Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Stage Fermented Product Preparation
2.2. Animal Management and Experimental Design
2.3. Physical and Chemical Composition of TSFP
2.4. Feed Composition Analysis
2.5. Reproductive Performance of Sows
2.6. Growth Performance of Suckling Pigs
2.7. Collection of Blood Sample
2.8. Clinical Blood Biochemistry
2.9. Immune Characteristics
2.9.1. Cytokine Production
2.9.2. Phagocytosis and Oxidative Burst
2.9.3. Serum Immunoglobulin
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Composition of Two-Stage Fermented Product
3.2. Performance of Sows and Piglets
3.3. Clinical Blood Biochemistry
3.4. Immune Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NRC. Nutrient Requirements Tables. In Nutrient Requirements of Swine; National Academy Press: Washington, DC, USA, 2012; pp. 208–236. [Google Scholar] [CrossRef] [Green Version]
- Theil, P.K. Transition Feeding of Sows. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 147–172. [Google Scholar] [CrossRef]
- Gaillard, C.; Gauthier, R.; Cloutier, L.; Dourmad, J.Y. Exploration of Individual Variability to Better Predict the Nutrient Requirements of Gestating Sows1. J. Anim. Sci. 2019, 97, 4934–4945. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.D.; Allen, V.M.; Davies, R.H. Chemical Treatment of Animal Feed and Water for the Control of Salmonella. Foodborne Pathog. Dis. 2010, 7, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Kim, I.H. Fish Meal—Nutritive Value. J. Anim. Physiol. Anim. 2011, 95, 685–692. [Google Scholar] [CrossRef]
- Huang, H.J.; Wang, H.S.; Lee, H.L.; Hsu, C.B.; Wang, C.H.; Lin, C.Y.; Hsuuw, Y.D.; Weng, B.C.; Chen, K.L. Effects of Dietary Inclusion of Two Stage Mix-Probiotics Fermented Feedstuff on Growth Performances and Immune Response of Growing Pigs. J. Taiwan Livest. Res. 2014, 47, 239–250. [Google Scholar]
- Huang, H.J.; Weng, B.C.; Hsuuw, Y.D.; Lee, Y.S.; Chen, K.L. Dietary Supplementation of Two-Stage Fermented Feather-Soybean Meal Product on Growth Performance and Immunity in Finishing Pigs. Animals 2021, 11, 1527. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, Z.; Wang, C.; Fu, J.; Zhang, Y.; Wang, Y.; Lu, Z. Effects of Fermented Feed Supplementation on Pig Growth Performance: A Meta-Analysis. Anim. Feed Sci. Technol. 2020, 259, 114315. [Google Scholar] [CrossRef]
- Demecková, V.; Kelly, D.; Coutts, A.G.P.; Brooks, P.H.; Campbell, A. The Effect of Fermented Liquid Feeding on the Faecal Microbiology and Colostrum Quality of Farrowing Sows. Int. J. Food Microbiol. 2002, 79, 85–97. [Google Scholar] [CrossRef]
- Wang, C.; Lin, C.; Su, W.; Zhang, Y.; Wang, F.; Wang, Y.; Shi, C.; Lu, Z. Effects of Supplementing Sow Diets with Fermented Corn and Soybean Meal Mixed Feed during Lactation on the Performance of Sows and Progeny. J. Anim. Sci. 2018, 96, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wei, S.; Xu, B.; Hao, L.; Su, W.; Jin, M.; Wang, Y. Bacillus Subtilis and Enterococcus Faecium Co-Fermented Feed Regulates Lactating Sow’s Performance, Immune Status and Gut Microbiota. Microb. Biotechnol. 2021, 14, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Jiang, D.; Zhou, W.; Hao, H.; Niu, T. Isolation and Characterization of a New Bacillus Sp. 50-3 with Highly Alkaline Keratinase Activity from Calotes Versicolor Faeces. World J. Microbiol. Biotechnol. 2009, 25, 583–590. [Google Scholar] [CrossRef]
- NRC. Models for Estimating Nutrient Requirements of Swine. In Nutrient Requirements of Swine; National Academy Press: Washington, DC, USA, 2012; pp. 127–154. [Google Scholar] [CrossRef] [Green Version]
- Chiba, L.I. By Product Feeds: Animal Origin. In Encyclopedia of Animal Science; CRC Press: New York, NY, USA, 2010; pp. 169–174. [Google Scholar]
- Moritz, J.S.; Latshaw, J.D. Indicators of Nutritional Value of Hydrolyzed Feather Meal1. Poult. Sci. 2001, 80, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Gessesse, A.; Hatti-Kaul, R.; Gashe, B.A.; Mattiasson, B. Novel Alkaline Proteases from Alkaliphilic Bacteria Grown on Chicken Feather. Enzyme Microb. Technol. 2003, 32, 519–524. [Google Scholar] [CrossRef]
- Hung, P. List of Feed Ingredients (Including Additives); Zuo Huo Dou Zhen Publishing House: Tainan, Taiwan, 2003. [Google Scholar]
- Lee, T.Y.; Lee, Y.S.; Yeh, R.H.; Chen, K.H.; Chen, K.L. Bacillus amyloliquefaciens CU33 Fermented Feather Meal-Soybean Meal Product Improves the Intestinal Morphology to Promote the Growth Performance of Broilers. Poult. Sci. 2022, 101, 102027. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Kho, W.L.; You, S.H.; Yeh, R.H.; Tang, S.W.; Hsieh, C.W. Effects of Bacillus Subtilis Var. Natto and Saccharomyces Cerevisiae Mixed Fermented Feed on the Enhanced Growth Performance of Broilers. Poult. Sci. 2009, 88, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Kunioka, M. Biosynthesis and Hydrolysis of Poly(γ-Glutamic Acid) from Bacillus subtilis IF03335. Biosci. Biotechnol. Biochem. 1992, 56, 1031–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC Int.: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Edfors-Lilja, I.; Wattrang, E.; Marklund, L.; Moller, M.; Andersson-Eklund, L.; Andersson, L.; Fossum, C. Mapping Quantitative Trait Loci for Immune Capacity in the Pig. J. Immun. J. 1998, 161, 829–835. [Google Scholar] [CrossRef]
- Huang, H.J.; Weng, B.C.; Lee, Y.S.; Lin, C.Y.; Hsuuw, Y.D.; Chen, K.L. The Effects of Two-Stage Fermented Feather Meal-Soybean Meal Product on Growth Performance, Blood Biochemistry, and Immunity of Nursery Pigs. Fermentation 2022, 8, 634. [Google Scholar] [CrossRef]
- Yeh, R.H.; Hsieh, C.W.; Chen, K.L. Screening Lactic Acid Bacteria to Manufacture Two-Stage Fermented Feed and Pelleting to Investigate the Feeding Effect on Broilers. Poult. Sci. 2018, 97, 236–246. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-State Fermentation of Corn-Soybean Meal Mixed Feed with Bacillus Subtilis and Enterococcus Faecium for Degrading Antinutritional Factors and Enhancing Nutritional Value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, Mechanical Properties, Occurrence in Biological Organisms, and Efforts at Bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Effective Biodegradation of Chicken Feather Waste by Co-Cultivation of Keratinase Producing Strains. Microb. Cell Fact. 2019, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- van der Peet-Schwering, C.M.C.; Jansman, A.J.M.; Smidt, H.; Yoon, I. Effects of Yeast Culture on Performance, Gut Integrity, and Blood Cell Composition of Weanling Pigs1,2. J. Anim. Sci. 2007, 85, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Piao, X.S.; Kim, S.W.; Wang, L.; Liu, P.; Yoon, I.; Zhen, Y.G. Effects of Yeast Culture Supplementation on Growth Performance, Intestinal Health, and Immune Response of Nursery Pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Moneim, A.M.E.; Selim, D.A.; Basuony, H.A.; Sabic, E.M.; Saleh, A.A.; Ebeid, T.A. Effect of Dietary Supplementation of Bacillus subtilis Spores on Growth Performance, Oxidative Status, and Digestive Enzyme Activities in Japanese Quail Birds. Trop. Anim. Health Prod. 2020, 52, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Abhari, K.; Saadati, S.; Yari, Z.; Hosseini, H.; Hedayati, M.; Abhari, S.; Alavian, S.M.; Hekmatdoost, A. The Effects of Bacillus coagulans Supplementation in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized, Placebo-Controlled, Clinical Trial. Clin. Nutr. ESPEN 2020, 39, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choe, Y.H.; Kim, G.S.; Kim, H.Y.; Kim, B.S. Effect of Korean Red Ginseng Marc Fermented by Bacillus subtilis on Swine Immunity. Korean J. Vet. Serv. 2018, 41, 141–147. [Google Scholar]
- Eckersall, P.D. Proteins, Proteomics, and the Dysproteinemias. In Linical Biochemistry of Domestic Animals; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 117–135. [Google Scholar]
- Shen, Y.B.; Carroll, J.A.; Yoon, I.; Mateo, R.D.; Kim, S.W. Effects of Supplementing Saccharomyces Cerevisiae Fermentation Product in Sow Diets on Performance of Sows and Nursing Piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef]
- Peh, H.C.; Huang, S.Y.; Lin, R.S. Livestock Clinical Blood Biochemistry, 1st ed.; Liyu Publishing House: Taichung, Taiwan, 1996. [Google Scholar]
- Tizard, I.R. Veterinary Immunology: An Introduction, 8th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2008. [Google Scholar]
- Nguyen, T.V.; Yuan, L.; Azevedo, M.S.P.; Jeong, K.I.; Gonzalez, A.M.; Saif, L.J. Transfer of Maternal Cytokines to Suckling Piglets: In Vivo and in Vitro Models with Implications for Immunomodulation of Neonatal Immunity. Vet Immunol. Immunopathol. 2007, 117, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-Gamma (IFN-γ): Exploring Its Implications in Infectious Diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef]
- Chase, C.; Lunney, J.K. Immune System. In Diseases of Swine; Zimmerman, J., Karriker, L., Ramirez, A., Schwartz, K., Stevenson, G., Zhang, J., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 264–290. [Google Scholar]
- Rooke, J.A.; Bland, I.M. The Acquisition of Passive Immunity in the New-Born Piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- Rooke, J.A.; Carranca, C.; Bland, I.M.; Sinclair, A.G.; Ewen, M.; Bland, V.C.; Edwards, S.A. Relationships between Passive Absorption of Immunoglobulin G by the Piglet and Plasma Concentrations of Immunoglobulin G at Weaning. Livest. Prod. Sci. 2003, 81, 223–234. [Google Scholar] [CrossRef]
Items | Gestation Period | Lactating Period | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2% Fish Meal | TSFP, % | 2% Fish Meal | TSFP, % | |||||||
0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |||
Corn, yellow | 72.23 | 70.70 | 71.04 | 71.5 | 71.95 | 60.81 | 59.13 | 59.63 | 60.1 | 60.59 |
Wheat bran | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Soybean oil | 2.64 | 2.81 | 2.85 | 2.89 | 2.91 | 2.85 | 3.03 | 3.06 | 3.09 | 3.12 |
Soybean meal, CP 44% | 10.50 | 13.60 | 12.20 | 10.70 | 9.20 | 23.80 | 27.03 | 25.50 | 24.00 | 22.5 |
Fish meal (Peru), CP 65% | 2.00 | 0 | 0 | 0 | 0 | 2.00 | 0 | 0 | 0 | 0 |
TSFP 1, CP 62% | 0 | 0 | 1.00 | 2.00 | 3.00 | 0 | 0 | 1.00 | 2.00 | 3.00 |
Dicalcium phosphate | 1.08 | 1.30 | 1.30 | 1.30 | 1.30 | 0.92 | 1.13 | 1.13 | 1.13 | 1.13 |
Limestone | 1.00 | 1.06 | 1.06 | 1.06 | 1.06 | 1.02 | 1.08 | 1.08 | 1.08 | 1.09 |
Salt | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Vitamin premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Mineral premix 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Analysis | ||||||||||
Crude protein, % | 12.54 | 12.49 | 12.48 | 12.42 | 12.56 | 17.45 | 17.56 | 17.39 | 17.46 | 17.51 |
Ca, % | 0.79 | 0.76 | 0.74 | 0.73 | 0.77 | 0.72 | 0.78 | 0.75 | 0.77 | 0.74 |
P, % | 0.66 | 0.64 | 0.6 | 0.63 | 0.65 | 0.58 | 0.62 | 0.61 | 0.64 | 0.62 |
Items 4 | TSFP 1 | SEM | p-Value | |
---|---|---|---|---|
L12 2 | Y10 3 | |||
First stage fermentation | ||||
pH | 7.82 | - | - | |
Bacillus-like, log CFU/g | 8.52 | - | - | |
Second stage fermentation | ||||
pH | 5.68 | 5.71 | 0.11 | 0.8602 |
Bacillus-like, log CFU/g | 8.16 | 8.35 | 0.14 | 0.3937 |
Lactobacillus-like, log CFU/g | 8.27 | - | - | - |
Yeast-like, log CFU/g | - | 7.63 | - | - |
Dry product | ||||
pH | 5.75 | 5.68 | 0.07 | 0.5644 |
Bacillus-like, log CFU/g | 7.56 | 7.59 | 0.12 | 0.8984 |
γ-PGA, % | 4.50 | 4.55 | 0.03 | 0.2906 |
Chemical composition of dry product | ||||
Moisture, % | 9.57 | 9.54 | 0.13 | 0.8915 |
Crude ash, %/DM | 4.70 | 4.68 | 0.19 | 0.9239 |
Crude protein, %/DM | 62.9 | 63.3 | 1.24 | 0.8441 |
Calcium, Ca %/DM | 0.24 | 0.25 | 0.02 | 0.7226 |
Total Phosphorus, TP %/DM | 0.56 | 0.55 | 0.02 | 0.6843 |
Items | 2% Fish Meal | TSFP 1, % | SEM | p-Value | Polynomial Contrasts | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||||
Sow: | |||||||||
Gestation period | |||||||||
The period of gestation, days | 114 | 112 | 113 | 114 | 113 | 0.90 | 0.8224 | 0.7167 | 0.2840 |
Body weight (d 80), kg | 220 | 225 | 220 | 231 | 230 | 7.10 | 0.6932 | 0.4115 | 0.8442 |
Body weight (d 107), kg | 237 | 242 | 238 | 250 | 249 | 7.06 | 0.5943 | 0.3221 | 0.8667 |
Body weight gain (d 80–107), kg | 17.2 b | 17.1 b | 17.7 ab | 18.5 a | 18.7 a | 0.45 | 0.0450 | 0.0025 | 0.6002 |
Feed conversion ratio (d 80–107) | 3.78 a | 3.80 a | 3.65 ab | 3.49 b | 3.45 b | 0.10 | 0.0363 | 0.0021 | 0.5109 |
Lactation period | |||||||||
Weight at weaning, kg | 220 | 225 | 220 | 233 | 233 | 6.93 | 0.5038 | 0.2958 | 0.7347 |
Weight loss during lactation, kg | 17.1 | 16.5 | 17.8 | 17.1 | 15.8 | 1.32 | 0.8512 | 0.6349 | 0.3688 |
Average daily feed intake from farrowing to weaning, kg | 3.52 a | 3.30 b | 3.47 ab | 3.50 a | 3.52 a | 0.05 | 0.0159 | 0.0012 | 0.0828 |
Weaning-to-estrus interval, days | 8.2 | 8.7 | 9.8 | 8.6 | 8.30 | 2.74 | 0.9943 | 0.8472 | 0.8016 |
Weaning-to-mating interval, days | 16.6 | 19.2 | 18.3 | 16.8 | 14.50 | 4.21 | 0.9461 | 0.3858 | 0.8609 |
Piglet: | |||||||||
Piglet Body weight, kg/piglet | |||||||||
Initial weight | 1.42 | 1.43 | 1.41 | 1.38 | 1.40 | 0.03 | 0.8382 | 0.4063 | 0.4771 |
weaning at 28 d | 5.45 | 5.37 | 5.39 | 5.44 | 5.56 | 0.14 | 0.9043 | 0.2674 | 0.6753 |
Average daily feed intake of 8 d to weaning, g/piglet | 114.2 ab | 109.1 c | 109.5 bc | 116.5 ab | 117.4 a | 1.79 | 0.0030 | <0.0001 | 0.8560 |
No. of per litter | |||||||||
totally born alive | 11.0 | 10.2 | 10.4 | 10.8 | 11.2 | 0.78 | 0.8859 | 0.4082 | 0.9128 |
weaning piglets | 9.10 | 8.50 | 9.00 | 9.20 | 9.90 | 0.54 | 0.4934 | 0.1218 | 0.8722 |
Pre-weaning mortality 2 | 1.90 | 1.70 | 1.40 | 1.60 | 1.30 | 0.43 | 0.8726 | 0.6405 | 1.0000 |
Weaning litter weight, kg/litter | 49.63 b | 45.66 c | 48.53 bc | 50.06 b | 55.05 a | 0.72 | <0.0001 | <0.0001 | 0.1959 |
Survival, % | 82.9 | 86.5 | 86.6 | 85.6 | 90.1 | - | 0.6205 | 0.5206 | 0.5139 |
Items 2 | 2% Fish Meal | TSFP 1, % | SEM | p-Value | Polynomial Contrasts | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||||
Sow: | |||||||||
ALT (U/L) | 20.4 ab | 21.0 a | 19.2 b | 18.8 b | 18.7 b | 0.61 | 0.0341 | 0.0104 | 0.1254 |
AST (U/L) | 30.2 | 29.9 | 29.4 | 28.2 | 28.9 | 0.95 | 0.5998 | 0.3361 | 0.5116 |
ALP (U/L) | 25.6 | 25.8 | 26.5 | 25.5 | 24.8 | 1.01 | 0.8307 | 0.3508 | 0.4286 |
TP (g/dL) | 7.54 | 7.32 | 7.39 | 7.52 | 7.58 | 0.17 | 0.8005 | 0.1947 | 0.9948 |
BUN (U/L) | 4.44 a | 4.49 a | 4.38 ab | 4.26 ab | 4.01 b | 0.10 | 0.0184 | 0.0037 | 0.5586 |
GLU (mg/dL) | 81.0 | 79.6 | 80.3 | 81.9 | 81.6 | 2.75 | 0.9341 | 0.4027 | 0.9891 |
TG (mg/dL) | 74.2 | 75.2 | 73.2 | 72.2 | 72.0 | 2.45 | 0.8853 | 0.3720 | 0.7386 |
CHOL (mg/dL) | 393.2 | 395.4 | 382.7 | 384.7 | 375.5 | 15.1 | 0.9470 | 0.6630 | 0.8450 |
HDL-CHOL (mg/dL) | 115 | 107 | 107 | 116 | 118 | 5.36 | 0.2377 | 0.0115 | 0.801 |
Ca (mg/dL) | 5.47 | 5.40 | 5.43 | 5.47 | 5.46 | 0.04 | 0.7621 | 0.2433 | 0.5474 |
P (mg/dL) | 4.19 | 4.17 | 4.20 | 4.22 | 4.19 | 0.12 | 0.9986 | 0.8775 | 0.8124 |
Piglet: | |||||||||
ALT (U/L) | 20.6 ab | 21.9 a | 19.6 b | 19.1 b | 19.1 b | 0.75 | 0.0490 | 0.0120 | 0.1050 |
AST (U/L) | 31.6 | 32.9 | 30.4 | 29.2 | 29.9 | 0.98 | 0.0773 | 0.0117 | 0.0627 |
ALP (U/L) | 28.7 ab | 29.7 a | 28.8 ab | 26.5 b | 26.6 b | 0.81 | 0.0279 | 0.0002 | 0.4041 |
TP (g/dL) | 22.9 ab | 22.6 b | 24.0 ab | 25.1 ab | 25.4 a | 0.69 | 0.0196 | 0.0004 | 0.2845 |
BUN (U/L) | 7.04 a | 6.99 a | 6.88 ab | 6.52 bc | 6.50 c | 0.09 | <0.0001 | <0.0001 | 0.536 |
GLU (mg/dL) | 105 | 102 | 103 | 106 | 107 | 2.55 | 0.7598 | 0.0628 | 0.9593 |
TG (mg/dL) | 82.2 | 80.1 | 79.2 | 78.2 | 79.0 | 1.18 | 0.1312 | 0.4314 | 0.4851 |
CHOL (mg/dL) | 462 | 457 | 446 | 437 | 433 | 8.84 | 0.1801 | 0.0382 | 0.6630 |
HDL-CHOL (mg/dL) | 94.4 | 98.5 | 100.8 | 99.2 | 100.4 | 2.43 | 0.3550 | 0.1267 | 0.2439 |
Ca (mg/dL) | 6.47 | 6.40 | 6.43 | 6.43 | 6.38 | 0.04 | 0.6100 | 0.7023 | 0.2867 |
P (mg/dL) | 4.06 | 3.87 | 3.97 | 4.02 | 3.99 | 0.07 | 0.3285 | 0.1165 | 0.2738 |
Items | 2% Fish Meal | TSFP 1, % | SEM | p-Value | Polynomial Contrasts | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Linear | Quadratic | ||||
Sow | |||||||||
cytokine, pg/mL | |||||||||
IFN-γ | 117 b | 117 b | 121 b | 133 a | 135 a | 2.86 | <0.0001 | <0.0001 | 0.6040 |
mean fluorescence intensity | |||||||||
phagocytosis | 63.3 | 61.3 | 64.5 | 68.2 | 70.0 | 2.51 | 0.1324 | 0.0149 | 0.7312 |
oxidative burst | 168 | 161 | 164 | 172 | 175 | 3.79 | 0.0818 | 0.0049 | 0.9773 |
immunoglobulin, mg/mL | |||||||||
IgA | 1.50 | 1.49 | 1.52 | 1.54 | 1.54 | 0.05 | 0.9457 | 0.4752 | 0.7666 |
IgM | 1.83 | 1.80 | 1.82 | 1.86 | 1.85 | 0.05 | 0.8939 | 0.3094 | 0.6469 |
IgG | 18.4 c | 18.22 c | 18.90 bc | 21.03 ab | 21.33 a | 0.56 | 0.0002 | <0.0001 | 0.6900 |
Piglet | |||||||||
cytokine, pg/mL | |||||||||
IFN-γ | 109 b | 107 b | 117 ab | 126 a | 127 a | 3.30 | <0.0001 | <0.0001 | 0.1023 |
mean fluorescence intensity | |||||||||
phagocytosis | 80.3 | 79.3 | 79.8 | 86.1 | 85.6 | 3.79 | 0.5496 | 0.1809 | 0.9036 |
oxidative burst | 562 b | 573 b | 588 b | 642 ab | 696 a | 26.40 | 0.0038 | 0.0027 | 0.5044 |
immunoglobulin, mg/mL | |||||||||
IgA | 1.46 | 1.45 | 1.51 | 1.58 | 1.61 | 0.05 | 0.1125 | 0.0121 | 0.8546 |
IgM | 1.85 | 1.83 | 1.85 | 1.89 | 1.88 | 0.04 | 0.8441 | 0.2326 | 0.6966 |
IgG | 19.7 bc | 19.0 c | 20.0 ab | 21.3 ab | 21.9 a | 0.52 | 0.0015 | <0.0001 | 0.6813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-J.; Lee, Y.-S.; Weng, B.-C.; Lin, C.-Y.; Hsuuw, Y.-D.; Chen, K.-L. Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets. Fermentation 2023, 9, 82. https://doi.org/10.3390/fermentation9020082
Huang H-J, Lee Y-S, Weng B-C, Lin C-Y, Hsuuw Y-D, Chen K-L. Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets. Fermentation. 2023; 9(2):82. https://doi.org/10.3390/fermentation9020082
Chicago/Turabian StyleHuang, Hsien-Juang, Yueh-Sheng Lee, Bor-Chun Weng, Cheng-Yung Lin, Yan-Der Hsuuw, and Kuo-Lung Chen. 2023. "Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets" Fermentation 9, no. 2: 82. https://doi.org/10.3390/fermentation9020082
APA StyleHuang, H. -J., Lee, Y. -S., Weng, B. -C., Lin, C. -Y., Hsuuw, Y. -D., & Chen, K. -L. (2023). Two-Stage Fermented Feather Meal-Soybean Meal Product Improves the Performance and Immunity of Lactating Sows and Piglets. Fermentation, 9(2), 82. https://doi.org/10.3390/fermentation9020082