Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial 1: Strain Screening for High Proteolysis in Meat and Bone-Meal
2.1.1. Strain Screening
2.1.2. Fermented MSM Preparation
2.1.3. Identification of Screening Strain
2.1.4. Proteolytic Specificity of Various Strains
2.2. Trial 2: Effect of Different Bacillus spp. FMSMPs on Physiological and Chemical Characteristics
2.2.1. Fermented MSM Preparation
2.2.2. Ratio of Recovery
2.2.3. Physiological and Chemical Characteristics
2.2.4. SDS-PAGE
2.3. Trial 3: Effect of Different Bacillus spp. FMSMPs on Growth Performance, Organ and Tissue Weights, and Serum Biochemical Constituents in Broilers
2.3.1. Bird Management and Experimental Design
2.3.2. Feed Proximate Analysis
2.3.3. Growth Performance
2.3.4. Organs and Tissues Weight
2.3.5. Serum Biochemical Constituents
2.4. Statistical Analysis
3. Results and Discussion
3.1. Trial 1: Strain Screening and Identification for High Proteolysis in Meat and Bone-Meal
3.2. Trial 2: Effect of Different Bacillus spp. FMSMPs on Physiological and Chemical Characteristics
3.2.1. Physicochemical Characterizations of FMSMPs
3.2.2. Proximate Analysis and Amino Acid Composition of FMSMPs
3.2.3. Protease Activity and Protein Characteristics of FMSMPs
3.3. Trial 3: Effect of Different Bacillus spp. FMSMPs on Growth Performance, Organ and Tissue Weight, and Serum Biochemical Constituents in Broilers
3.3.1. Growth Performance
3.3.2. Correlation between Physicochemical Characteristics of FMSMP and Growth Performance
3.3.3. Organ and Tissue Weight
3.3.4. Clinical Blood Biochemistry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Poel, A.F.B.; Van Krimpen, M.M.; Veldkamp, T.; Kwakkel, R.P. Unconventional protein sources for poultry feeding–opportunities and threats. In Proceedings of the 19th European Symposium on Poultry Nutrition, Potsdam, Germany, 26–29 August 2013; pp. 14–24. [Google Scholar]
- Chen, S.Y.; Su, Y.C.; Li, M.L.; Yeh, R.H.; Shih, B.L.; Liang, H.M.; Chen, T.T.; Chen, K.L. Safety Evaluation of the Meat and Bone Meal Produced by the Rendering Plants in Taiwan. J. Chin. Soc. Anim. Sci. 2010, 39, 15–23. [Google Scholar]
- Chen, S.Y.; Shih, B.L.; Liang, H.M.; Chen, T.T.; Su, Y.C.; Chen, K.L. A Study of Nutritional Value of Meat and Bone Meal and Quality of Rendering Oil in Taiwan. J. Chin. Soc. Anim. Sci. 2014, 43, 57–70. [Google Scholar]
- Garcia, R.A.; Phillips, J.G. Physical Distribution and Characteristics of Meat and Bone Meal Protein. J. Sci. Food Agric. 2009, 89, 329–336. [Google Scholar] [CrossRef]
- Hendriks, W.H.; Butts, C.A.; Thomas, D.V.; James, K.A.C.; Morel, P.C.A.; Verstegen, M.W.A. Nutritional Quality and Variation of Meat and Bone Meal. Asian-Australas. J. Anim. Sci. 2002, 15, 1507–1516. [Google Scholar] [CrossRef]
- Ravindran, V.; Hendriks, W.H.; Camden, B.J.; Thomas, D.V.; Morel, P.C.H.; Butts, C.A. Amino Acid Digestibility of Meat and Bone Meals for Broiler Chickens. Aust. J. Agric. Res. 2002, 53, 1257. [Google Scholar] [CrossRef]
- Piazza, G.J.; Garcia, R.A. Proteolysis of Meat and Bone Meal to Increase Utilisation. Anim. Prod. Sci. 2014, 54, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Hung, P. List of Feed Ingredients (Including Additives); Zuo Huo Dou Zhen Publishing House: Tainan, Taiwan, 2003. [Google Scholar]
- Chen, K.L.; Kho, W.L.; You, S.H.; Yeh, R.H.; Tang, S.W.; Hsieh, C.W. Effects of Bacillus Subtilis Var. Natto and Saccharomyces Cerevisiae Mixed Fermented Feed on the Enhanced Growth Performance of Broilers. Poult. Sci. 2009, 88, 309–315. [Google Scholar] [CrossRef]
- Yeh, R.H.; Hsieh, C.W.; Chen, K.L. Screening Lactic Acid Bacteria to Manufacture Two-Stage Fermented Feed and Pelleting to Investigate the Feeding Effect on Broilers. Poult. Sci. 2018, 97, 236–246. [Google Scholar] [CrossRef]
- Huang, H.J.; Weng, B.C.; Hsuuw, Y.D.; Lee, Y.S.; Chen, K.L. Dietary Supplementation of Two-Stage Fermented Feather-Soybean Meal Product on Growth Performance and Immunity in Finishing Pigs. Animals 2021, 11, 1527. [Google Scholar] [CrossRef]
- Yin, H.; Jia, F.; Huang, J. The Variation of Two Extracellular Enzymes and Soybean Meal Bitterness during Solid-State Fermentation of Bacillus subtilis. Grain Oil Sci. Technol. 2019, 2, 39–43. [Google Scholar] [CrossRef]
- Cho, W.I.; Chung, M.S. Bacillus Spores: A Review of Their Properties and Inactivation Processing Technologies. Food Sci. Biotechnol. 2020, 29, 1447–1461. [Google Scholar] [CrossRef]
- Pant, G.; Prakash, A.; Pavani, J.V.P.; Bera, S.; Deviram, G.V.N.S.; Kumar, A.; Panchpuri, M.; Prasuna, R.G. Production, Optimization and Partial Purification of Protease from Bacillus subtilis. J. Taibah Univ. Sci. 2015, 9, 50–55. [Google Scholar] [CrossRef]
- Sorapukdee, S.; Sumpavapol, P.; Benjakul, S.; Tangwatcharin, P. Collagenolytic Proteases from Bacillus subtilis B13 and B. Siamensis S6 and Their Specificity toward Collagen with Low Hydrolysis of Myofibrils. LWT 2020, 126, 109307. [Google Scholar] [CrossRef]
- Lei, X.; Piao, X.; Ru, Y.; Zhang, H.; Péron, A.; Zhang, H. Effect of Bacillus amyloliquefaciens-Based Direct-Fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2015, 28, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Gadde, U.; Oh, S.T.; Lee, Y.S.; Davis, E.; Zimmerman, N.; Rehberger, T.; Lillehoj, H.S. The Effects of Direct-Fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens. Probiotics Antimicrob. Proteins 2017, 9, 397–405. [Google Scholar] [CrossRef]
- Weng, T.M.; Chen, M.T. Changes of Protein in Natto (a Fermented Soybean Food) Affected by Fermenting Time. Food Sci. Technol. Res. 2010, 16, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Kristiana, R.; Bedoux, G.; Pals, G.; Mudianta, I.W.; Taupin, L.; Marty, C.; Asagabaldan, M.A.; Ayuningrum, D.; Trianto, A.; Bourgougnon, N.; et al. Bioactivity of Compounds Secreted by Symbiont Bacteria of Nudibranchs from Indonesia. PeerJ 2020, 8, e8093. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC International: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Oguntoyinbo, F.A.; Sanni, A.I.; Franz, C.M.A.P.; Holzapfel, W.H. In Vitro Fermentation Studies for Selection and Evaluation of Bacillus Strains as Starter Cultures for the Production of Okpehe, a Traditional African Fermented Condiment. Int. J. Food Microbiol. 2007, 113, 208–218. [Google Scholar] [CrossRef]
- Garcia, R.A.; Rosentrater, K.A.; Flores, R.A. Characteristics of North American Meat & Bone Meal Relevant to the Development of Non-Feed Applications. Appl. Eng. Agric. 2006, 22, 729–736. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güven, M. Effects of Proteolytic and Lipolytic Enzyme Supplementations on Lipolysis and Proteolysis Characteristics of White Cheeses. Foods 2018, 7, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atma, Y.; Lioe, H.N.; Prangdimurti, E.; Seftiono, H.; Taufik, M.; Fitriani, D.; Mustopa, A.Z. The Hydroxyproline Content of Fish Bone Gelatin from Indonesian Pangasius Catfish by Enzymatic Hydrolysis for Producing the Bioactive Peptide. Asian J. Nat. Prod. Biochem. 2018, 16, 64–68. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Coll, B.A.; Garcia, R.A.; Marmer, W.N. Diffusion of Protease into Meat & Bone Meal for Solubility Improvement and Potential Inactivation of the BSE Prion. PLoS ONE 2007, 2, e245. [Google Scholar]
- Arbor Acres. Arbor Acres Broiler Management Manual; Arbor Acres Taiwan Inc.: Taipei, Taiwan, 2019. [Google Scholar]
- Bergmeyer, H.U. Methods of Enzymatic Analysis, 3rd ed.; Verlag Chemie: Weinheim, Germany, 1983. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide: Statistics, 2nd ed.; Version 9; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Taheri, H.R.; Moravej, H.; Tabandeh, F.; Zaghari, M.; Shivazad, M. Screening of Lactic Acid Bacteria toward Their Selection as a Source of Chicken Probiotic. Poult. Sci. 2009, 88, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ma, M.; Cai, Z.; Yang, X.; Wang, W. Purification and Properties of a Collagenolytic Protease Produced by Bacillus Cereus MBL13 Strain. Food Technol. Biotechnol. 2010, 48, 151–161. [Google Scholar]
- Laili, N.; Antonius, S. Production and Characterization of Extracellular Protease from Bacillus Sp. 140-B Isolated from Pineapple Plantation in Lampung, Indonesia. KnE Life Sci. 2017, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Spellman, D.; McEvoy, E.; O’Cuinn, G.; FitzGerald, R.J. Proteinase and Exopeptidase Hydrolysis of Whey Protein: Comparison of the TNBS, OPA and PH Stat Methods for Quantification of Degree of Hydrolysis. Int. Dairy J. 2003, 13, 447–453. [Google Scholar] [CrossRef]
- Morais, H.A.; Silvestre, M.P.C.; Silva, V.D.M.; Silva, M.R.; Silva, A.C.S.E.; Silveira, J.N. Correlation between the Degree of Hydrolysis and the Peptide Profile of Whey Protein Concentrate Hydrolysates: Effect of the Enzyme Type and Reaction Time. Am. J. Food Technol. 2013, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-State Fermentation of Corn-Soybean Meal Mixed Feed with Bacillus subtilis and Enterococcus Faecium for Degrading Antinutritional Factors and Enhancing Nutritional Value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Warth, A.D. Relationship between the Heat Resistance of Spores and the Optimum and Maximum Growth Temperatures of Bacillus Species. J. Bacteriol. 1978, 134, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Andriani, Y.; Safitri, R.; Rochima, E.; Fakhrudin, S.D. Characterization of Bacillus subtilis and B. Licheniformis Potentials as Probiotic Bacteria in Vanamei Shrimp Feed (Litopenaeus Vannamei Boone, 1931). Nusant. Biosci. 2017, 9, 188–193. [Google Scholar] [CrossRef]
- Kiers, J.L.; Van Laeken, A.E.A.; Rombouts, F.M.; Nout, M.J.R. In Vitro Digestibility of Bacillus Fermented Soya Bean. Int. J. Food Microbiol. 2000, 60, 163–169. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Xi, J.T.; Xu, J.F.; Ma, L.T.; Zhao, J. Enhancement of Bacillus subtilis Growth and Sporulation by Two-Stage Solid-State Fermentation Strategy. Processes 2019, 7, 644. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Shih, Y.C.; Chiou, P.W.S.; Yu, B. Evaluating Nutritional Quality of Single Stage- and Two Stage-Fermented Soybean Meal. Asian-Australas. J. Anim. Sci. 2010, 23, 598–606. [Google Scholar] [CrossRef]
- Zheng, L.; Li, D.; Li, Z.L.; Kang, L.N.; Jiang, Y.Y.; Liu, X.Y.; Chi, Y.P.; Li, Y.Q.; Wang, J.H. Effects of Bacillus Fermentation on the Protein Microstructure and Anti-Nutritional Factors of Soybean Meal. Lett. Appl. Microbiol. 2017, 65, 520–526. [Google Scholar] [CrossRef]
- Zhang, Y.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dossou, S.; Wang, W.; Zhang, X.; Shadrack, R.S.; Mzengereza, K.; Zhu, K.; et al. Optimization of Soybean Meal Fermentation for Aqua-Feed with Bacillus subtilis Natto Using the Response Surface Methodology. Fermentation 2021, 7, 306. [Google Scholar] [CrossRef]
- Nwokola, E.; Sim, J. Comparative Evaluation of Fermented Fish Waste, Fermented Whole Herring, and Fish Meal. Poult. Sci. 1990, 69, 270–275. [Google Scholar] [CrossRef]
- Ramadhan, R.F.; Wizna, W.; Marlida, Y.; Mirzah, M. Fermentation of Blood Meal with Bacillus Amyloliquefaciens as Broiler Feeding. Asian J. Anim. Vet. Adv. 2016, 11, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of Fermentation in Improving Nutritional Quality of Soybean Meal—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Li, J.; Zhu, B.; Gao, T. Anaerobic Solid-State Fermentation of Soybean Meal With Bacillus Sp. to Improve Nutritional Quality. Front. Nutr. 2021, 8, 706977. [Google Scholar] [CrossRef]
- Medeiros, S.; Xie, J.; Dyce, P.W.; Cai, H.Y.; DeLange, K.; Zhang, H.; Li, J. Isolation of Bacteria from Fermented Food and Grass Carp Intestine and Their Efficiencies in Improving Nutrient Value of Soybean Meal in Solid State Fermentation. J. Anim. Sci. Biotechnol. 2018, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Rezaei, R.; Li, P.; Wu, G. Composition of Amino Acids in Feed Ingredients for Animal Diets. Amino Acids 2011, 40, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, G. Roles of Dietary Glycine, Proline, and Hydroxyproline in Collagen Synthesis and Animal Growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Kittiphattanabawon, P. Gelatin. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: London, UK, 2019; pp. 121–127. [Google Scholar]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Giteru, S.G.; Holman, B.W.B.; Hopkins, D.L. Total Volatile Basic Nitrogen and Trimethylamine in Muscle Foods: Potential Formation Pathways and Effects on Human Health. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3620–3666. [Google Scholar] [CrossRef]
- Macelline, S.P.; McQuade, L.R.; Mclnerney, B.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Protein Digestive Dynamics of Meat and Bone Meals in Broiler Chickens. Anim. Nutr. 2020, 6, 521. [Google Scholar] [CrossRef]
- Sahraei, M.; Lootfollahian, H.; Ghanbari, A. Effect of Poultry by Product Meal on Performance Parameters, Serum Uric Acid Concentration and Carcass Characteristics. Iran. J. Appl. Anim. Sci. 2012, 2, 73–77. [Google Scholar]
- Piotrowska, A.; Burlikowska, K.; Szymeczko, R. Changes in Blood Chemistry in Broiler Chickens during the Fattening Period. Folia Biol. 2011, 59, 183–187. [Google Scholar] [CrossRef]
- Donsbough, A.L.; Powell, S.; Waguespack, A.; Bidner, T.D.; Southern, L.L. Uric Acid, Urea, and Ammonia Concentrations in Serum and Uric Acid Concentration in Excreta as Indicators of Amino Acid Utilization in Diets for Broilers1. Poult. Sci. 2010, 89, 287–294. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Liu, Y.Y.; Lu, Y.P. Effects of Aspergillus Oryzae 3.042 Fermented Soybean Meal on Growth Performance and Plasma Biochemical Parameters in Broilers. Anim. Feed Sci. Technol. 2007, 134, 235–242. [Google Scholar] [CrossRef]
- Sembratowicz, I.; Chachaj, R.; Krauze, M.; Ognik, K. The Effect of Diet with Fermented Soybean Meal on Blood Metabolites and Redox Status of Chickens. Ann. Anim. Sci. 2020, 20, 599–611. [Google Scholar] [CrossRef]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, W.; Liu, Y.; Li, Z.; Han, D.; Cheng, X.; Yan, J.; Yang, X. Dynamics of Serum Phosphorus, Calcium, and Hormones during Egg Laying Cycle in Hy-Line Brown Laying Hens. Poult. Sci. 2019, 98, 2193–2200. [Google Scholar] [CrossRef]
- Sugiharto, S.; Widiastuti, E.; Robby Pratama, A.; Wahyuni, H.I.; Yudiarti, T.; Agus Sartono, T. Hematological and Intestinal Responses of Broilers to Dietary Supplementations of Lactic Fermented Turmeric, Black Pepper or a Mixture of Both. Acta Univ. Agric. Silvic. Mendel. Brun 2021, 69, 101–110. [Google Scholar] [CrossRef]
Ingredients (%) | 0–21 d | 21–35 d | ||||
---|---|---|---|---|---|---|
Fish Meal | MSM | FMSMP | Fish Meal | MSM | FMSMP | |
Yellow corn, grain | 56.6 | 53.8 | 54.7 | 63.6 | 60.8 | 60.7 |
Soybean oil | 1.28 | 1.67 | 1.66 | 1.72 | 2.10 | 2.10 |
Full fat soybeans, 38% | 8.72 | 11.1 | 10.2 | 11.5 | 14.0 | 13.1 |
Soybean meal, 44% | 25.0 | 25.0 | 25.0 | 15.2 | 15.2 | 15.2 |
Fish meal, 68% | 5.00 | - | - | 5.00 | - | - |
MSM, 50% 1 | - | 5.00 | - | - | 5.00 | - |
FMSMP, 55% 2,3 | - | - | 5.00 | - | - | 5.00 |
Dicalcium phosphate | 1.38 | 1.21 | 1.22 | 1.12 | 0.95 | 0.95 |
Limestone, pulverized | 1.33 | 1.12 | 1.12 | 1.15 | 0.94 | 0.94 |
Salts | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
L-Lysine | 0.00 | 0.23 | 0.25 | 0.00 | 0.21 | 0.23 |
DL-methionine | 0.22 | 0.35 | 0.34 | 0.17 | 0.30 | 0.29 |
Vitamin premix 4 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Mineral premix 5 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Calculated value | ||||||
Crude protein, CP% | 22.3 | 22.3 | 22.3 | 19.5 | 19.5 | 19.5 |
ME, kcal/kg | 3050 | 3052 | 3052 | 3200 | 3200 | 3200 |
Calcium, Ca % | 0.91 | 0.92 | 0.91 | 0.79 | 0.79 | 0.79 |
Available phosphorus, AP% | 0.46 | 0.46 | 0.46 | 0.40 | 0.40 | 0.40 |
dMet + Cys, % | 0.92 | 0.92 | 0.92 | 0.80 | 0.80 | 0.80 |
dLys, % | 1.20 | 1.20 | 1.20 | 1.00 | 1.00 | 1.00 |
Strains | Zone of Clear Ratio 3 | Total Peptide, mg/g DM | DH 4, % |
---|---|---|---|
Control 2 | 0.00 b | 11.9 d | 1.78 e |
N21 | 1.55 a | 75.0 ab | 9.90 bc |
M2 | 1.50 a | 68.6 b | 9.13 c |
M3 | 1.60 a | 75.6 ab | 10.0 abc |
M5 | 1.68 a | 82.2 a | 10.9 ab |
M6 | 1.69 a | 84.6 a | 11.3 a |
M10 | 1.50 a | 67.3 bc | 8.96 cd |
M11 | 1.50 a | 58.5 c | 7.79 d |
M12 | 1.50 a | 68.9 b | 9.17 c |
M17 | 1.52 a | 67.6 bc | 9.00 cd |
M19 | 1.52 a | 71.0 b | 9.45 c |
M20 | 1.62 a | 75.3 ab | 9.94 abc |
M21 | 1.52 a | 70.5 b | 9.39 c |
SEM | 0.10 | 1.92 | 0.26 |
p-value | <0.0001 | <0.0001 | <0.0001 |
Control 1 | Bacterial Inoculation 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
N21 | M3 | M5 | M6 | M20 | ||||
Clear zone/colony ratio 3 | ||||||||
Casein | 0.00 c | 1.27 ab | 1.20 b | 1.16 b | 1.36 a | 1.14 b | 0.032 | <0.0001 |
Gelatin | 0.00 d | 1.51 ab | 1.32 bc | 1.49 ab | 1.60 a | 1.17 c | 0.049 | <0.0001 |
MBM 4 | 0.00 b | 1.71 a | 1.65 a | 1.69 a | 1.74 a | 1.60 a | 0.032 | <0.0001 |
Bacterial Inoculation 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|
N21 | M3 | M5 | M6 | M20 | |||
pH Value | |||||||
Initial | 6.41 w | 6.46 w | 6.43 w | 6.45 x | 6.45 x | 0.023 | 0.5800 |
Fermented first day | 7.39 d,y | 7.24 e,y | 7.51 c,y | 7.76 b,z | 7.98 a,z | 0.023 | <0.0001 |
Fermented second day | 7.98 a,z | 7.98 a,z | 7.94 a,z | 7.74 b,z | 7.94 a,z | 0.030 | 0.0022 |
Dried products | 6.72 c,x | 6.66 d,x | 6.77 b,x | 6.62 e,y | 6.95 a,y | 0.002 | <0.0001 |
SEM | 0.028 | 0.015 | 0.029 | 0.020 | 0.021 | ||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Bacillus-like counts, log cfu/g feed | |||||||
Initial | 7.02 w | 7.04 w | 7.06 w | 7.06 w | 7.04 w | 0.010 | 0.0942 |
Fermented first day | 9.49 b,y | 9.72 a,y | 9.46 b,z | 9.76 a,z, | 9.25 c,y | 0.028 | <0.0001 |
Fermented second day | 9.19 c,x | 9.46 a,y | 9.26 bc,y | 9.50 a,y | 9.38 ab,y | 0.060 | 0.0176 |
Dried products | 9.08 ab,x | 8.50 c,x | 8.91 ab,x | 9.16 a,x | 8.87 b,x | 0.083 | 0.0018 |
SEM | 0.030 | 0.091 | 0.031 | 0.030 | 0.053 | ||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Control 1 | Bacterial Inoculation 2 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
N21 | M3 | M5 | M6 | M20 | ||||
Proximate analysis | ||||||||
Recovery ratio, %/DM | 100.0 a | 83.5 b | 83.5 b | 83.8 b | 83.2 b | 83.5 b | 0.17 | <0.0001 |
Moisture, % | 9.50 | 9.52 | 9.49 | 9.32 | 9.45 | 9.45 | 0.15 | 0.9374 |
Crude ash, %/DM | 13.2 b | 14.7 a | 14.9 a | 14.7 a | 14.5 a | 14.5 a | 0.12 | <0.0001 |
Crude protein, %/DM | 50.3 c | 54.5 b | 55.9 a | 55.7 ab | 56.0 a | 55.2 ab | 0.28 | <0.0001 |
Amino acid composition, %/DM | ||||||||
Essential AA | ||||||||
Arg | 3.33 c | 3.39 b | 3.37 bc | 3.35 bc | 3.36 bc | 3.44 a | 0.01 | <0.0001 |
His | 1.18 b | 1.24 ab | 1.22 ab | 1.23 ab | 1.27 a | 1.21 ab | 0.02 | 0.0364 |
Ile | 1.81 | 1.84 | 1.85 | 1.86 | 1.88 | 1.83 | 0.02 | 0.3805 |
Leu | 3.50 | 3.48 | 3.53 | 3.47 | 3.51 | 3.49 | 0.02 | 0.2468 |
Lys | 2.74 | 2.82 | 2.84 | 2.83 | 2.81 | 2.80 | 0.02 | 0.1323 |
Met | 0.741 b | 0.824 a | 0.839 a | 0.831 a | 0.817 a | 0.800 a | 0.01 | 0.0005 |
Phe | 2.15 c | 2.15 c | 2.23 ab | 2.24 a | 2.16 bc | 2.18 abc | 0.01 | 0.0012 |
Thr | 1.84 | 1.87 | 1.84 | 1.81 | 1.88 | 1.85 | 0.03 | 0.4339 |
Val | 2.19 c | 2.28 b | 2.34 ab | 2.37 a | 2.21 c | 2.2 c | 0.02 | <0.0001 |
Non-essential AA | ||||||||
Ala | 2.55 e | 2.96 bc | 2.89 c | 3.01 b | 3.10 a | 2.74 d | 0.01 | <0.0001 |
Asp | 4.63 c | 4.84 ab | 4.77 ab | 4.81 ab | 4.84 a | 4.75 b | 0.02 | <0.0001 |
Cys | 0.52 c | 0.67 b | 0.631 b | 0.642 b | 0.753 a | 0.635 b | 0.01 | <0.0001 |
Glu | 7.97 d | 8.25 b | 8.40 a | 8.16 bc | 8.21 bc | 8.11 c | 0.02 | <0.0001 |
Gly | 3.45 d | 4.06 ab | 4.02 bc | 4.11 a | 4.02 b | 3.95 c | 0.01 | <0.0001 |
Pro | 2.86 d | 3.65 ab | 3.54 bc | 3.67 a | 3.63 ab | 3.52 c | 0.02 | <0.0001 |
Ser | 2.38 | 2.40 | 2.41 | 2.44 | 2.44 | 2.42 | 0.02 | 0.5064 |
Tyr | 1.29 c | 1.38 ab | 1.33 bc | 1.36 b | 1.43 a | 1.32 bc | 0.01 | <0.0001 |
TEAA 3 | 19.5 b | 19.9 a | 20.1 a | 20.0 a | 19.9 a | 19.8 ab | 0.08 | 0.0041 |
TNEAA 4 | 25.7 c | 28.2 a | 28.0 a | 28.2 a | 28.4 a | 27.4 b | 0.10 | <0.0001 |
TAA 5 | 45.1 c | 48.1 a | 48.0 a | 48.2 a | 48.3 a | 47.3 ab | 0.14 | <0.0001 |
Control 2 | Bacterial Inoculation 3 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
N21 | M3 | M5 | M6 | M20 | ||||
Neutral protease, U/g | 18.0 e | 441 a | 265 c | 376 b | 384 b | 108 d | 5.24 | <0.0001 |
Alkaline protease, U/g | 7.92 e | 459 a | 394 b | 258 c | 462 a | 108 d | 4.14 | <0.0001 |
WSP, mg/g DM | 28.5 a | 16.4 d | 18.2 c | 19.3 c | 16.7 d | 22.9 b | 0.24 | <0.0001 |
TCA-SN, %/DM | 6.74 e | 24.2 bc | 24.3 b | 22.4 c | 27.6 a | 18.5 d | 0.40 | <0.0001 |
TCA-SN/TN, % | 13.4 e | 48.1 bc | 48.3 b | 44.5 c | 54.9 a | 36.8 d | 0.80 | <0.0001 |
Total peptide, mg/g DM | 9.92 d | 64.8 b | 68.3 b | 67.8 b | 79.3 a | 43.2 c | 1.17 | <0.0001 |
DH, % | 2.20 d | 14.4 b | 15.1 b | 15.0 b | 17.6 a | 9.59 c | 0.91 | <0.0001 |
Free-HYP, mg/g DM | 18.2 c | 40.6 a | 31.6 b | 35.3 b | 41.6 a | 31.7 b | 0.98 | <0.0001 |
TVBN, mg/100 g DM | 14.2 c | 195 b | 196 b | 192 b | 196 b | 215 a | 1.78 | <0.0001 |
Day | Fish Meal | MSM 1 | FMSMP 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
N21 | M3 | M5 | M6 | M20 | |||||
Body weight (BW), g/bird | |||||||||
0 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 35.4 | 0.04 | 0.700 |
21 | 814 b | 815 b | 859 ab | 831 ab | 831 ab | 893 a | 830 ab | 15.0 | 0.020 |
35 | 1982 c | 1987 bc | 2073 ab | 2013 abc | 2006 abc | 2092 a | 2020 abc | 18.6 | 0.003 |
Feed intake (FI), g/bird | |||||||||
0–21 | 1010 b | 1055 ab | 1117 a | 1102 a | 1110 a | 1079 ab | 1052 ab | 15.8 | 0.002 |
21–35 | 2025 | 2093 | 2108 | 2047 | 2072 | 2121 | 2205 | 69.3 | 0.641 |
0–35 | 3035 | 3148 | 3225 | 3150 | 3182 | 3200 | 3257 | 71.1 | 0.446 |
Weight gain (WG), g/bird | |||||||||
0–21 | 779 b | 780 b | 824 ab | 796 ab | 796 ab | 858 a | 795 ab | 15.0 | 0.020 |
21–35 | 1168 | 1172 | 1214 | 1182 | 1175 | 1199 | 1190 | 18.8 | 0.603 |
0–35 | 1947 c | 1952 bc | 2037 ab | 1977 abc | 1971 abc | 2057 a | 1984 abc | 18.6 | 0.003 |
Feed conversion ratio (FCR), feed intake/weight gain | |||||||||
0–21 | 1.30 ab | 1.35 ab | 1.36 ab | 1.39 a | 1.39 a | 1.26 b | 1.32 ab | 0.03 | 0.016 |
21–35 | 1.73 | 1.79 | 1.74 | 1.73 | 1.76 | 1.77 | 1.85 | 0.07 | 0.920 |
0–35 | 1.56 | 1.61 | 1.58 | 1.59 | 1.61 | 1.56 | 1.64 | 0.04 | 0.854 |
Survival rate (SR), % | |||||||||
0–35 | 97.5 | 97.5 | 100 | 97.5 | 97.5 | 100 | 97.5 | 2.07 | 0.901 |
Production efficiency factor, (SR (%) × BW (kg))/(age (d) × FCR) × 100 | |||||||||
0–35 | 352 | 344 | 375 | 352 | 348 | 385 | 343 | 13.4 | 0.253 |
Growth Performance 2 | BC | NP | AP | WSP | Total Peptide | TCA-SN | TCA-SN/TN | DH | Free-HYP | TVBN |
---|---|---|---|---|---|---|---|---|---|---|
0–21 d WG | 0.31 | 0.22 | 0.46 * | −0.42 * | 0.41 * | 0.42 * | 0.42 * | 0.41 * | 0.49 * | 0.26 |
21–35 d WG | 0.09 | 0.08 | 0.13 | −0.14 | 0.09 | 0.12 | 0.12 | 0.08 | 0.10 | 0.08 |
0–35 d WG | 0.20 | 0.16 | 0.29 | −0.29 | 0.24 | 0.27 | 0.27 | 0.23 | 0.29 | 0.18 |
0–21 d FCR | −0.07 | 0.22 | −0.12 | 0.08 | −0.10 | −0.14 | −0.14 | −0.10 | −0.22 | −0.07 |
21–35 d FCR | −0.03 | −0.25 | −0.23 | 0.20 | −0.14 | −0.13 | −0.13 | −0.14 | −0.03 | −0.01 |
0–35 d FCR | −0.06 | −0.16 | −0.28 | 0.24 | −0.19 | −0.19 | −0.19 | −0.19 | −0.14 | −0.04 |
0–35 d PEF | 0.19 | 0.22 | 0.38 | −0.35 | 0.30 | 0.32 | 0.32 | 0.30 | 0.31 | 0.16 |
Fish Meal | MSM 1 | FMSMP 2 | SEM | p-Value | ||
---|---|---|---|---|---|---|
N21 | M6 | |||||
Relative weight, g/100 g of BW | ||||||
Dressing percentage, % | 79.9 b | 80.7 b | 81.1 ab | 82.1 a | 0.33 | 0.006 |
Heart | 0.50 | 0.53 | 0.54 | 0.55 | 0.02 | 0.520 |
Liver | 1.71 | 1.90 | 1.89 | 1.72 | 0.07 | 0.170 |
Gizzard and Proventriculus | 2.12 | 2.25 | 2.19 | 1.97 | 0.09 | 0.230 |
Intestine | 3.71 | 3.86 | 3.54 | 3.40 | 0.08 | 0.210 |
Abdominal fat | 1.32 | 1.30 | 1.38 | 1.39 | 0.08 | 0.840 |
Spleen | 0.09 | 0.10 | 0.11 | 0.09 | 0.03 | 0.300 |
Thymus | 0.36 | 0.42 | 0.42 | 0.39 | 0.01 | 0.260 |
Bursa of Fabricius | 0.22 | 0.21 | 0.22 | 0.24 | 0.02 | 0.540 |
Breast | 21.3 | 21.1 | 20.7 | 21.5 | 0.37 | 0.460 |
Fish Meal | MSM 2 | FMSMP 3 | SEM | p-Value | ||
---|---|---|---|---|---|---|
N21 | M6 | |||||
AST, U/L | 409 | 461 | 439 | 362 | 33.5 | 0.25 |
γ-GT, U/L | 23.0 | 21.3 | 22.1 | 21.3 | 0.83 | 0.42 |
LDH, U/L | 2979 | 2753 | 2685 | 2618 | 159 | 0.45 |
CK, U/L | 5390 | 5529 | 5333 | 4475 | 334 | 0.18 |
ALP, U/L | 2611 | 2573 | 1779 | 1990 | 346 | 0.29 |
Total protein, g/dL | 2.79 | 2.89 | 2.96 | 2.96 | 0.12 | 0.72 |
Albulin, g/dL | 1.50 | 1.71 | 1.76 | 1.76 | 0.06 | 0.05 |
Globulin, g/dL | 1.29 | 1.18 | 1.20 | 1.20 | 0.09 | 0.85 |
Albulin/Globulin (A/G) | 1.21 | 1.46 | 1.50 | 1.50 | 0.11 | 0.23 |
Blood Urea Nitrogen, mg/dL | 2.73 a | 2.30 ab | 2.24 ab | 2.03 b | 0.16 | 0.04 |
Calcium, mg/dL | 9.66 | 9.53 | 10.06 | 9.65 | 0.20 | 0.30 |
Phosphorus, mg/dL | 7.90 | 7.96 | 7.93 | 8.06 | 0.15 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, W.-K.; Ong, P.-L.; Lee, Y.-S.; Hsu, Y.-T.; Chen, K.-L. Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers. Fermentation 2023, 9, 24. https://doi.org/10.3390/fermentation9010024
Lo W-K, Ong P-L, Lee Y-S, Hsu Y-T, Chen K-L. Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers. Fermentation. 2023; 9(1):24. https://doi.org/10.3390/fermentation9010024
Chicago/Turabian StyleLo, Weng-Keong, Ping-Lin Ong, Yueh-Sheng Lee, Yi-Tai Hsu, and Kuo-Lung Chen. 2023. "Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers" Fermentation 9, no. 1: 24. https://doi.org/10.3390/fermentation9010024
APA StyleLo, W. -K., Ong, P. -L., Lee, Y. -S., Hsu, Y. -T., & Chen, K. -L. (2023). Effect of Fermented Meat and Bone Meal–Soybean Meal Product on Growth Performance in Broilers. Fermentation, 9(1), 24. https://doi.org/10.3390/fermentation9010024