Effect of Yogurt Acid Whey on the Quality of Maize Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Crop Maize Silage In Silo Bags and Sampling
2.2. Chemical Composition of the Maize Forage Samples
2.3. Microbial Analyses of the Maize Forage Samples
2.4. Determination of the Fermentation Quality
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition and Epiphytic Microflora of the Maize Forage before Ensiling
3.2. Nutritional Quality of the Maize Forage Silages Prepared with the YAWP
3.3. Microbial Quality of the Maize Silages Prepared with the YAWP
3.4. Fermentation Quality of the Maize Silage Prepared with the YAWP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randby, Å.T.; Weisbjerg, M.R.; Nørgaard, P.; Heringstad, B. Early Lactation Feed Intake and Milk Yield Responses of Dairy Cows Offered Grass Silages Harvested at Early Maturity Stages. J. Dairy Sci. 2012, 95, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive Value of Maize Silage in Relation to Dairy Cow Performance and Milk Quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef]
- Bernes, G.; Turner, T.; Pickova, J. Sheep Fed Only Silage or Silage Supplemented with Concentrates. 2. Effects on Lamb Performance and Fatty Acid Profile of Ewe Milk and Lamb Meat. Small Rumin. Res. 2012, 102, 114–124. [Google Scholar] [CrossRef]
- Patel, M.; Wredle, E.; Bertilsson, J. Effect of Dietary Proportion of Grass Silage on Milk Fat with Emphasis on Odd- and Branched-Chain Fatty Acids in Dairy Cows. J. Dairy Sci. 2013, 96, 390–397. [Google Scholar] [CrossRef]
- Warren, H.E.; Scollan, N.D.; Nute, G.R.; Hughes, S.I.; Wood, J.D.; Richardson, R.I. Effects of Breed and a Concentrate or Grass Silage Diet on Beef Quality in Cattle of 3 Ages. II: Meat Stability and Flavour. Meat Sci. 2008, 78, 270–278. [Google Scholar] [CrossRef]
- Berthiaume, R.; Lafrenière, C.; Girard, C.; Campbell, C.P.; Pivotto, L.M.; Mandell, I.B. Effects of Forage Silage Species on Yearling Growth Performance, Carcass and Meat Quality, and Nutrient Composition in a Forage Based Beef Production System. Can. J. Anim. Sci. 2015, 95, 173–187. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Rinne, M. Highlights of Progress in Silage Conservation and Future Perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Allen, M.S.; Coors, J.G.; Roth, G.W. Corn Silage. In Silage Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 547–608. ISBN 9780891182344. [Google Scholar]
- Buxton, D.R.; O’Kiely, P. Preharvest Plant Factors Affecting Ensiling. In Silage Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 199–250. ISBN 9780891182344. [Google Scholar]
- Johnson, L.; Harrison, J.H.; Hunt, C.; Shinners, K.; Doggett, C.G.; Sapienza, D. Nutritive Value of Corn Silage as Affected by Maturity and Mechanical Processing: A Contemporary Review. J. Dairy Sci. 1999, 82, 2813–2825. [Google Scholar] [CrossRef]
- Filya, I.; Sucu, E. The Effects of Lactic Acid Bacteria on the Fermentation, Aerobic Stability and Nutritive Value of Maize Silage. Grass Forage Sci. 2010, 65, 446–455. [Google Scholar] [CrossRef]
- Santos, A.O.; Ávila, C.L.S.; Schwan, R.F. Selection of Tropical Lactic Acid Bacteria for Enhancing the Quality of Maize Silage. J. Dairy Sci. 2013, 96, 7777–7789. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The Performance of Lactic Acid Bacteria in Silage Production: A Review of Modern Biotechnology for Silage Improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Sheperd, A.C.; Smagala, A.M.; Endres, K.M.; Bessett, C.A.; Ranjit, N.K.; Glancey, J.L. The Effect of Preservatives Based on Propionic Acid on the Fermentation and Aerobic Stability of Corn Silage and a Total Mixed Ration. J. Dairy Sci. 1998, 81, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Pian, R.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Effects of Citric Acid on Fermentation Characteristics and Bacterial Diversity of Amomum Villosum Silage. Bioresour. Technol. 2020, 307, 123290. [Google Scholar] [CrossRef] [PubMed]
- Khorvash, M.; Colombatto, D.; Beauchemin, K.A.; Ghorbani, G.R.; Samei, A. Use of Absorbants and Inoculants to Enhance the Quality of Corn Silage. Can. J. Anim. Sci. 2006, 86, 97–107. [Google Scholar]
- Özüretmen, S.; Özelçam, H.; Ipçak, H.H. Effects of Whey Powder on Fermentation Quality, Nutritive Value, and Digestibility of Alfalfa Silage. J. Anim. Feed Sci. 2022, 31, 65–72. [Google Scholar] [CrossRef]
- Fallah, R. Effects of Adding Whey and Molasses on Corn Silage Quality, Growth Performance and Health of Simmental Fattening Calves. J. Livest. Sci. 2019, 10, 91–96. [Google Scholar] [CrossRef]
- Rezende, A.V.; Rabelo, C.H.S.; Veiga, R.M.; Andrade, L.P.; Härter, C.J.; Rabelo, F.H.S.; Basso, F.C.; Nogueira, D.A.; Reis, R.A. Rehydration of Corn Grain with Acid Whey Improves the Silage Quality. Anim. Feed Sci. Technol. 2014, 197, 213–221. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Krentz, A.; Zhang, L.; Badiger, S.; Miyagusuku-Cruzado, G.; Mayta-Apaza, A.; Giusti, M.; Jiménez-Flores, R.; García-Cano, I. Invited Review: Acid Whey Trends and Health Benefits. J. Dairy Sci. 2021, 104, 1262–1275. [Google Scholar] [CrossRef]
- Andreou, V.; Chanioti, S.; Xanthou, M.Z.; Katsaros, G. Incorporation of Acid Whey Yogurt By-Product in Novel Sauces Formulation: Quality and Shelf-Life Evaluation. Sustainability 2022, 14, 15722. [Google Scholar] [CrossRef]
- Flinois, J.C.; Dando, R.; Padilla-Zakour, O.I. Effects of Replacing Buttermilk with Yogurt Acid Whey in Ranch Dressing. J. Dairy Sci. 2019, 102, 7874–7883. [Google Scholar] [CrossRef]
- Simitzis, P.; Zikou, F.; Progoulakis, D.; Theodorou, G.; Politis, I. A Note on the Effects of Yoghurt Acid Whey Marination on the Tenderness and Oxidative Stability of Different Meat Types. Foods 2021, 10, 2557. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Rivera Flores, V.K.; DeMarsh, T.A.; de Riancho, D.L.; Alcaine, S.D. Aerobic Cultivation of Mucor Species Enables the Deacidification of Yogurt Acid Whey and the Production of Fungal Oil. Foods 2023, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Menchik, P.; Zuber, T.; Zuber, A.; Moraru, C.I. Short Communication: Composition of Coproduct Streams from Dairy Processing: Acid Whey and Milk Permeate. J. Dairy Sci. 2019, 102, 3978–3984. [Google Scholar] [CrossRef]
- Acosta Aragón, Y.; Jatkauskas, J.; Vrotniakiene, V. The Effect of a Silage Inoculant on Silage Quality, Aerobic Stability, and Meat Production on Farm Scale. ISRN Vet. Sci. 2012, 2012, 345927. [Google Scholar] [CrossRef]
- Williams, S. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1984; ISBN 0935584242. [Google Scholar]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Möller, J. Gravimetric Determination of Acid Detergent Fiber and Lignin in Feed: Interlaboratory Study. J. AOAC Int. 2009, 92, 74–90. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Palamidi, I.; Tsirtsikos, P.; Mohnl, M.; Schatzmayr, G.; Fegeros, K. Effect of Dietary Inclusion Level of a Multi-Species Probiotic on Broiler Performance and Two Biomarkers of Their Caecal Ecology. Anim. Prod. Sci. 2015, 55, 484–493. [Google Scholar] [CrossRef]
- Ominski, K.; Mcallister, T.; Stanford, K.; Mengistu, G.; Kebebe, E.G.; Omonijo, F.; Cordeiro, M.; Legesse, G.; Wittenberg, K. Utilization of By-Products and Food Waste in Livestock Production Systems: A Canadian Perspective. Anim. Front. 2021, 11, 55–63. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Erickson, B.E. Acid Whey: Is the Waste Product an Untapped Goldmine. Chem. Eng. News 2017, 95, 26–30. [Google Scholar]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Jackson, N.; Forbes, T.J. The Voluntary Intake by Cattle of Four Silages Differing in Dry Matter Content. Anim. Prod. 1970, 12, 591–599. [Google Scholar] [CrossRef]
- Lahr, D.A.; Otterby, D.E.; Johnson, D.G.; Linn, J.G.; Lundquist, R.G. Effects of Moisture Content of Complete Diets on Feed Intake and Milk Production by Cows. J. Dairy Sci. 1983, 66, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Palma, J.M.; Sandalio, L.M.; Javier Corpas, F.; Romero-Puertas, M.C.; McCarthy, I.; Del Río, L.A. Plant Proteases, Protein Degradation, and Oxidative Stress: Role of Peroxisomes. Plant Physiol. Biochem. 2002, 40, 521–530. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Xu, D.M.; Ding, L.M.; Zhang, P.; Li, F.D.; Guo, X.S. Effects of Addition of Malic or Citric Acids on Fermentation Quality and Chemical Characteristics of Alfalfa Silage. J. Dairy Sci. 2017, 100, 8958–8966. [Google Scholar] [CrossRef]
- Tao, X.; Chen, S.; Zhao, J.; Wang, S.; Dong, Z.; Li, J.; Sun, F.; Shao, T. Effects of Citric Acid Residue and Lactic Acid Bacteria on Fermentation Quality and Aerobic Stability of Alfalfa Silage. Ital. J. Anim. Sci. 2020, 19, 744–752. [Google Scholar] [CrossRef]
- Yitbarek, M.B.; Tamir, B. Silage Additives. Open J. Appl. Sci. 2014, 4, 258–274. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Lima, L.M.; Dos Santos, J.P.; Casagrande, D.R.; Ávila, C.L.S.; Lara, M.S.; Bernardes, T.F. Lining Bunker Walls with Oxygen Barrier Film Reduces Nutrient Losses in Corn Silages. J. Dairy Sci. 2017, 100, 4565–4573. [Google Scholar] [CrossRef]
- Ammerman, C.B.; Goodrich, R.D. Advances in Mineral Nutrition in Ruminants. J. Anim. Sci. 1983, 57 (Suppl. S2), 519–533. [Google Scholar]
- Wu, M.; Wang, Y.; Wang, Y.; Wang, X.; Yu, M.; Liu, G.; Tang, H. Study on the Diversity of Epiphytic Bacteria on Corn and Alfalfa Using Illumina MiSeq/NovaSeq High-Throughput Sequencing System. Ann. Microbiol. 2021, 71, 38. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Shao, T. Changes in Silage Quality, Bacterial Community Dynamics, and Metabolic Profiles in Whole-crop Maize Silage. Agron. J. 2022, 114, 976–990. [Google Scholar] [CrossRef]
- Wei, S.N.; Li, Y.F.; Jeong, E.C.; Kim, H.J.; Kim, J.G. Effects of Formic Acid and Lactic Acid Bacteria Inoculant on Main Summer Crop Silages in Korea. J. Anim. Sci. Technol. 2021, 63, 91–103. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, S.; Dong, Z.; Li, J.; Jia, Y.; Shao, T. Effect of Storage Time and the Level of Formic Acid on Fermentation Characteristics, Epiphytic Microflora, Carbohydrate Components and in Vitro Digestibility of Rice Straw Silage. Anim. Biosci. 2021, 34, 1038–1048. [Google Scholar] [CrossRef]
- de Oliveira, J.S.; Santos, E.M.; dos Santos, A.P.M. Intake and Digestibility of Silages. In Advances in Silage Production and Utilization; IntechOpen: London, UK, 2016. [Google Scholar]
- Arriola, K.G.; Kim, S.C.; Adesogan, A.T. Effect of Applying Inoculants with Heterolactic or Homolactic and Heterolactic Bacteria on the Fermentation and Quality of Corn Silage. J. Dairy Sci. 2011, 94, 1511–1516. [Google Scholar] [CrossRef]
- Kung, L. Understanding the Biology of Silage Preservation to Maximize Quality and Protect the Environment. In Proceedings of the California Alfalfa & Forage Symposium, Visalia, CA, USA, 30 November–2 December 2010; pp. 41–54. [Google Scholar]
- Mariotti, M.; Fratini, F.; Cerri, D.; Andreuccetti, V.; Giglio, R.; Angeletti, F.G.S.; Turchi, B. Use of Fresh Scotta Whey as an Additive for Alfalfa Silage. Agronomy 2020, 10, 365. [Google Scholar] [CrossRef]
- Merry, R.J.; Davies, D.R. Propionibacteria and Their Role in the Biological Control of Aerobic Spoilage in Silage. Lait 1999, 79, 149–164. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; American Society of Agronomy: Madison, WI, USA, 2015; pp. 31–93. ISBN 9780891182344. [Google Scholar]
- KağanTelli, S.Ö. Effects of Sour Yogurt Addition to Corn Silage on Silage Fermentation, Aerobic Stability, and in Vitro Digestibility. Ege Üniv. Ziraat Fak. Derg. 2022, 59, 601–609. [Google Scholar]
- Lingaas, F.; Tveit, B. Etiology of Acetonemia in Norwegian Cattle. 2. Effect of Butyric Acid, Valeric Acid, and Putrescine. J. Dairy Sci. 1992, 75, 2433–2439. [Google Scholar] [CrossRef]
- Dirksen, G.; Breitner, W. A New Quick-Test for Semiquantitative Determination of Beta-Hydroxybutyric Acid in Bovine Milk. J. Vet. Med. Ser. A 1993, 40, 779–784. [Google Scholar] [CrossRef]
Lactose | 720 |
Ash | 110 |
Protein | 50 |
Lactic acid | 60 |
Dry matter | 960 |
Nutritional Quality | Average ± Std |
Dry matter (g/kg) | 261.7 ± 4.87 |
Crude protein (g/kg DM) | 81.0 ± 1.61 |
Ether Extract (g/kg DM) | 22.5 ± 2.30 |
Crude fiber (g/kg DM) | 211.0 ± 9.93 |
Neutral-detergent fiber (g/kg DM) | 429.1 ± 19.36 |
Acid-detergent fiber (g/kg DM) | 244.6 ± 1.41 |
Acid-detergent lignin (g/kg DM) | 14.5 ± 1.11 |
Microbial Quality (log cfu/g DM) | |
Total bacteria | 7.27 ± 0.612 |
Lactobacillus spp. | 7.29 ± 0.680 |
Clostridium sp. | 3.90 ± 0.286 |
Yeast, Molds | 5.64 ± 1.084 |
Coliforms | 2.65 ± 1.169 |
Inclusion Level of YAWP a | Statistics | |||||||
---|---|---|---|---|---|---|---|---|
0% | 2.5% | 5% | 10% | SEM b | Panova | Polynomial Contrast c | ||
Plinear | Pquadratic | |||||||
Dry matter (DM) % | 26.09 a | 26.62 ab | 27.30 b | 28.73 c | 0.388 | *** | *** | NS |
Crude protein (% DM) | 7.85 a | 7.96 ab | 7.96 ab | 8.08 b | 0.769 | * | * | NS |
Ether extract (% DM) | 2.29 | 2.27 | 2.30 | 2.07 | 0.144 | NS | NS | NS |
Crude fiber (% DM) | 21.93 b | 22.32 b | 22.77 b | 19.81 a | 0.837 | ** | * | ** |
Neutral-detergent fiber (% DM) | 44.53 b | 42.84 b | 42.14 b | 38.31 a | 1.478 | ** | *** | NS |
Acid-detergent fiber (% DM) | 24.43 b | 24.23 b | 23.38 ab | 21.13 a | 1.148 | * | ** | NS |
Acid-detergent lignin (% DM) | 1.74 | 1.80 | 1.75 | 1.68 | 0.205 | NS | NS | NS |
Ash (% DM) | 4.66 a | 5.62 ab | 6.29 bc | 7.53 c | 0.532 | ** | *** | NS |
Inclusion Level of YAWP a | Statistics | |||||||
---|---|---|---|---|---|---|---|---|
0% | 2.5% | 5% | 10% | SEM b | Panova | Polynomial Contrast c | ||
Plinear | Pquadratic | |||||||
Total bacteria | 7.95 b | 7.71 b | 6.93 a | 6.73 a | 0.160 | *** | *** | NS |
Lactobacillus spp. | 7.90 b | 7.90 b | 7.23 a | 7.09 a | 0.191 | *** | *** | NS |
Clostridium spp. | 3.36 | 3.56 | 3.47 | 3.42 | 0.241 | NS | NS | NS |
Yeast, Molds | 4.03 | 3.60 | 3.80 | 4.98 | 0.863 | NS | NS | * |
Coliforms | ND | ND | ND | ND |
Inclusion Level of YAWP a | Statistics | |||||||
---|---|---|---|---|---|---|---|---|
0% | 2.5% | 5% | 10% | SEM b | Panova | Polynomial Contrast c | ||
Plinear | Pquadratic | |||||||
pH direct | 3.74 | 3.60 | 3.59 | 3.71 | 0.069 | NS | NS | * |
pH diluted | 3.74 | 3.64 | 3.65 | 3.76 | 0.071 | NS | NS | NS |
Ammonia-N % DM d | 4.03 b | 4.02 b | 3.71 a | 3.81 ab | 0.087 | *** | ** | NS |
D/L Lactic acid (g/kg DM) | 22.68 a | 30.24 b | 34.51 bc | 37.45 c | 1.650 | *** | *** | NS |
Lactic acid/acetic acid ratio | 2.05 a | 3.32 b | 4.91 c | 4.97 bc | 0.425 | *** | *** | NS |
Total VFAs (g/kg DM) e | 20.75 b | 21.56 ab | 14.06 a | 17.98 ab | 2.370 | ** | * | NS |
Acetic acid (g/kg DM) | 11.18 b | 10.23 ab | 7.10 a | 7.66 a | 1.218 | *** | ** | NS |
Propionic acid (g/kg DM) | 1.36 a | 1.96 ab | 1.52 ab | 2.15 b | 0.234 | ** | * | NS |
Isobutyric acid (g/kg DM) | 1.36 | 2.06 | 1.46 | 1.66 | 0.244 | NS | NS | NS |
Butyric acid (g/kg DM) | 4.62 | 4.29 | ND | ND | ||||
Heptanoic acid (g/kg DM) | 2.23 a | 3.03 ab | 3.98 bc | 6.50 c | 0.736 | ** | *** | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palamidi, I.; Paraskeuas, V.V.; Kotsampasi, B.; Hadjigeorgiou, I.; Politis, I.; Mountzouris, K.C. Effect of Yogurt Acid Whey on the Quality of Maize Silage. Fermentation 2023, 9, 994. https://doi.org/10.3390/fermentation9120994
Palamidi I, Paraskeuas VV, Kotsampasi B, Hadjigeorgiou I, Politis I, Mountzouris KC. Effect of Yogurt Acid Whey on the Quality of Maize Silage. Fermentation. 2023; 9(12):994. https://doi.org/10.3390/fermentation9120994
Chicago/Turabian StylePalamidi, Irida, Vasileios V. Paraskeuas, Basiliki Kotsampasi, Ioannis Hadjigeorgiou, Ioannis Politis, and Konstantinos C. Mountzouris. 2023. "Effect of Yogurt Acid Whey on the Quality of Maize Silage" Fermentation 9, no. 12: 994. https://doi.org/10.3390/fermentation9120994
APA StylePalamidi, I., Paraskeuas, V. V., Kotsampasi, B., Hadjigeorgiou, I., Politis, I., & Mountzouris, K. C. (2023). Effect of Yogurt Acid Whey on the Quality of Maize Silage. Fermentation, 9(12), 994. https://doi.org/10.3390/fermentation9120994