 2019, 6, 101–109. [Google Scholar] [CrossRef]
- Gopalakrishnan, D.; Jain, A. A Statistical and downstream approach for the improvement of protease production from Bacillus toyonensis Vkb5 isolated from Actinidia deliciosa. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e3721. [Google Scholar]
- Syahbanu, F.; Kezia, E.; Puera, N.; Giriwono, P.E.; Tjandrawinata, R.R.; Suhartono, M.T. Fibrinolytic bacteria of Indonesian fermented soybean: Preliminary study on enzyme activity and protein profile. Food Sci. Technol. 2020, 40 (Suppl. 2), 458–465. [Google Scholar] [CrossRef]
- Shangpliang, H.N.J.; Tamang, J.P. Phenotypic and genotypic characterisation of lactic acid bacteria isolated from exotic naturally fermented milk (cow and yak) products of Arunachal Pradesh, India. Int. Dairy J. 2021, 118, 105038. [Google Scholar] [CrossRef]
- Lane, D. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Ashelford, K.E.; Chuzhanova, N.A.; Fry, J.C.; Jones, A.J.; Weightman, A.J. New Screening Software Shows that Most Recent Large 16S rRNA Gene Clone Libraries Contain Chimeras. Appl. Environ. Microbiol. 2006, 72, 5734–5741. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Bayliak, M.M.; Burdyliuk, N.I.; Lushchak, V.I. Effects of pH on antioxidant and prooxidant properties of common medicinal herbs. Open Life Sci. 2016, 11, 298–307. [Google Scholar] [CrossRef]
- Cui, J.; Xia, P.; Zhang, L.; Hu, Y.; Xie, Q.; Xiang, H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem. 2020, 333, 127527. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Ho, C.-T.; Pan, M.-H. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- Pariyar, P.; Yaduvanshi, P.S.; Raghu, P.; Tamang, J.P. Screening of Poly-Glutamic Acid (PGA)-Producing Bacillus Species from Indian Fermented Soybean Foods and Characterization of PGA. Fermentation 2022, 8, 495. [Google Scholar] [CrossRef]
- Han, A.L.; Jeong, S.-J.; Ryu, M.-S.; Yang, H.-J.; Jeong, D.-Y.; Park, D.-S.; Lee, H.K. Anti-Obesity Effects of Traditional and Commercial Kochujang in Overweight and Obese Adults: A Randomized Controlled Trial. Nutrients 2022, 14, 2783. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Daily, J.W., III; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Sarkar, S.; Dihingia, A.; Afzal, N.U.; Wann, S.B.; Kalita, J.; Dewanjee, S.; Manna, P. A popular fermented soybean food of Northeast India exerted promising antihyperglycemic potential via stimulating PI3K/AKT/AMPK/GLUT4 signaling pathways and regulating muscle glucose metabolism in type 2 diabetes. J. Food Biochem. 2022, 46, e14385. [Google Scholar] [CrossRef] [PubMed]
- Salunke, A.S.; Nile, S.H.; Kharat, A.S. A comparative study on fibrinolytic enzymes extracted from six Bacillus spp. isolated from fruit-vegetable waste biomass. Food Biosci. 2022, 50, 102149. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Yu, B.; Chen, G.; Liang, Z. Purification and Characterization of a Fibrinolytic Enzyme from Marine Bacillus velezensis Z01 and Assessment of Its Therapeutic Efficacy In Vivo. Microorganisms 2022, 10, 843. [Google Scholar] [CrossRef]
- Frias, J.; Toubarro, D.; Fraga, A.; Botelho, C.; Teixeira, J.; Pedrosa, J.; Simões, N. Purification and Characterization of a Thrombolytic Enzyme Produced by a New Strain of Bacillus subtil. J. Microbiol. Biotechnol. 2021, 31, 327–337. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, C.H. Determination of factors affecting the protease content generated in fermented soybean by Bacillus subtilis 1423. Energy Rep. 2020, 6, 831–836. [Google Scholar] [CrossRef]
- Sanjukta, S.; Rai, A.K. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol. 2016, 50, 1–10. [Google Scholar] [CrossRef]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
Product | Locations | Geographical Coordinates | pH |
---|---|---|---|
Kinema (India) | Gangtok, Sikkim, India | 27.3314° N, 88.6138° E | 7.19 ± 0.21 (6.92–7.46) |
Kinema (Nepal) | Dharan, Eastern Nepal | 26.8065° N, 87.2846° E | 7.14 ± 0.14 (6.98–7.25), |
Kinema (Bhutan) | Samtse, South Bhutan | 26.9131° N, 89.0836° E | 6.60 ± 0.48 (6.02–7.06) |
Grep-churpii | Tawang, Arunachal Pradesh, India | 27.5861° N, 91.8594° E | 7.32 ± 0.10 (6.94–7.71) |
Peha | Itanagar, Arunachal Pradesh, India | 27.1719° N, 93.7029° E | 7.31 ± 0.01 (5.46–8.43) |
Peron namsing | Pasighat, Arunachal Pradesh, India | 28.0632° N, 95.3239° E | 8.24 ± 0.01 (7.72–8.53) |
Peruñyaan | Ziro valley, Arunachal Pradesh, India | 27.6169° N, 93.8392° E | 7.55 ± 0.41 (7.15–8.15) |
Bemerthu | North Bagetar, Dimahasao district, Assam, India | 24.98487° N 92.83307° E | 7.82 ± 0.04 (7.02–8.20) |
Samples | DPPH Radical Scavenging (%) | Anti-Inflammatory (µg NDGA/g) | Immunomodulatory Effects | Anti-Obesity (IP %) | Anti-Diabetic (IP %) | |
---|---|---|---|---|---|---|
Flavones (µg QE/g) | Isoflavones (µg Gen/g) | |||||
Kinema (India) | 74.12 ± 10.20 | 137.42 ± 1.78 | 253.40 ± 100.16 | 358.91 ± 26.62 | 52.40 ± 5.87 | 62.41 ± 1.51 |
Kinema (Nepal) | 80.65 ± 8.20 | 84.77 ± 0.72 | 113.22 ± 11.02 | 250.94 ± 24.37 | 51.37 ± 2.77 | 55.09 ± 1.05 |
Kinema (Bhutan) | 82.93 ± 7.32 | 98.36 ± 5.41 | 204.65 ± 62.89 | 294.62 ± 18.82 | 42.26 ± 14.90 | 42.54 ± 3.21 |
Grep-chhurpi | 64.23 ± 8.54 | 96.38 ± 0.19 | 194.90 ± 4.33 | 319.64 ± 24.72 | 36.39 ± 2.60 | 69.22 ± 4.76 |
Peha | 55.28 ± 6.51 | 193.46 ± 18.96 | 278.98 ± 7.06 | 394.13 ± 11.68 | 39.74 ± 3.50 | 60.35 ± 1.04 |
Peron namsing | 67.54 ± 9.95 | 108.02 ± 0.23 | 226.84 ± 59.73 | 301.80 ± 8.42 | 43.24 ± 10.98 | 56.56 ± 4.13 |
Peruñyaan | 73.60 ± 6.36 | 157.85 ± 20.88 | 216.95 ± 122.20 | 370.73 ± 14.94 | 24.84 ± 2.88 | 60.25 ± 7.09 |
Products | Identity with Sample Code | Type Species (% Similarity) | GenBank Accession Number |
---|---|---|---|
Kinema | Bacillus subtilis Ki01 | Bacillus subtilis NCIB 3610 (99.78) | OP776906 |
Bacillus subtilis Ki52 | Bacillus subtilis NCIB 3610 (99.79) | OP776907 | |
Kinema | Bacillus subtilis Kn16 | Bacillus subtilis NCIB 3610 (99.86) | OP776908 |
Kinema | Bacillus subtilis Kb37 | Bacillus subtilis NCIB 3610 (99.71) | OP776909 |
Grep chhurpi | Bacillus subtilis Gc06 | Bacillus subtilis NCIB 3610 (99.93) | OP776910 |
Peha | Bacillus subtilis Ph07 | Bacillus subtilis NCIB 3610 (99.93) | OP776911 |
Peron namsing | Bacillus subtilis Pn30 | Bacillus subtilis NCIB 3610 (99.58) | OP776912 |
Bacillus subtilis Pn88 | Bacillus subtilis NCIB 3610 (99.30) | OP776913 | |
Peruñyaan | Bacillus subtilis Py01 | Bacillus subtilis NCIB 3610 (99.93) | OP776914 |
Bemerthu | Bacillus velezensis F6 | Bacillus velezensis CR-502 (99.59) | OP603227 |
Bacillus halotolerans F10 | Bacillus halotolerans ATCC 25096 (99.13) | OP603169 | |
Bacillus velezensis F13 | Bacillus velezensis CR-502 (99.77) | OP603042 | |
Bacillus subtilis F16 | Bacillus subtilis NCIB 3610 (99.12) | OP603123 | |
Bacillus velezensis F50 | Bacillus velezensis CR-502 (99.65) | OP603145 | |
Bacillus inaquosorum F90 | Bacillus inaquosorum KCTC 13429 (98.92) | OP602362 | |
Bacillus inaquosorum F139 | Bacillus inaquosorum KCTC 13429 (97.02) | OP602954 |
Product | Bacterial Species | Proteolytic Activity | Fibrin Plate Assay | Enzyme Activity (U/mL) | Blood clot Degradation (%) (A0–A1/A0) | Molecular Weight by SDS-PAGE (kDa) |
---|---|---|---|---|---|---|
Kinema | Bacillus subtilis Ki01 | +++ | ++ | 1033.92 | 46.70 | ≈27 |
Bacillus subtilis Ki52 | +++ | ++ | 1230.61 | 50.47 | ≈27 | |
Bacillus subtilis Kn16 | +++ | ++ | 1222.64 | 51.37 | ≈25 | |
Bacillus subtilis Kb37 | +++ | ++ | 1103.68 | 49.05 | ≈63 | |
Grep-chhurpi | Bacillus subtilis Gc06 | +++ | ++ | 1024.07 | 48.24 | ≈20 |
Peha | Bacillus subtilis Ph07 | +++ | ++ | 1061.12 | 49.11 | ≈25 |
Peron namsing | Bacillus subtilis Pn30 | +++ | ++ | 1032.16 | 48.99 | ≈25 |
Bacillus subtilis Pn88 | +++ | ++ | 1045.44 | 46.97 | ≈25 | |
Peruñyaan | Bacillus subtilis Py01 | +++ | ++ | 1057.76 | 44.65 | ≈27 |
Bemerthu | Bacillus velezensis F6 | +++ | ++ | 1209.27 | 51.39 | ≈25 |
Bacillus halotolerans F10 | +++ | ++ | 934.82 | 46.67 | ≈25 | |
Bacillus velezensis F13 | +++ | ++ | 984.68 | 47.37 | ≈63 | |
Bacillus subtilis F16 | +++ | ++ | 1025.75 | 48.84 | ≈27 | |
Bacillus velezensis F50 | +++ | ++ | 772.75 | 40.48 | ≈25 | |
Bacillus inaquosorum F90 | +++ | ++ | 755.70 | 47.06 | ≈63 | |
Bacillus inaquosorum F139 | +++ | ++ | 1086.98 | 49.75 | ≈20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharnaior, P.; Das, M.; Tamang, J.P. Therapeutic and Anti-Thrombotic Properties of Some Naturally Fermented Soybean Foods of the Eastern Himalayas. Fermentation 2023, 9, 91. https://doi.org/10.3390/fermentation9020091
Kharnaior P, Das M, Tamang JP. Therapeutic and Anti-Thrombotic Properties of Some Naturally Fermented Soybean Foods of the Eastern Himalayas. Fermentation. 2023; 9(2):91. https://doi.org/10.3390/fermentation9020091
Chicago/Turabian StyleKharnaior, Pynhunlang, Mayouri Das, and Jyoti Prakash Tamang. 2023. "Therapeutic and Anti-Thrombotic Properties of Some Naturally Fermented Soybean Foods of the Eastern Himalayas" Fermentation 9, no. 2: 91. https://doi.org/10.3390/fermentation9020091
APA StyleKharnaior, P., Das, M., & Tamang, J. P. (2023). Therapeutic and Anti-Thrombotic Properties of Some Naturally Fermented Soybean Foods of the Eastern Himalayas. Fermentation, 9(2), 91. https://doi.org/10.3390/fermentation9020091