Safety of Chinese Cabbage Waste and Rice Straw Mixed Silage and Its Effect on Growth and Health Performance of Hu Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mixed Silage Production
2.2. Experimental Animals and Feeding Management
2.3. Sampling
2.4. Safety Performance Assessment
2.5. Growth Performance Determination
2.6. Determination of the Apparent Digestibility
2.7. Blood Physiological and Biochemical Measurements
2.8. Determination of Organ Indices
2.9. Measurement of Immune Performance
2.10. Data Analysis
3. Results
3.1. Safety Performance Assessment
3.2. Growth Performance and Nutrient Digestibility of Hu Sheep
3.3. Organs Index
3.4. Complex Stomach Development
3.5. Gut Development
3.6. Blood Physiological and Biochemical Indicators
3.7. Immunological Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binod, P.; Sindhu, R.; Singhania, R.R.; Vikram, S.; Devi, L.; Nagalakshmi, S.; Kurien, N.; Sukumaran, R.K.; Pandey, A. Bioethanol production from rice straw: An overview. Bioresour. Technol. 2010, 101, 4767–4774. [Google Scholar] [CrossRef] [PubMed]
- Maiorella, B.L. Ethanol Fermentation. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Pergamon Press: Oxford, UK, 1985; Volume III, pp. 861–914. [Google Scholar]
- Wang, X.; Song, J.; Liu, Z.; Zhang, G.; Zhang, Y. Fermentation Quality and Microbial Community of Corn Stover or Rice Straw Silage Mixed with Soybean Curd Residue. Animals 2022, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.B.; Tiwari, A.K.; Mohammad, A.; Prasad, N.; Srivastava, N.; Srivastava, K.; Singh, R.; Yoon, T.; Syed, A.; Bahkali, A.H. Enhanced Biogas Production Potential Analysis of Rice Straw: Biomass characterization, Kinetics and Anaerobic Co-Digestion investigations. Bioresour. Technol. 2022, 358, 127391. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Mathew, A.K.; Sindhu, R.; Pandey, A.; Binod, P. Potential of rice straw for bio-refining: An overview. Bioresour. Technol. 2016, 215, 29–36. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, Y.; Liu, Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery. Bioresour. Technol. 2017, 228, 56–61. [Google Scholar] [CrossRef]
- Singh, R.; Patel, M. Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass Bioenergy 2022, 159, 106411. [Google Scholar] [CrossRef]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Idan, F.; Adogla-Bessa, T.; Amaning-Kwarteng, K. Preference, voluntary feed intake, and digestibility of sheep fed untreated rice straw and supplemented with sole or combined fodder tree leaves. Eur. J. Agric. Food Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Tejaswini, G.S.; Mahadevakumar, S.; Sowmya, R.; Deepika, Y.S.; Meghavarshinigowda, B.R.; Nuthan, B.R.; Sharvani, K.A.; Amruthesh, K.N.; Sridhar, K.R. Molecular detection and pathological investigations on southern blight disease caused by Sclerotium rolfsii on cabbage (Brassica oleracea var. capitata): A new record in India. J. Phytopathol. 2022, 170, 363–372. [Google Scholar] [CrossRef]
- Cherdthong, A.; Suntara, C.; Khota, W. Lactobacillus casei TH14 and additives could modulate the quality, gas kinetics and the in vitro digestibility of ensilaged rice straw. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1690–1703. [Google Scholar] [CrossRef]
- Partovi, E.; Rouzbehan, Y.; Fazaeli, H.; Rezaei, J. Broccoli byproduct-wheat straw silage as a feed resource for fattening lambs. Transl. Anim. Sci. 2020, 4, txaa078. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.W.; Wang, C.; Fan, W.G.; Zhang, B.Y.; Li, Z.Z.; Li, D. Effects of Formic or Acetic Acid on the Storage Quality of Mixed Air-Dried Corn Stover and Cabbage Waste, and Microbial Community Analysis. Food Technol. Biotechnol. 2018, 56, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Hillion, M.L.; Moscoviz, R.; Trably, E.; Leblanc, Y.; Bernet, N.; Torrijos, M.; Escudie, R. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion. Waste Manag. 2018, 71, 147–155. [Google Scholar] [CrossRef] [PubMed]
- D’mello, J.; Placinta, C.; Macdonald, A. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim. Feed Sci. Tech. 1999, 80, 183–205. [Google Scholar] [CrossRef]
- Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J.L. Determination of mycotoxins in food: A review of bioanalytical to analytical methods. Appl. Spectrosc. Rev. 2015, 50, 728–774. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Sandeep, G.; Vijayalatha, K.; Anitha, T. Heavy metals and its impact in vegetable crops. Int. J. Chem. Stud. 2019, 7, 1612–1621. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Li, C.; Chen, N.; Zhang, X.; Shahzad, K.; Qi, R.; Zhang, Z.; Lu, Z.; Lu, Y.; Yu, X.; Zafar, M.H. Mixed silage with Chinese cabbage waste enhances antioxidant ability by increasing ascorbate and aldarate metabolism through rumen Prevotellaceae UCG-004 in Hu sheep. Front. Microbiol. 2022, 13, 978940. [Google Scholar] [CrossRef]
- Christensen, C.M. Storage of Cereal Grains and Their Products; American Association of Cereal Chemists: Saint Paul, MN, USA, 1974. [Google Scholar]
- Sun, X.; Tiffany, D.G.; Urriola, P.E.; Shurson, G.G.; Hu, B. Nutrition upgrading of corn-ethanol co-product by fungal fermentation: Amino acids enrichment and anti-nutritional factors degradation. Food Bioprod. Process. 2021, 130, 1–13. [Google Scholar] [CrossRef]
- Rusinamhodzi, L. The Role of Ecosystem Services in Sustainable Food Systems; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Yu, Z.; Fan, X.; Bai, C.; Tian, J.; Tharangani, R.; Bu, D.; Jia, T. Assessment of Forage Safety and Quality. In Research Progress on Forage Production, Processing and Utilization in China; Springer: Berlin/Heidelberg, Germany, 2022; pp. 145–181. [Google Scholar]
- Chattopadhyay, A. Pre-and post-harvest losses in vegetables IVI. In Advances in Postharvest Technologies of Vegetable Crops; Apple Academic Press: Cambridge, MA, USA, 2018; pp. 25–87. [Google Scholar]
- Storm, I.; Sørensen, J.L.; Rasmussen, R.R.; Nielsen, K.F.; Thrane, U. Mycotoxins in silage. Stewart Postharvest Rev. 2008, 4, 1–12. [Google Scholar]
- Storm, I.M.L.D.; Kristensen, N.; Raun, B.; Smedsgaard, J.; Thrane, U. Dynamics in the microbiology of maize silage during whole-season storage. J. Appl. Microbiol. 2010, 109, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Vandicke, J.; De Visschere, K.; Ameye, M.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Multi-mycotoxin contamination of maize silages in Flanders, Belgium: Monitoring mycotoxin levels from seed to feed. Toxins 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Moreb, N.; Murphy, A.; Jaiswal, S.; Jaiswal, A.K. Cabbage; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–54. [Google Scholar]
- Mosha, T.; Gaga, H. Nutritive value and effect of blanching on the trypsin and chymotrypsin inhibitor activities of selected leafy vegetables. Plant Foods Hum. Nutr. 1999, 54, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Tilley, J.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Li, R.; Zheng, M.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Replacing alfalfa with paper mulberry in total mixed ration silages: Effects on ensiling characteristics, protein degradation, and in vitro digestibility. Animals 2021, 11, 1273. [Google Scholar] [CrossRef]
- Vi, R.B.; McLeod, K.; Klotz, J.; Heitmann, R. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. J. Dairy Sci. 2004, 87, E55–E65. [Google Scholar]
- Gäbel, G.; Aschenbach, J.; Müller, F. Transfer of energy substrates across the ruminal epithelium: Implications and limitations. Anim. Health Res. Rev. 2002, 3, 15–30. [Google Scholar] [CrossRef]
- Steele, M.A.; Croom, J.; Kahler, M.; AlZahal, O.; Hook, S.E.; Plaizier, K.; McBride, B.W. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 300, R1515–R1523. [Google Scholar] [CrossRef]
- Leighton, B.; Nicholas, A.R.; Pogson, C.I. The pathway of ketogenesis in rumen epithelium of the sheep. Biochem. J. 1983, 216, 769–772. [Google Scholar] [CrossRef]
- VI, R.B. Use of isolated ruminal epithelial cells in the study of rumen metabolism. J. Nutr. 1998, 128, 293S–296S. [Google Scholar]
- Gaebel, G.; Martens, H.; Bell, M. The effect of low mucosal pH on sodium and chloride movement across the isolated rumen mucosa of sheep. Q. J. Exp. Physiol. Transl. Integr. 1989, 74, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Simmons, N.L. Functional organization of the bovine rumen epithelium. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 288, R173–R181. [Google Scholar] [CrossRef] [PubMed]
- Górka, P.; Kowalski, Z.; Zabielski, R.; Guilloteau, P. Invited review: Use of butyrate to promote gastrointestinal tract development in calves. J. Dairy Sci. 2018, 101, 4785–4800. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, V.I.; Pershina, E.V.; Levin, S.G. The role of anti-inflammatory cytokines in memory processing in a healthy brain. Behav. Brain Res. 2019, 367, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683. [Google Scholar] [CrossRef] [PubMed]
- Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51, v3–v11. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Trakatellis, A.; Dimitriadou, A.; Exindari, M.; Scountzou, J.; Koliakos, G.; Christodoulou, D.; Malissiovas, N.; Antoniadis, A.; Polyzoni, T. Effect of pyridoxine deficiency on immunological phenomena. Postgrad. Med. J. 1992, 68, S70–S77. [Google Scholar]
- Wang, H.; Liu, Z.; Huang, M.; Wang, S.; Cui, D.; Dong, S.; Li, S.; Qi, Z.; Liu, Y. Effects of long-term mineral block supplementation on antioxidants, immunity, and health of Tibetan sheep. Biol. Trace Elem. Res. 2016, 172, 326–335. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Alende, R.; Gude, F.; Campos, J.; Rey, J.; Meijide, L.; Fernandez-Merino, C.; Vidal, C. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 2008, 151, 42–50. [Google Scholar] [CrossRef]
- Greene, D.M.; Bondy, G.S.; Azcona-Olivera, J.I.; Pestka, J.J. Role of gender and strain in vomitoxin-induced dysregulation of IgA production and IgA nephropathy in the mouse. J. Toxicol. Environ. Health Part A Curr. Issues 1994, 43, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A. Canine IgA and IgA deficiency: Implications for immunization against respiratory pathogens. Can. Vet. J. 2019, 60, 1305. [Google Scholar] [PubMed]
- Abdel-Salam, O.M.; Czimmer, J.; Debreceni, A.; Szolcsányi, J.; Mózsik, G. Gastric mucosal integrity: Gastric mucosal blood flow and microcirculation. An overview. J. Physiol. 2001, 95, 105–127. [Google Scholar] [CrossRef] [PubMed]
Items | Group 1 | |
---|---|---|
CON | TRE | |
Ingredients | ||
Peanut seedlings | 30 | — |
Corn husk | 15 | — |
Sorghum shell | 5 | — |
Mixed silage | — | 50 |
Corn | 34 | 34 |
Soybean meal | 7 | 5.5 |
Bran | 7.5 | 8 |
Corn protein powder | — | 1 |
NaHCO3 | 0.5 | 0.5 |
NaCl | 0.5 | 0.5 |
Premix 2 | 0.5 | 0.5 |
Total | 100 | 100 |
Nutrient levels 3 | ||
Digestive energy (DE) (MJ/kg) | 13.52 | 14.73 |
Crud protein (CP) | 15.08 | 15.11 |
Ash | 4.36 | 12.33 |
Neutral Detergent Fiber (NDF) | 47.64 | 48.23 |
Acid Detergent Fiber (ADF) | 23.71 | 27.17 |
Ca | 0.48 | 0.45 |
P | 0.38 | 0.39 |
Items | Groups 1 | SEM 2 | p | |
---|---|---|---|---|
CON | TRE | |||
Mycotoxins | ||||
DON/ppm | 0.50 b | 0.68 a | 0.018 | <0.001 |
AFT/ppb | 3.48 b | 4.18 a | 0.104 | 0.002 |
OTA/ppb | 16.63 a | 11.65 b | 1.237 | 0.016 |
ZEN/ppb | 89.37 a | 28.20 b | 0.408 | <0.001 |
Pesticide residues (mg/kg) | ||||
Hexachlorocyclohexane | <0.01 | <0.01 | — | — |
DDT | <0.01 | <0.01 | — | — |
Paclobutrazol | 0.036 | <0.01 | — | — |
Dichlorvos | <0.01 | <0.01 | — | — |
Hexachlorobenzene | <0.01 | <0.01 | — | — |
Deltamethrin | <0.01 | 0.048 | — | — |
Heavy metals and nitrites (mg/kg) | ||||
As | 0.16 a | 0.09 b | 0.010 | 0.002 |
Pb | 2.63 b | 3.63 a | 0.957 | 0.008 |
Hg | 0.03 | 0.05 | 0.008 | 0.103 |
Cr | 0.67 b | 0.98 a | 0.052 | 0.007 |
Cd | 0.12 b | 0.43 a | 0.014 | <0.001 |
Nitrite | 3.15 b | 6.96 a | 1.036 | <0.001 |
Vitamin (μg/L) | ||||
VA | 72.54 | 75.95 | 1.010 | 0.089 |
VB2 | 3.69 b | 4.10 a | 0.100 | 0.028 |
VC | 23.23 b | 27.85 a | 0.100 | 0.003 |
VE | 8.17 | 7.70 | 0.150 | 0.114 |
Items | Groups 1 | SEM 2 | p | |
---|---|---|---|---|
CON | TRE | |||
Spleen weight (g) | 78.73 | 67.01 | 20.599 | 0.674 |
Heart weight (g) | 152.20 | 161.45 | 18.367 | 0.376 |
Liver weight (g) | 654.38 | 591.99 | 97.661 | 0.143 |
Pancreas weight (g) | 171.39 | 155.21 | 43.293 | 0.228 |
Lung weight (g) | 431.20 | 450.56 | 113.679 | 0.682 |
Kidney weight (g) | 112.21 | 100.38 | 20.764 | 0.676 |
Spleen index (g/kg) | 1.80 | 1.57 | 0.413 | 0.370 |
Heart index (g/kg) | 3.49 | 3.82 | 0.359 | 0.430 |
Liver index (g/kg) | 15.03 | 13.85 | 1.570 | 0.312 |
Pancreatic index (g/kg) | 3.89 | 3.67 | 0.851 | 0.561 |
Lung index (g/kg) | 9.96 | 10.68 | 2.699 | 0.792 |
Kidney index (g/kg) | 2.59 | 2.37 | 0.466 | 0.369 |
Items | Groups 1 | SEM 2 | p | |
---|---|---|---|---|
CON | TRE | |||
rumen weight (g) | 764.86 | 692.33 | 64.651 | 0.058 |
reticulum weight (g) | 123.84 | 102.92 | 22.334 | 0.125 |
omasum weight (g) | 150.09 | 116.91 | 24.259 | 0.014 |
abomasum weight (g) | 216.72 | 195.20 | 20.078 | 0.072 |
complex stomachs weight (g) | 1255.51 | 1107.36 | 110.821 | 0.017 |
rumen weight/complex stomachs weight (%) | 0.61 | 0.62 | 0.019 | 0.206 |
reticulum weight/complex stomachs weight (%) | 0.10 | 0.09 | 0.013 | 0.532 |
omasum weight/complex stomachs weight (%) | 0.12 | 0.11 | 0.012 | 0.063 |
abomasum weight/complex stomachs weight (%) | 0.17 | 0.18 | 0.014 | 0.648 |
rumen weight/LWBS (%) | 17.65 | 16.36 | 1.389 | 0.131 |
reticulum weight/LWBS (%) | 2.82 | 2.43 | 0.348 | 0.055 |
omasum weight/LWBS (%) | 3.43 | 2.76 | 0.437 | 0.004 |
abomasum weight/LWBS (%) | 5.03 | 4.65 | 0.694 | 0.392 |
complex stomachs weight/LWBS (%) | 28.93 a | 26.20 b | 2.284 | 0.041 |
Items | Group 1 | SEM 2 | p | ||
---|---|---|---|---|---|
CON | TRE | ||||
Gut weight (g) | Duodenum | 33.93 | 31.06 | 2.591 | 0.061 |
jejunum | 63.75 | 59.42 | 3.811 | 0.054 | |
Ileum | 218.07 | 199.46 | 18.471 | 0.095 | |
Cecum | 204.27 | 193.55 | 18.013 | 0.347 | |
Colon | 137.16 | 131.55 | 11.897 | 0.461 | |
Rectum | 267.87 | 240.74 | 26.858 | 0.094 | |
Gut index (g/Kg) | Duodenum | 0.78 | 0.74 | 0.079 | 0.371 |
jejunum | 1.46 | 1.42 | 0.182 | 0.789 | |
Ileum | 5.03 | 4.75 | 0.457 | 0.340 | |
Cecum | 4.68 | 4.61 | 0.541 | 0.842 | |
Colon | 3.15 | 3.13 | 0.382 | 0.925 | |
Rectum | 6.15 | 5.73 | 0.817 | 0.418 |
Items | Groups 1 | SEM 2 | p | Reference Value | |
---|---|---|---|---|---|
CON | TRE | ||||
Leukocytes/(10−9) | 11.53 | 11.50 | 3.430 | 0.990 | 5.1–15.8 |
Erythrocytes/(10−12) | 10.43 b | 11.52 a | 0.765 | 0.010 | 5.5–14.2 |
Hemoglobin/(g/L) | 133.33 | 136.91 | 14.107 | 0.695 | 63–132 |
Platelets/(10−9) | 348.33 | 329.63 | 138.372 | 0.835 | 178–462 |
Basophil absolute value/(10−9) | 0.06 | 0.03 | 0.040 | 0.231 | 0–0.17 |
Basophil percentage/(%) | 0.46 | 0.35 | 0.187 | 0.337 | 0–1.5 |
Erythrocyte pressure/(L/L) | 40.74 | 38.96 | 3.296 | 0.398 | 20–39 |
Mean red blood cell volume/(f1) | 37.62 | 36.23 | 2.314 | 0.342 | - |
Mean hemoglobin content/(pg) | 12.78 | 12.95 | 0.887 | 0.765 | 9.2–11.0 |
Mean hemoglobin concentration/(g/L) | 324.84 | 353.03 | 30.946 | 0.137 | 290.0–360.0 |
Erythrocyte distribution width/(%) | 22.77 | 21.11 | 3.081 | 0.395 | - |
Standard deviation of erythrocyte distribution/(%) | 21.75 | 20.50 | 1.359 | 0.131 | - |
Total protein/(g/L) | 66.64 | 71.85 | 6.531 | 0.200 | 57–91 |
Albumin/(g/L) | 20.70 | 21.08 | 1.148 | 0.602 | 27.0–45.5 |
Globulin/(g/L) | 46.01 | 48.69 | 5.915 | 0.479 | 16.7–48.5 |
Leukocyte ratio | 0.45 | 0.52 | 0.095 | 0.227 | 0.7–1.6 |
Alkaline phosphatase/(U/L) | 243.98 | 190.19 | 63.644 | 0.171 | 69.5–125.0 |
Lactate dehydrogenase/(U/L) | 812.64 | 613.77 | 164.866 | 0.038 | 44–112 |
Creatinine (CREA) | 46.77 | 65.16 | 16.677 | 0.063 | - |
Urea nitrogen/(mmol/L) | 8.45 | 8.59 | 0.794 | 0.780 | - |
Total cholesterol/(mmol/L) | 1.58 | 1.62 | 0.250 | 0.805 | 1.3–1.9 |
Triglycerides/(mmol/L) | 0.27 | 0.27 | 0.112 | 0.909 | - |
High-density lipoprotein/(mmol/L) | 0.77 | 0.74 | 0.141 | 0.742 | - |
Low-density lipoprotein/(U/L) | 0.57 | 0.57 | 0.127 | 0.952 | 2.7–3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Li, C.; Hou, L.; Zhang, Z.; Lu, Y.; Xue, C.; Qi, R.; Zafar, M.H.; Xu, J.; Wang, M. Safety of Chinese Cabbage Waste and Rice Straw Mixed Silage and Its Effect on Growth and Health Performance of Hu Sheep. Fermentation 2024, 10, 47. https://doi.org/10.3390/fermentation10010047
Lu Z, Li C, Hou L, Zhang Z, Lu Y, Xue C, Qi R, Zafar MH, Xu J, Wang M. Safety of Chinese Cabbage Waste and Rice Straw Mixed Silage and Its Effect on Growth and Health Performance of Hu Sheep. Fermentation. 2024; 10(1):47. https://doi.org/10.3390/fermentation10010047
Chicago/Turabian StyleLu, Zhiqi, Chuang Li, Lie Hou, Zhenbin Zhang, Yue Lu, Chun Xue, Ruxin Qi, Muhammad Hammad Zafar, Jun Xu, and Mengzhi Wang. 2024. "Safety of Chinese Cabbage Waste and Rice Straw Mixed Silage and Its Effect on Growth and Health Performance of Hu Sheep" Fermentation 10, no. 1: 47. https://doi.org/10.3390/fermentation10010047
APA StyleLu, Z., Li, C., Hou, L., Zhang, Z., Lu, Y., Xue, C., Qi, R., Zafar, M. H., Xu, J., & Wang, M. (2024). Safety of Chinese Cabbage Waste and Rice Straw Mixed Silage and Its Effect on Growth and Health Performance of Hu Sheep. Fermentation, 10(1), 47. https://doi.org/10.3390/fermentation10010047