Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Innoculum and Synthetic Corn-Bioethanol Effluent
2.2. Experimental Set-Up
2.3. Analytical Methods
2.4. Mathematical Model
3. Results
3.1. Experimental Results
3.2. Mathematical Modelling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up. Bioresour. Technol. 2021, 319, 124233. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, J.; Zhang, H.; Nie, J.; Appels, L.; Dewil, R.; Ansart, R.; Deng, Y. Reviewing the potential of bio-hydrogen production by fermentation. Renew. Sustain. Energy Rev. 2020, 131, 110023. [Google Scholar] [CrossRef]
- Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl. Energy 2021, 281, 115958. [Google Scholar] [CrossRef]
- Spazzafumo, G.; Raimondi, G. Economic assessment of hydrogen production in a Renewable Energy Community in Italy. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 4, 100131. [Google Scholar] [CrossRef]
- Jankowska, E.; Chwialkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Volatile fatty acids production during mixed culture fermentation—The impact of substrate complexity and pH. Chem. Eng. J. 2017, 326, 901–910. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pilli, S.; Bhunia, P.; Tyagi, R.D.; Surampalli, Y.R.; Zhang, C.T.; Kim, S.-H.; Pandey, A. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review. Chemosphere 2022, 288, 132444. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, O.; Modestra, J.A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation 2023, 9, 368. [Google Scholar] [CrossRef]
- Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.; Kim, S.H.; Kim, D.H. Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew. Sustain. Energy Rev. 2017, 77, 28–42. [Google Scholar] [CrossRef]
- Jayabalan, T.; Matheswaran, M.; Naina Mohammed, S. Biohydrogen production from sugar industry effluents using nickel based electrode materials in microbial electrolysis cell. Int. J. Hydrogen Energy 2019, 44, 17381–17388. [Google Scholar] [CrossRef]
- Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Nemestóthy, N.; Bélafi-Bakó, K.; Lin, C.Y. Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: Process optimization by experimental design approach. Biofuel Res. J. 2015, 2, 209–214. [Google Scholar] [CrossRef]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrogen Energy 2013, 38, 7767–7773. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Vijaya Bhaskar, Y.; Sarma, P.N. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res. 2007, 41, 2652–2664. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J.; Shen, Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis. Bioresour. Technol. 2019, 292, 122012. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.M.; Chanakya, H.N.; Ramachandra, T.V. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J. Appl. Phycol. 2013, 25, 855–865. [Google Scholar] [CrossRef]
- Rossi, D.M.; da Costa, J.B.; de Souza, E.A.; Peralba, M.D.C.R.; Ayub, M.A.Z. Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia. Renew. Energy 2012, 39, 223–227. [Google Scholar] [CrossRef]
- Lu, M.; Li, J.; Han, L.; Xiao, W. High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. Biotechnol. Biofuels 2020, 13, 77. [Google Scholar] [CrossRef]
- Chen, M.H.; Kaur, P.; Dien, B.; Below, F.; Vincent, M.L.; Singh, V. Use of tropical maize for bioethanol production. World J. Microbiol. Biotechnol. 2013, 29, 1509–1515. [Google Scholar] [CrossRef]
- Hafez, H.; Nakhla, G.; El Naggar, H. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System. Energies 2009, 2, 445–455. [Google Scholar] [CrossRef]
- Eryildiz, B.; Lukitawesa; Taherzadeh, M.J. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresour. Technol. 2020, 302, 122800. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Luévano-Montaño, C.D.; García-González, A.; Olivo-Alanis, D.S.; Álvarez-Valencia, L.H.; García-Reyes, R.B. Evaluation of dissolved and immobilized redox mediators on dark fermentation: Driving to hydrogen or solventogenic pathway. Bioresour. Technol. 2020, 317, 123981. [Google Scholar] [CrossRef] [PubMed]
- Slezak, R.; Grzelak, J.; Krzystek, L.; Ledakowicz, S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. Environ. Technol. 2020, 42, 4269–4278. [Google Scholar] [CrossRef] [PubMed]
- Mota, V.T.; Ferraz Júnior, A.D.N.; Trably, E.; Zaiat, M. Biohydrogen production at pH below 3.0: Is it possible? Water Res. 2018, 128, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, X.; Liu, H.; Fu, B. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? Waste Manag. 2016, 48, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, G.; Arrué, R.; Jeison, D.; Chamy, R.; Tapia, E.; Rodríguez, J.; Ruiz-Filippi, G. Simultaneous effects of pH and substrate concentration on hydrogen production by acidogenic fermentation. Electron. J. Biotechnol. 2010, 13, 11–12. [Google Scholar] [CrossRef]
- Tang, G.L.; Huang, J.; Sun, Z.J.; Tang, Q.Q.; Yan, C.H.; Liu, G.Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: Influence of fermentation temperature and pH. J. Biosci. Bioeng. 2008, 106, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Temudo, M.F.; Kleerebezem, R.; Van Loosdrecht, M. Influence of the pH on (Open) mixed culture fermentation of glucose: A chemostat study. Biotechnol. Bioeng. 2007, 98, 69–79. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- Yu, H.G.; Fang, H.H. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2002, 45, 201–206. [Google Scholar] [CrossRef]
- Veeken, A.; Kalyuzhnyi, S.; Scharff, H.; Hamelers, B. Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 2000, 126, 1076–1081. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Castro-Villalobos, M.C.; Garcia-Morales, J.L.; Fernandez, F.J. By-products inhibition effects on bio-hydrogen production. Int. J. Hydrogen Energy 2012, 37, 7077–7083. [Google Scholar] [CrossRef]
- Rodríguez, J.; Kleerebezem, R.; Lema, J.M.; Van Loosdrecht, M.C.M. Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng. 2006, 93, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Kleerebezem, R.; Rodríguez, J.; Temudo, M.F.; van Loosdrecht, M.C.M. Modeling mixed culture fermentations; the role of different electron carriers. Water Sci. Technol. 2008, 57, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Mota, V.T.; de Oliveira, V.M.; Zaiat, M. Hydrogen and organic acid production from dark fermentation of cheese whey without buffers under mesophilic condition. J. Environ. Manag. 2022, 304, 114253. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Lou, Y.; Wu, J.; Sun, Y. Long-term semi-continuous acidogenic fermentation for food wastes treatment: Effect of high organic loading rates at low hydraulic retention times and uncontrolled pH conditions. Bioresour. Technol. 2022, 357, 127356. [Google Scholar] [CrossRef]
- Khanal, S.K.; Chen, W.H.; Li, L.; Sung, S. Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energy 2004, 29, 1123–1131. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chang, R.-C. Fermentative hydrogen production at ambient temperature. Int. J. Hydrogen Energy 2004, 29, 715–720. [Google Scholar] [CrossRef]
- Lee, Y.J.; Miyahara, T.; Noike, T. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 2002, 77, 694–698. [Google Scholar] [CrossRef]
- De Lucas, A.; Rodriguez, L.; Villasenor, J.; Fernandez, F.J. Fermentation of agro-food wastewaters by activated sludge. Water Res. 2007, 41, 1635–1644. [Google Scholar] [CrossRef]
- Rodríguez Mayor, L.; Villaseñor Camacho, J.; Fernández Morales, F.J. Operational optimisation of pilot scale biological nutrient removal at the Ciudad Real (Spain) domestic wastewater treatment plant. Water Air Soil Pollut. 2004, 152, 279–296. [Google Scholar] [CrossRef]
- Fernandez-Morales, F.J.; Villasenor, J.; Infantes, D. Modeling and monitoring of the acclimatization of conventional activated sludge to a biohydrogen producing culture by biokinetic control. Int. J. Hydrogen Energy 2010, 35, 10927–10933. [Google Scholar] [CrossRef]
- Temudo, M.F.; Muyzer, G.; Kleerebezem, R.; Van Loosdrecht, M.C.M. Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 2008, 80, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 2005. (In English) [Google Scholar]
- Infantes, D.; Gonzalez del Campo, A.; Villasenor, J.; Fernandez, F.J. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energy 2011, 36, 15595–15601. [Google Scholar] [CrossRef]
- Infantes, D.; González del Campo, A.; Villaseñor, J.; Fernández, F.J. Kinetic model and study of the influence of pH, temperature and undissociated acids on acidogenic fermentation. Biochem. Eng. J. 2012, 66, 66–72. [Google Scholar] [CrossRef]
- Fu, W.; Mathews, A.P. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 1999, 3, 163–170. [Google Scholar] [CrossRef]
- Rodriguez, J.; Premier, G.C.; Guwy, A.J.; Dinsdale, R.; Kleerebezem, R. Metabolic models to investigate energy limited anaerobic ecosystems. Water Sci. Technol. 2009, 60, 1669–1675. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Dhar, B.R.; Nakhla, G.; Lee, H.S. A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 2017, 79, 656–668. [Google Scholar] [CrossRef]
- van den Heuvel, J.C.; Verschuren, P.G.; Beeftink, H.H.; de Beer, D. Determination of the critical concentration of inhibitory products in a repeated fed-batch culture. Biotechnol. Tech. 1992, 6, 33–38. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, C.C.; Hung, C.H. Fermentative hydrogen production from starch using natural mixed cultures. Int. J. Hydrogen Energy 2008, 33, 2445–2453. [Google Scholar] [CrossRef]
- Davila-Vazquez, G.; Alatriste-Mondragón, F.; de León-Rodríguez, A.; Razo-Flores, E. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int. J. Hydrogen Energy 2008, 33, 4989–4997. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.P. Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: Influence of pH and temperature. Water Res. 2003, 37, 55–66. [Google Scholar] [CrossRef]
Compound | Concentration (g·L−1) | Compound | Concentration (g·L−1) |
---|---|---|---|
(NH4)Cl | 4.89 | FeSO4 7H2O | 11.3 × 10−3 |
KH2PO4 | 2.85 | MnCl2 4H2O | 9.1 × 10−3 |
NaCl | 1.07 | CuCl 2H2O | 8.0 × 10−3 |
Na2SO4 | 0.21 | CoCl2 6H2O | 3.5 × 10−3 |
MgCl2 6H2O | 0.44 | CaCl2 | 2.2 × 10−3 |
EDTA | 0.18 | NiCl2 6H2O | 1.8 × 10−3 |
ZnSO4 7H2O | 11.7 × 10−3 |
Components | Dextrose | Acetic | Lactic | Butyric | Propionic | Biomass | CO2 | H2 | Process Rate | |
---|---|---|---|---|---|---|---|---|---|---|
Process | ||||||||||
Acetic production | −1/YA | 1 | ||||||||
Lactic production | −1/YL | 1 | ||||||||
Butyric production | −1/YB | 1 | ||||||||
Propionic production | −1/YP | 1 | ||||||||
Biomass growth | −1/Yobs | 1 | ||||||||
Carbon dioxide production | −1/YCO2 | 1 | ||||||||
Hydrogen production | −1/YH2 | 1 | ||||||||
Lactic consumption | 1 | −2 | 1 | 1 | ||||||
Lysis of biomass | −1 | D·X |
Fermentation Product | pH 4 | pH 5 | pH 6 |
---|---|---|---|
Acetic acid (mmol·L−1) | 0.52 | 0.63 | 0.80 |
Butyric acid (mmol·L−1) | 0.07 | 0.58 | 0.50 |
Propionic acid (mmol·L−1) | 0.03 | 0.02 | 0.03 |
H2 (mmol·L−1) | 0.12 | 0.89 | 0.56 |
CO2 (mmol·L−1) | 0.23 | 0.50 | 0.61 |
Estimated economic value (EUR·L−1) | 0.03 | 0.12 | 0.11 |
Parameter | pH 4 | pH 5 | pH 6 | |
---|---|---|---|---|
Yxmax (g VSS·mmol S−1) | 0.023 | 0.023 | 0.023 | |
Decay (h−1) | 0.001 | 0.005 | 0.007 | |
µmax (h−1) | a | 0.041 | 00.49 | 0.046 |
b | −0.142 | −0.130 | −0.133 | |
Ymaint (g VSS·mmol S−1) | c | 0.0040 | 0.0041 | 0.0041 |
d | 0.0271 | 0.0251 | 0.0251 | |
Ks (mmol·L−1) | e | 43.7 | 40.3 | 40.3 |
f | −472 | −472 | −472 | |
g | 1295 | 1285 | 1288 | |
Ksusbtrate (mmol·L−1) | 90 | 90 | 90 | |
Kbiomass (mmol·L−1) | 70 | 70 | 70 | |
Ya (mol·mol−1) | 0.50 | 0.80 | 0.96 | |
Yb (mol·mol−1) | 0.10 | 0.60 | 0.60 | |
Yl (mol·mol−1) | 0.80 | 0.20 | 0.20 | |
Yp (mol·mol−1) | 0.01 | 0.02 | 0.04 | |
YH2 (mol·mol−1) | 0.10 | 1.10 | 0.69 | |
YCO2 (mol·mol−1) | 0.32 | 0.60 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibañez-López, M.E.; Díaz-Domínguez, E.; Suffo, M.; Makinia, J.; García-Morales, J.L.; Fernández-Morales, F.J. Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent. Fermentation 2023, 9, 937. https://doi.org/10.3390/fermentation9110937
Ibañez-López ME, Díaz-Domínguez E, Suffo M, Makinia J, García-Morales JL, Fernández-Morales FJ. Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent. Fermentation. 2023; 9(11):937. https://doi.org/10.3390/fermentation9110937
Chicago/Turabian StyleIbañez-López, María Eugenia, Encarnación Díaz-Domínguez, Miguel Suffo, Jacek Makinia, Jose Luis García-Morales, and Francisco Jesús Fernández-Morales. 2023. "Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent" Fermentation 9, no. 11: 937. https://doi.org/10.3390/fermentation9110937
APA StyleIbañez-López, M. E., Díaz-Domínguez, E., Suffo, M., Makinia, J., García-Morales, J. L., & Fernández-Morales, F. J. (2023). Biorefinery Approach for H2 and Acids Production Based on Uncontrolled pH Fermentation of an Industrial Effluent. Fermentation, 9(11), 937. https://doi.org/10.3390/fermentation9110937