Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiments and Treatments
2.2. Rumen Inoculum Preparation and Animals
2.3. Substances and Incubation
2.4. Samples and Analyses
2.5. Analytical Statistics
3. Results
3.1. Gas Kinetics
3.2. Rumen Fermentation and Ruminal Cyanide Concentration
3.3. In Vitro Digestibility
3.4. Volatile Fatty Acid Content in the Rumen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shelton, M.; Dalzell, S. Production, economic and environmental benefits of Leucaena pastures. Trop. Grassl. 2007, 41, 174. [Google Scholar]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin degradation by rumen microorganisms: A review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef]
- Dalzell, S.; Burnett, D.; Dowsett, J.; Forbes, V.; Shelton, H. Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim. Prod. Sci. 2012, 52, 365–372. [Google Scholar] [CrossRef]
- Jones, R.; Blunt, C.; Holmes, J. Enlarged thyroid glands in cattle grazing Leucaena pastures [Leucaena leucocephala cv. Peru, tropical zone, Queensland, Western Australia, New Guinea]. Trop. Grassl. 1976, 10, 113–116. [Google Scholar]
- Jones, R.; Megarrity, R. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 1986, 63, 259–262. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Wanapat, M.; Chanjula, P.; Uriyapongson, S. Effects of sulfur levels in fermented total mixed ration containing fresh cassava root on feed utilization, rumen characteristics, microbial protein synthesis, and blood metabolites in Thai native beef cattle. Animals 2019, 9, 261. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M. Screening of cyanide-utilizing bacteria from rumen and in vitro evaluation of fresh cassava root utilization with pellet containing high sulfur diet. Vet. Sci. 2021, 8, 10. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A. Effect of sulfur concentrations in fermented total mixed rations containing fresh cassava root on rumen fermentation. Anim. Prod. Sci. 2020, 60, 1429–1434. [Google Scholar] [CrossRef]
- Sumadong, P.; Cherdthong, A.; So, S.; Wanapat, M. Sulfur, fresh cassava root and urea independently enhanced gas production, ruminal characteristics and in vitro degradability. BMC Vet. Res. 2021, 17, 304. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Supapong, C.; Cherdthong, A. Effect of sulfur and urea fortification of fresh cassava root in fermented total mixed ration on the improvement milk quality of tropical lactating cows. Vet. Sci. 2020, 7, 98. [Google Scholar] [CrossRef]
- Tshala-Katumbay, D.; Mwanza, J.-C.; Rohlman, D.S.; Maestre, G.; Oriá, R.B. A global perspective on the influence of environmental exposures on the nervous system. Nature 2015, 527, S187–S192. [Google Scholar] [CrossRef]
- Vaseghi, T. Biochemical properties and biological functions of the enzyme rhodanese in domestic animals. Iran. J. Vet. Res. 2006, 7, 1–13. [Google Scholar]
- McSweeney, C.; Odenyo, A.; Krause, D. Rumen microbial responses to antinutritive factors in fodder trees and shrub legumes. J. Appl. Anim. Res. 2002, 21, 181–205. [Google Scholar] [CrossRef]
- Gensa, U. Review on cyanide poisoning in ruminants. Synthesis 2019, 9, 6. [Google Scholar]
- Majak, W.; McDiarmid, R.; Hall, J.; Cheng, K. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro. J. Anim. Sci. 1990, 68, 1648–1655. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Kumar, V.; Kumar, V. Microbial remediation of cyanides. In Bioremediation Current Research and Application; Rathoure, A.K., Ed.; International Publishing House: New Delhi, India, 2017; pp. 88–110. [Google Scholar]
- Anand, V.; Pandey, A. Role of microbes in biodegradation of cyanide and its metal complexes. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 205–224. [Google Scholar]
- Potivichayanon, S.; Supromin, N.; Toensakes, R. Development of a mixed microbial culture for thiocyanate and metal cyanide degradation. 3 Biotech 2017, 7, 191. [Google Scholar] [CrossRef]
- Ware, G.; Painter, H. Bacterial utilization of cyanide. Nature 1955, 175, 900. [Google Scholar] [CrossRef]
- Kearl, L.C. Nutrient Requirements of Ruminants in Developing Countries; International Feedstuffs Institute, Utah State University: Logan, UT, USA, 1982. [Google Scholar]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Sawanon, S.; Kobayashi, Y. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: Evidence in defined cultures. Anim. Sci. J. 2006, 77, 208–214. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sommart, K.; Parker, D.; Rowlinson, P.; Wanapat, M. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Australas. J. Anim. Sci. 2000, 13, 1084–1093. [Google Scholar] [CrossRef]
- Tilley, J.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- McMahon, J.M.; White, W.L.; Sayre, R.T. Cyanogenesis in cassava (Manihot esculenta Crantz). J. Exp. Bot. 1995, 46, 731–741. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A. Rhodanese enzyme addition could reduce cyanide concentration and enhance fiber digestibility via in vitro fermentation study. Fermentation 2021, 7, 207. [Google Scholar] [CrossRef]
- Luque-Almagro, V.M.; Cabello, P.; Sáez, L.P.; Olaya-Abril, A.; Moreno-Vivián, C.; Roldán, M.D. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl. Microbiol. Biotechnol. 2018, 102, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Howden, A.J.; Jill Harrison, C.; Preston, G.M. A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J. 2009, 57, 243–253. [Google Scholar] [CrossRef]
- Dagaew, G.; Cherdthong, A.; Wanapat, M.; Chanjula, P. In vitro rumen gas production kinetics, hydrocyanic acid concentration and fermentation characteristics of fresh cassava root and feed block sulfur concentration. Anim. Prod. Sci. 2020, 60, 659–664. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Tourova, T.P.; Lysenko, A.M.; Kuenen, J.G. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 2001, 67, 528–538. [Google Scholar] [CrossRef]
- Gould, W.D.; King, M.; Mohapatra, B.R.; Cameron, R.A.; Kapoor, A.; Koren, D.W. A critical review on destruction of thiocyanate in mining effluents. Miner. Eng. 2012, 34, 38–47. [Google Scholar] [CrossRef]
- Watts, M.P.; Moreau, J.W. New insights into the genetic and metabolic diversity of thiocyanate-degrading microbial consortia. Appl. Microbiol. Biotechnol. 2016, 100, 1101–1108. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Tat’yana, P.T.; Antipov, A.N.; Muyzer, G.; Kuenen, J.G. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 2004, 150, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef]
- Promkot, C.; Wanapat, M.; Wachirapakorn, C.; Navanukraw, C. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Australas. J. Anim. Sci. 2007, 20, 1424–1432. [Google Scholar] [CrossRef]
- Latif, S.; Zimmermann, S.; Barati, Z.; Müller, J. Detoxification of cassava leaves by thermal, sodium bicarbonate, enzymatic, and ultrasonic treatments. J. Food Sci. 2019, 84, 1986–1991. [Google Scholar] [CrossRef] [PubMed]
- Sornyotha, S.; Kyu, K.L.; Ratanakhanokchai, K. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes. J. Biosci. Bioeng. 2010, 109, 9–14. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Cherdthong, A.; Kang, S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2014, 27, 46–54. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Seankamsorn, A.; Khonkhaeng, B.; Wanapat, M.; Uriyapongson, S.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. J. Anim. Feed Sci. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Dagaew, G.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Ruminal fermentation, milk production efficiency, and nutrient digestibility of lactating dairy cows receiving fresh cassava root and solid feed-block containing high sulfur. Fermentation 2021, 7, 114. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M.; Supapong, C.; Khonkhaeng, B.; Suntara, C.; Foiklang, S. Effect of feeding a pellet diet containing high sulphur with fresh cassava root supplementation on feed use efficiency, ruminal characteristics and blood metabolites in Thai native beef cattle. J. Anim. Physiol. Anim. Nutr 2021, 105, 653–663. [Google Scholar] [CrossRef]
- Cherdthong, A.; Suntara, C.; Khota, W. Lactobacillus casei TH14 and additives could modulate the quality, gas kinetics and the in vitro digestibility of ensilaged rice straw. J. Anim. Physiol. Anim. Nutr 2020, 104, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Wachirapakorn, C.; Pilachai, K.; Wanapat, M.; Pakdee, P.; Cherdthong, A. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Anim. Nutr. 2016, 2, 334–338. [Google Scholar] [CrossRef]
- Gunun, P.; Wanapat, M.; Anantasook, N.; Cherdthong, A. Effects of condensed tannins in Mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation charecteristics and nitrogen utilization in goats. Asian-Australas. J. Anim. Sci. 2016, 29, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun. P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
Item | 0% Sulfur | 3% Sulfur | Rice Straw |
---|---|---|---|
Ingredients, % dry matter | |||
Soybean meal | 11.85 | 11.85 | |
Palm kernel meal | 20.00 | 20.00 | |
Rice bran | 9.43 | 7.83 | |
Corn | 55.97 | 54.50 | |
Salt | 1.00 | 1.00 | |
Urea | 1.50 | 1.57 | |
Mineral and vitamins * | 0.25 | 0.25 | |
Sulfur powder | 0.00 | 3.00 | |
Chemical composition | |||
Dry matter (DM), % | 93.00 | 93.00 | 92.50 |
Organic matter (OM), %DM | 96.00 | 96.00 | 89.50 |
Ash, %DM | 4.00 | 4.00 | 10.50 |
Crude protein (CP), %DM | 16.00 | 16.00 | 2.3 |
Neutral detergent fiber (NDF), %DM | 59.00 | 58.00 | 71.20 |
Acid detergent fiber (ADF), %DM | 15.00 | 15.00 | 44.2 |
Enterococcus faecium (108 CFU/mL) 1 | Sulfur (%) 2 | KCN (ppm) 3 | Gas Kinetics | Cumulative Gas (mL) | |||
---|---|---|---|---|---|---|---|
a | b | c | |a| + b | ||||
without-E. faecium | 0% Sulfur | 0 | −3.95 cde ± 0.07 | 104.67 ± 3.61 | 0.040 ± 0.00 | 108.63 ± 3.71 | 95.60 ± 7.65 |
300 | −5.40 ef ± 0.36 | 96.44 ± 0.00 | 0.045 ± 0.00 | 101.63 ± 0.00 | 93.50 ± 3.54 | ||
600 | −5.14 ef ± 0.85 | 96.69 ± 14.21 | 0.048 ± 0.01 | 101.83 ± 13.38 | 89.35 ± 14.35 | ||
3% Sulfur | 0 | −5.90 f ± 0.22 | 107.46 ± 2.57 | 0.043 ± 0.00 | 111.69 ± 0.00 | 99.87 ± 9.07 | |
300 | −4.57 def ± 0.86 | 106.91 ± 2.19 | 0.039 ± 0.00 | 111.48 ± 3.03 | 101.50 ± 1.00 | ||
600 | −5.63 f ± 0.63 | 111.63 ± 4.43 | 0.039 ± 0.00 | 117.26 ± 3.83 | 107.25 ± 2.05 | ||
E. faecium | 0% Sulfur | 0 | −3.37 bcd ± 3.09 | 103.12 ± 5.60 | 0.036 ± 0.00 | 101.90 ± 8.00 | 105.40 ± 2.55 |
300 | −2.39 abc ± 1.69 | 107.23 ± 5.77 | 0.031 ± 0.00 | 116.28 ± 0.00 | 95.35 ± 4.31 | ||
600 | −1.88 ab ± 0.14 | 100.34 ± 2.02 | 0.038 ± 0.00 | 102.82 ± 2.30 | 100.90 ± 71.35 | ||
3% Sulfur | 0 | −1.47 a ± 1.04 | 105.09 ± 10.20 | 0.042 ± 0.00 | 117.53 ± 0.00 | 108.85 ± 6.29 | |
300 | −2.74 abc ± 0.78 | 101.75 ± 1.90 | 0.035 ± 0.00 | 108.07 ± 1.21 | 98.25 ± 6.29 | ||
600 | −2.53 abc ± 1.79 | 99.36 ± 1.40 | 0.044 ± 0.00 | 100.90 ± 0.00 | 96.10 ± 0.07 | ||
SEM | 0.34 | 3.84 | 0.003 | 4.21 | 3.73 | ||
p-value Interaction | |||||||
A × B × C | 0.01 | 0.45 | 0.25 | 0.21 | 0.35 | ||
A × B | 0.70 | 0.04 | <0.01 | 0.40 | <0.05 | ||
A × C | 0.23 | 0.68 | 0.16 | 0.43 | 0.27 | ||
B × C | <0.05 | 0.39 | 0.20 | 0.59 | 0.56 | ||
Main Effects | |||||||
E. faecium (CFU/mL) | without | −5.10 a ± 0.72 | 103.97 ± 6.16 | 0.043 a ± 0.00 | 108.75 ± 6.12 | 97.84 ± 6.36 | |
E. faecium | −2.40 b ± 0.52 | 102.82 ± 2.97 | 0.038 b ± 0.00 | 107.92 ± 7.40 | 100.81 ± 21.24 | ||
p-value | <0.01 | 0.48 | <0.01 | 0.54 | 0.14 | ||
Sulfur (%) | 0 | −3.69 ± 1.43 | 101.42 ± 4.37 | 0.040 ± 0.01 | 105.51 b ± 5.91 | 96.68 ± 19.27 | |
3 | −3.80 ± 1.67 | 105.37 ± 4.37 | 0.041 ± 0.00 | 111.15 a ± 6.21 | 101.97 ± 5.06 | ||
p-value | 0.13 | 0.13 | 0.70 | 0.05 | 0.11 | ||
Level of KCN | 0 | −3.67 ± 1.58 | 105.09 ± 1.79 | 0.041 ab ± 0.00 | 109.94 ± 6.51 | 102.43 ± 5.87 | |
300 | −3.77 ± 1.44 | 103.08 ± 5.09 | 0.038 c ± 0.01 | 109.36 ± 6.16 | 97.15 ± 3.50 | ||
600 | −3.79 ± 1.87 | 102.00 ± 6.60 | 0.043 a ± 0.00 | 105.70 ± 7.74 | 98.40 ± 24.69 | ||
p-value | 0.59 | 0.63 | 0.04 | 0.70 | 0.55 |
Enterococcus faecium (108 CFU/mL) 1 | Sulfur (%) 2 | KCN (ppm) 3 | pH | NH3-N (mg/dL) | Degradation Efficiency (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
H2 | H4 | H2 | H4 | H0 | H2 | H4 | H6 | |||
without-E. faecium | 0% Sulfur | 0 | 4.44 ± 0.02 | 6.80 ± 0.04 | 25.33 ± 0.64 | 22.26 ± 1.73 | 0.00 c ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
300 | 4.54 ± 0.04 | 6.82 ± 0.01 | 19.52 ± 0.00 | 16.27 ± 1.25 | 1.76 c ± 2.15 | 3.64 ± 3.04 | 13.67 ± 16.71 | 17.02 ± 0.00 | ||
600 | 4.43 ± 0.06 | 6.81 ± 0.00 | 16.02 ± 1.70 | 13.70 ± 1.78 | 3.29 c ± 0.51 | 8.97 ± 1.71 | 13.90 ± 2.22 | 22.36 ± 0.00 | ||
3% Sulfur | 0 | 4.41 ± 0.01 | 6.82 ± 0.02 | 23.23 ± 5.95 | 23.39 ± 0.18 | 0.00 c ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
300 | 4.41 ± 0.08 | 6.84 ± 0.01 | 25.85 ± 0.00 | 14.71 ± 1.93 | 16.53 b ± 3.29 | 19.40 ± 14.69 | 20.65 ± 7.34 | 45.27 ± 10.26 | ||
600 | 4.28 ± 0.04 | 6.82 ± 0.01 | 15.14 ± 0.00 | 14.09 ± 0.00 | 22.63 a ± 0.00 | 23.79 ± 0.00 | 28.14 ± 1.71 | 52.98 ± 11.14 | ||
E. faecium | 0% Sulfur | 0 | 4.28 ± 0.04 | 6.83 ± 0.00 | 18.98 ± 0.00 | 25.06 ± 1.37 | 0.00 c ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
300 | 4.24 ± 0.01 | 6.81 ± 0.01 | 15.21 ± 2.08 | 15.86 ± 0.66 | 11.70 b ± 3.55 | 27.10 ± 15.45 | 27.90 ± 2.41 | 54.76 ± 17.35 | ||
600 | 4.24 ± 0.01 | 6.79 ± 0.01 | 17.08 ± 1.42 | 11.33 ± 1.58 | 12.96 b ± 0.63 | 19.94 ± 18.36 | 28.67 ± 8.17 | 54.33 ± 0.00 | ||
3% Sulfur | 0 | 4.27 ± 0.01 | 6.84 ± 0.01 | 12.66 ± 0.00 | 22.18 ± 3.56 | 0.00 c ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
300 | 4.21 ± 0.01 | 6.84 ± 0.00 | 21.63 ± 1.55 | 16.79 ± 0.61 | 2.12 c ± 1.39 | 5.07 ± 5.57 | 24.77 ± 28.11 | 29.51 ± 26.72 | ||
600 | 4.22 ± 0.03 | 6.81 ± 0.01 | 13.54 ± 3.99 | 13.03 ± 0.8 | 17.26 ab ± 6.33 | 20.97 ± 4.88 | 36.33 ± 13.80 | 37.99 ± 10.07 | ||
SEM | 0.03 | 0.01 | 1.53 | 1.15 | 1.79 | 6.25 | 7.62 | 8.65 | ||
p-value Interaction | ||||||||||
A × B × C | 0.32 | 0.50 | 1.00 | 0.15 | 0.03 | 0.11 | 0.89 | 0.27 | ||
A × B | 0.01 | 0.69 | 0.58 | 0.59 | <0.01 | 0.06 | 0.54 | 0.01 | ||
A × C | 0.01 | 0.04 | 0.07 | 0.32 | 0.83 | 0.92 | 0.55 | 1.00 | ||
B × C | 0.17 | 0.79 | <0.01 | 0.62 | <0.01 | 0.51 | 0.57 | 1.00 | ||
Main effects | ||||||||||
E. faecium (CFU/mL) | without | 4.42 a ± 0.08 | 6.83 ± 0.02 | 20.80 a ± 4.66 | 17.7 ± 4.30 | 7.37 ± 9.73 | 9.30 ± 10.17 | 12.73 ± 11.19 | 23.59 ± 22.31 | |
E. faecium | 4.24 b ± 0.03 | 6.81 ± 0.02 | 16.65 b ± 3.41 | 17.38 ± 5.30 | 7.34 ± 7.54 | 12.18 ± 11.89 | 19.61 ± 15.66 | 29.43 ± 24.77 | ||
p-value | <0.01 | 0.89 | 0.01 | 0.64 | 0.40 | 0.28 | 0.14 | 0.52 | ||
Sulfur (%) | 0 | 4.36 a ± 0.13 | 6.81 b ± 0.01 | 18.58 ± 3.65 | 17.66 ± 5.22 | 4.95 b ± 5.86 | 9.94 ± 11.25 | 14.02 ± 12.65 | 24.74 ± 24.76 | |
3 | 4.30 b ± 0.12 | 6.83 a ± 0.01 | 18.40 ± 5.59 | 17.41 ± 4.39 | 9.76 a ± 10.17 | 11.54 ± 11.04 | 18.31 ± 15.09 | 27.63 ± 22.77 | ||
p-value | <0.01 | <0.01 | 0.87 | 0.72 | <0.01 | 0.90 | 0.35 | 0.37 | ||
Level of KCN | 0 | 4.35 a ± 0.09 | 6.82 ± 0.02 | 21.11 a ± 5.59 | 23.22 a ± 1.34 | 0.00 c ± 0.00 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | 0.00 b ± 0.00 | |
300 | 4.35 a ± 0.16 | 6.83 ± 0.01 | 19.84 a ± 4.43 | 15.91 b ± 0.89 | 8.03 b ± 7.30 | 13.80 a ± 11.37 | 21.75 a ± 6.15 | 39.45 a ± 16.72 | ||
600 | 4.29 b ± 0.10 | 6.81 ± 0.01 | 15.49 b ± 1.50 | 12.89 b ± 1.22 | 14.04 a ± 8.18 | 18.42 a ± 8.18 | 26.76 a ± 9.35 | 41.91 a ± 14.99 | ||
p-value | 0.02 | 0.06 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Enterococcus faecium (108 CFU/mL) 1 | Sulfur (%) 2 | KCN (ppm) 3 | IVDMD, % | IVNDFD, % | IVADFD, % |
---|---|---|---|---|---|
without-E. faecium | 0% Sulfur | 0 | 67.89 ± 19.99 | 49.31 ± 11.70 | 23.87 ± 0.70 |
300 | 59.39 ± 2.80 | 49.63 ± 11.54 | 29.24 ± 5.81 | ||
600 | 54.79 ± 1.32 | 37.55 ± 0.19 | 27.90 ± 11.56 | ||
3% Sulfur | 0 | 67.45 ± 1.57 | 48.81 ± 4.87 | 29.28 ± 0.59 | |
300 | 64.51 ± 3.04 | 59.37 ± 3.06 | 29.30 ± 5.10 | ||
600 | 66.68 ± 0.24 | 56.95 ± 8.17 | 32.07 ± 4.12 | ||
E. faecium | 0% Sulfur | 0 | 71.72 ± 9.88 | 44.18 ± 8.38 | 24.35 ± 0.79 |
300 | 64.28 ± 5.18 | 50.48 ± 5.61 | 27.78 ± 1.58 | ||
600 | 70.15 ± 4.03 | 55.46 ± 2.29 | 29.03 ± 2.72 | ||
3% Sulfur | 0 | 69.03 ± 5.05 | 45.81 ± 19.44 | 21.69 ± 3.29 | |
300 | 71.80 ± 0.11 | 60.77 ± 10.46 | 29.68 ± 1.04 | ||
600 | 76.17 ± 6.62 | 63.25 ± 22.83 | 31.47 ± 1.86 | ||
SEM | 5.13 | 6.37 | 3.14 | ||
p-value Interaction | |||||
A × B × C | 0.85 | 0.71 | 0.55 | ||
A × B | 0.75 | 0.69 | 0.48 | ||
A × C | 0.42 | 0.23 | 0.67 | ||
B × C | 0.35 | 0.36 | 0.86 | ||
Main effects | |||||
E. faecium (CFU/mL) | without | 63.45 b ± 5.27 | 50.27 ± 7.65 | 28.61 ± 2.69 | |
E. faecium | 70.53 a ± 3.91 | 53.34 ± 7.83 | 27.33 ± 3.65 | ||
p-value | 0.03 | 0.42 | 0.50 | ||
Sulfur (%) | 0 | 64.27 ± 6.57 | 47.77 b ± 6.16 | 27.03 ± 3.34 | |
3 | 69.27 ± 4.17 | 55.83 a ± 6.97 | 28.92 ± 3.73 | ||
p-value | 0.15 | <0.05 | 0.32 | ||
Level of Cyanide | 0 | 69.02 ± 1.92 | 47.03 ± 2.45 | 24.80 ± 3.21 | |
300 | 64.99 ± 5.11 | 55.07 ± 5.82 | 29.00 ± 0.83 | ||
600 | 66.95 ± 9.00 | 53.30 ± 11.03 | 30.12 ± 1.98 | ||
p-value | 0.56 | 0.21 | 0.08 |
Enterococcus faecium (108 CFU/mL) 1 | Sulfur (%) 2 | KCN (ppm) 3 | Total VFA, mmol/L | VFA Profiles, mol/ 100 mol | ||
---|---|---|---|---|---|---|
Acetic Acid | Propionic Acid | Butyric Acid | ||||
without-E. faecium | 0% Sulfur | 0 | 111.79 ± 12.91 | 87.59 ± 3.78 | 10.91 ± 0.57 | 3.93 ± 0.23 |
300 | 89.35 ± 6.45 | 87.11 ± 0.36 | 8.95 ± 0.21 | 3.95 ± 0.15 | ||
600 | 86.73 ± 20.37 | 86.98 ± 2.69 | 9.00 ± 1.80 | 4.02 ± 0.88 | ||
3% Sulfur | 0 | 102.94 ± 7.46 | 83.09 ± 1.05 | 11.83 ± 1.86 | 4.57 ± 0.09 | |
300 | 108.83 ± 2.87 | 85.93 ± 2.94 | 10.20 ± 2.32 | 3.88 ± 0.62 | ||
600 | 79.57 ± 4.02 | 87.05 ± 0.85 | 9.36 ± 1.78 | 3.90 ± 0.03 | ||
E. faecium | 0% Sulfur | 0 | 113.01 ± 14.96 | 88.32 ± 4.99 | 12.55 ± 0.97 | 3.70 ± 0.66 |
300 | 93.12 ± 2.36 | 84.48 ± 1.16 | 10.94 ± 0.98 | 4.58 ± 0.18 | ||
600 | 66.98 ± 1.55 | 85.77 ± 0.51 | 9.63 ± 0.40 | 4.60 ± 0.11 | ||
3% Sulfur | 0 | 108.19 ± 42.16 | 95.25 ± 16.69 | 13.74 ± 1.84 | 4.84 ± 1.04 | |
300 | 95.43 ± 32.33 | 85.29 ± 0.34 | 10.36 ± 0.19 | 4.35 ± 0.53 | ||
600 | 76.51 ± 12.94 | 86.65 ± 0.39 | 9.17 ± 0.28 | 4.19 ± 0.11 | ||
SEM | 12.79 | 3.75 | 0.94 | 0.36 | ||
p-value Interaction | ||||||
A × B × C | 0.65 | 0.56 | 0.74 | 0.71 | ||
A × B | 0.94 | 0.29 | 0.48 | 0.97 | ||
A × C | 0.73 | 0.28 | 0.52 | 0.55 | ||
B × C | 0.63 | 0.97 | 0.71 | 0.08 | ||
Main effects | ||||||
E. faecium (CFU/mL) | without | 96.53 ± 13.12 | 86.29 ± 1.66 | 10.04 ± 1.16 | 4.04 ± 0.27 | |
E. faecium | 92.21 ± 17.79 | 87.63 ± 3.69 | 11.06 ± 1.76 | 4.37 ± 0.40 | ||
p-value | 0.57 | 0.55 | 0.08 | 0.1300 | ||
Sulfur (%) | 0 | 93.49 ± 17.21 | 86.71 ± 1.37 | 10.33 ± 1.40 | 4.13 ± 0.37 | |
3 | 95.25 ± 14.20 | 87.21 ± 4.18 | 10.78 ± 1.73 | 4.29 ± 0.38 | ||
p-value | 0.82 | 0.82 | 0.42 | 0.46 | ||
Level of Cyanide | 0 | 108.98 a ± 4.52 | 88.56 ± 5.02 | 12.26 a ± 1.20 | 4.26 ± 0.53 | |
300 | 96.68 ab ± 8.48 | 85.70 ± 1.11 | 10.11 b ± 0.84 | 4.19 ± 0.33 | ||
600 | 77.45 b ± 8.19 | 86.61 ± 0.59 | 9.29 b ± 0.27 | 4.18 ± 0.31 | ||
p-value | 0.01 | 0.56 | <0.01 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sombuddee, N.; Suntara, C.; Khota, W.; Boontiam, W.; Chanjula, P.; Cherdthong, A. Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique. Fermentation 2022, 8, 436. https://doi.org/10.3390/fermentation8090436
Sombuddee N, Suntara C, Khota W, Boontiam W, Chanjula P, Cherdthong A. Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique. Fermentation. 2022; 8(9):436. https://doi.org/10.3390/fermentation8090436
Chicago/Turabian StyleSombuddee, Napudsawun, Chanon Suntara, Waroon Khota, Waewaree Boontiam, Pin Chanjula, and Anusorn Cherdthong. 2022. "Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique" Fermentation 8, no. 9: 436. https://doi.org/10.3390/fermentation8090436
APA StyleSombuddee, N., Suntara, C., Khota, W., Boontiam, W., Chanjula, P., & Cherdthong, A. (2022). Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique. Fermentation, 8(9), 436. https://doi.org/10.3390/fermentation8090436