Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Culture Media
2.2. Oil Palm Trunk (OPT) Sap Preparation
2.3. Microorganism and Seed Preparation
2.4. Open Batch and Open Repeated Batch Fermentation
2.5. Fed Batch and Repeated Fed Batch Fermentation
2.6. Kinetic Parameters Calculation
2.7. Analytical Methods
3. Results and Discussion
3.1. Some Chemical Compositions of OPT Sap
3.2. Open Batch Fermentation and Open Repeated Batch Fermentation
3.3. Fed Batch and Repeated Fed Batch Fermentation of OPT Sap
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lactic Acid Market Size, Share & Trends Analysis Report by Raw Material (Sugarcane, Corn, Cassava), by Application (PLA, Food & Beverages, Personal Care, Pharmaceuticals), by Region, and Segment Forecasts. 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market (accessed on 2 June 2022).
- Macedo, J.V.C.; Ranke, F.F.D.B.; Escaramboni, B.; Campioni, T.S.; Núñez, E.G.F.; Neto, P.D.O. Cost-effective lactic acid production by fermentation of agro-industrial residues. Biocatal. Agric. Biotechnol. 2020, 27, 101706. [Google Scholar] [CrossRef]
- Derabli, B.; Nancib, A.; Nancib, N.; Aníbal, J.; Raposo, S.; Rodrigues, B.; Boudrant, J. Opuntia ficus indica waste as a cost effective carbon source for lactic acid production by Lactobacillus plantarum. Food Chem. 2022, 370, 131005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, L.; Li, F.; Hua, D.; Ma, C.; Ma, Y.; Xu, P. Kinetics of d-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresour. Technol. 2010, 101, 6499–6505. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Hassan, S.E.-D.; Alrefaey, H.M.A.; El-Belely, E.F.; Elsakhawy, T.; Fouda, A.; Desouky, S.G.; Khattab, S.M.R. Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies. Bioresour. Technol. Rep. 2021, 13, 100617. [Google Scholar] [CrossRef]
- Chenebault, C.; Moscoviz, R.; Trably, E.; Escudié, R.; Percheron, B. Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. Bioresour. Technol. 2022, 354, 127230. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.; Li, H.; Deng, Z.; Liu, J. Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH. J. Environ. Manag. 2022, 304, 114312. [Google Scholar] [CrossRef]
- Olszewska-Widdrat, A.; Alexandri, M.; López-Gómez, J.P.; Schneider, R.; Venus, J. Batch and continuous lactic acid fermentation based on a multi-substrate approach. Microorganisms 2020, 8, 1084. [Google Scholar] [CrossRef]
- Senedese, A.L.C.; Filho, R.M.; Maciel, M.R.W. L-lactic acid production by Lactobacillus rhamnosus ATCC 10863. Sci. World J. 2015, 2015, 6. [Google Scholar] [CrossRef]
- Xu, K.; Xu, P. Efficient production of L-lactic using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour. Technol. 2014, 153, 23–25. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A. Enterococcus faecium s6 Enabled efficient homofermentative lactic acid production from xylan-derived sugars. Fermentation 2022, 8, 134. [Google Scholar] [CrossRef]
- Sharma, A.; Pranaw, K.; Singh, S.; Khare, S.K.; Chandel, A.K.; Nain, P.K.S.; Nain, L. Efficient two-step lactic acid production from cassava biomass using thermostable enzyme cocktail and lactic acid bacteria: Insights from hydrolysis optimization and proteomics analysis. 3 Biotech. 2020, 10, 409. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Liu, B.; Yang, C.; Yu, B.; Li, Q.; Ma, C.; Xu, P.; Ma, Y. Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresour. Technol. 2010, 101, 7895–7901. [Google Scholar] [CrossRef]
- Dirkes, R.; Neubauer, P.R.; Rabenhorst, J. Pressed sap from oil palm (Elaeis guineensis) trunks: A revolutionary growth medium for the biotechnological industry? Biofuels Bioprod. Bioref. 2021, 15, 931–944. [Google Scholar] [CrossRef]
- Kosugi, A.; Tanaka, R.; Magara, K.; Murata, Y.; Arai, T.; Sulaiman, O.; Hashim, R.; Hamid, Z.A.; Yahya, M.K.; Yusof, M.N.; et al. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. J. Biosci. Bioeng. 2010, 110, 322–325. [Google Scholar] [CrossRef]
- Hau, E.H.; The, S.S.; Yeo1, S.K.; Chua, B.L.; Mah, S.H. Transformation of oil palm biomass into value-added components. Rev. Agric. Sci. 2022, 10, 36–55. [Google Scholar]
- Wong, L.J.; H’ng, P.S.; Abdullah, L.C.; Paridah, M.T.; Chin, K.L. Effect of chemical steeping on yields of glucose and xylose from dilute acid hydrolysis of extract from oil palm trunk. BioResources 2022, 17, 207–222. [Google Scholar] [CrossRef]
- Ezzatzadegan, L.; Yusof, R.; Morad, N.A.; Shabanzadeh, P.; Muda, N.S.; Borhani, T.N. Experimental and artificial intelligence modelling study of oil palm trunk sap fermentation. Energies 2021, 14, 2137. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.; Qi, B.; Chen, X.; Su, Z.; Wan, Y. Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochem. Eng. J. 2010, 52, 212–219. [Google Scholar] [CrossRef]
- Paulova, L.; Chmelik, J.; Branska, B.; Patakova, P.; Drahokoupil, M.; Melzoch, K. Comparison of lactic acid production by L. casei in batch, fed-batch and continuous cultivation, testing the use of feather hydrolysate as a complex nitrogen source. Braz. Arch. Biol. Technol. 2020, 63, e20190151. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Cai, D.; Wang, Z.; Qin, P.; Tan, T. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions. Bioresour. Technol. 2016, 218, 1098–1105. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, K.L.; Abdel-Rahman, M.A.; Sonomoto, K.; Leu, S.-Y. Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using Enterococcus mundtii QU 25. Biotechnol. Biofuels. 2020, 13, 2–16. [Google Scholar]
- Kawai, M.; Harada, R.; Yoda, N.; Yamasaki-Yashiki, S.; Fukusaki, E.; Katakura, Y. Suppression of lactate production by using sucrose as a carbon source in lactic acid bacteria. J. Biosci. Bioeng. 2020, 129, 47–51. [Google Scholar] [CrossRef]
- Bernardo, M.P.; Coelho, L.F.; Sass, D.C.; Contiero, J. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Braz. J. Microbiol. 2016, 47, 640–646. [Google Scholar] [CrossRef]
- Akao, S.; Tsuno, H.; Horie, T.; Mori, S. Effects of pH and temperature on products and bacterial community in l-lactate batch fermentation of garbage under unsterile condition. Water Res. 2007, 41, 2636–2642. [Google Scholar] [CrossRef]
- Saelee, N. Effects of soil salinity on nutritional compositions of fresh Jak (Nypa fruticans) sap. J. Food Composit Anal. 2022, 114, 104767. [Google Scholar] [CrossRef]
- Saelee, N.; Sriroth, K. Nitrogen and salt supplementation of oil palm trunk juice and Its optimization conditions to enhance lactic acid production by Lactobacillus rhamnosus TISTR 108. Walailak J. Sci. Tech. 2015, 12, 279–289. [Google Scholar]
- Komonkiat, I.; Cheirsilp, B. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp. Bioresour. Technol. 2013, 146, 200–207. [Google Scholar] [CrossRef]
- Noparat, P.; Prasertsan, P.; O-Thong, S. Isolation and characterization of high hydrogen-producing strain Clostridium beijerinckii PS-3 from fermented oil palm sap. Int. J. Hydrogen Energy 2011, 36, 14086–14092. [Google Scholar] [CrossRef]
- Zahari, M.A.K.M.; Zakaria, M.R.; Ariffin, H.; Mokhtar, M.N.; Salihon, J.; Shirai, Y.; Hassan, M.A. Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresour. Technol. 2012, 110, 566–571. [Google Scholar] [CrossRef]
- Yamada, H.; Tanaka, R.; Sulaiman, O.; Hashim, R.; Hamid, Z.A.A.; Yahya, M.K.A.; Kosugi, A.; Arai, T.; Murata, Y.; Nirasawa, S.; et al. Old oil palm trunk: A promising source of sugars for bioethanol production. Biomass Bioenergy 2010, 34, 1608–1613. [Google Scholar] [CrossRef]
- Ouyang, J.; Ma, R.; Zheng, Z.; Cai, C.; Zhang, M.; Jiang, T. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour Technol. 2013, 135, 380–475. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendoa, T.; Sonomoto, K. Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. RSC Adv. 2013, 3, 8437–8445. [Google Scholar] [CrossRef]
- Michelson, T.; Kask, K.; Jogi, E.; Talpsep, E.; Suitso, I.; Nurk, A. L(+)-lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii spp. lactis DSM 20073. Enzyme Microb. Technol. 2006, 19, 861–867. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Steinbüchel, A. High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl. Environ. Microbiol. 2010, 76, 7890–7895. [Google Scholar] [CrossRef]
- Boontawan, P.; Kanchanathawee, S.; Boontawan, A. Extractive fermentation of l-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique. Biochem. Eng. J. 2011, 54, 192–199. [Google Scholar] [CrossRef]
- Nolasco-Hipolito, C.; Carvajal-Zarrabal, O.; Kelvin, E.; Tan, Y.H.; Kohei, M.; Nyoel, S.A.; Shoji, E.; Dieng, H.; Bujang, K. Scaling up of lactic acid fermentation using Enterococcus faecalis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 495, 012049. [Google Scholar] [CrossRef] [Green Version]
Compositions | Concentrations (g/L) |
---|---|
Sugars | |
Glucose | 55.69 ± 1.42 |
Fructose | 40.10 ± 2.35 |
Sucrose | 3.89 ± 0.44 |
Cellobiose | 2.037 ± 0.09 |
Minerals | |
P | 0.257 ± 0.009 |
Na | 0.257 ± 0.080 |
K | 1.676 ± 0.417 |
Mg | 0.503 ± 0.145 |
Ca | 0.488 ± 0.150 |
S | 0.694 ± 0.218 |
Al | 0.003 ± 0.002 |
Mn | 0.009 ± 0.007 |
Fe | 0.022 ± 0.011 |
Ni | 0.0036 ± 0.001 |
Cu | 0.0014 ± 0.001 |
Zn | 0.0045 ± 0.004 |
Kinetic Parameters | First Cycle Open Batch Fermentation | First Cycle Open Repeated Batch Fermentation | Second Cycle Open Repeated Batch Fermentation | Third Cycle Open Repeated Batch Fermentation | Average |
---|---|---|---|---|---|
Lactic acid (g/L) | 94.15 | 99.08 | 84.80 | 85.60 | 91.30 |
QLA (g/L/h) | 4.31 | 4.65 | 3.26 | 3.28 | 3.88 |
YLA (g/g) | 0.91 | 0.82 | 0.77 | 0.95 | 0.87 |
Initial broth volume (L) | 1.2 | 0.5 | 0.5 | 0.5 | 0.5 |
Final broth volume (L) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Fermentation time (h) | 21 | 18 | 21 | 21 | 21 |
Initial viable cells (cfu/mL) | 6.32 × 107 | 3.63 × 109 | 9.53 × 109 | 4.7 × 109 | 2.94 × 108 |
Kinetic Parameters | Batch Culture | First Cycle Fed-Batch Fermentation | Second Cycle Fed-Batch Fermentation | Third Cycle Fed-Batch Fermentation | Average of Fed-Batch Fermentation |
---|---|---|---|---|---|
Lactic acid (g/L) | 73.49 | 89.25 | 94.16 | 104.42 | 95.94 |
QLA (g/L/h) | 6.05 | 7.19 | 7.16 | 4.86 | 6.40 |
YLA (g/g) | 0.99 | 0.94 | 1.21 | 0.98 | 1.04 |
QS (g/L/h) | 6.11 | 7.57 | 5.91 | 4.95 | 6.14 |
Initial broth volume (L) | 1.2 | 0.4 | 0.4 | 0.4 | 0.4 |
Final broth volume (L) | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Fermentation time (h) | 12 | 9 | 9 | 15 | 11 |
Initial viable cells (cfu/mL) | 3.80 × 107 | 8.17 × 109 | 3.44 × 1010 | 2.12 × 1010 | 2.12 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saelee, N. Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. Fermentation 2022, 8, 430. https://doi.org/10.3390/fermentation8090430
Saelee N. Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. Fermentation. 2022; 8(9):430. https://doi.org/10.3390/fermentation8090430
Chicago/Turabian StyleSaelee, Nisa. 2022. "Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863" Fermentation 8, no. 9: 430. https://doi.org/10.3390/fermentation8090430
APA StyleSaelee, N. (2022). Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. Fermentation, 8(9), 430. https://doi.org/10.3390/fermentation8090430