Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts
Abstract
:1. Introduction
2. Worldwide Production of Sherry and Sherry-like Wines
3. Sherry Wine Manufacturing Process
3.1. Production of Fino Sherry Wines
3.2. Production of Oloroso Sherry Wines
3.3. Production of Amontillado Sherry Wines
4. Chemical Compounds Characteristic to Sherry Wines
5. Genetic and Oenological Markers for Screening Flor Strains of S. Cerevisiae
5.1. Genetic Markers of Flor Yeast
5.2. Oenological Markers of Flor Yeast
6. Stress Resistance and Adhesive Characteristics for Screening S. cerevisiae Strains
7. Iron Uptake Markers for Screening S. cerevisiae Strains
8. Combined Approach for Screening S. Cerevisiae Strains, Promising for Sherry Production
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durán-Guerrero, E.; Castro, R.; de Valme García-Moreno, M.; del Carmen Rodríguez-Dodero, M.; Schwarz, M.; Guillén-Sánchez, D. Aroma of sherry products: A review. Foods 2021, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Legras, J.L.; Moreno-Garcia, J.; Zara, S.; Zara, G.; Garcia-Martinez, T.; Mauricio, J.C.; Mannazzu, I.; Coi, A.L.; Zeidan, M.B.; Dequin, S.; et al. Flor yeast: New perspectives beyond wine aging. Front. Microbiol. 2016, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C. The Big Book of Sherry Wines; Sanchez, C.S., Ed.; The Region; Junta De Andalucia: Sevilla, Spain, 2006; ISBN 84-8474-190-7. [Google Scholar]
- Ruiz-Muñoz, M.; Cordero-Bueso, G.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Cantoral, J.M. Improving an Industrial Sherry Base Wine by Yeast Enhancement Strategies. Foods 2022, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Muñoz, M.; Cordero-Bueso, G.; Benítez-Trujillo, F.; Martínez, S.; Pérez, F.; Cantoral, J.M. Rethinking About Flor Yeast Diversity and its Dynamic in the “Criaderas and Soleras” Biological Aging System. Food Microbiol. 2020, 92, 103553. [Google Scholar] [CrossRef] [PubMed]
- Sherry.Wine. Available online: https://www.sherry.wine/ (accessed on 30 May 2022).
- Sherrynotes.Com. Available online: https://www.sherrynotes.com/2021/background/new-regulations-do-jerez-xeres-sherry/ (accessed on 10 June 2022).
- Sherryjourney.com. Available online: https://sherryjourney.com/ (accessed on 10 June 2022).
- De Simón, B.F.; Cadahía, E.; Sanz, M.; Poveda, P.; Perez-Magariño, S.; Ortega-Heras, M.; González-Huerta, C. Volatile Compounds and Sensorial Characterization of Wines from Four Spanish Denominations of Origin, Aged in Spanish Rebollo (Quercus pyrenaica Willd.) Oak Wood Barrels. J. Agric. Food Chem. 2008, 56, 9046–9055. [Google Scholar] [CrossRef]
- Alexandre, H. Flor yeasts of Saccharomyces cerevisiae—Their ecology, genetics and metabolism. Int. J. Food Microbiol. 2013, 167, 269–275. [Google Scholar] [CrossRef]
- Kurtzman, C.; Fell, J.W.; Boekhout, T. (Eds.) The Yeasts: A Taxonomic Study, 5th ed.; Kindle Edition; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0444521491. [Google Scholar]
- Kudryavtsev, V.I. Sistematika Drozhzhei [Yeast Taxonomy]; Academy Sciences of the USSR: Moscow, Russia, 1954. (In Russian) [Google Scholar]
- Ángeles Pozo-Bayón, M.; Victoria Moreno-Arribas, M. Sherry wines. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 63, pp. 17–40. [Google Scholar]
- Martinez, P.; Rodriguez, L.P.; Benitez, T. Factors which Affect Velum Formation by Flor Yeasts Isolated from Sherry Wine. Syst. Appl. Microbiol. 1997, 20, 154–157. [Google Scholar] [CrossRef]
- Ibeas, J.I.; Lozano, I.; Perdigones, F.; Jimenez, J. Dynamics of Flor Yeast Populations during the Biological Aging of Sherry Wines. Am. J. Enol. Vitic. 1997, 48, 75–79. [Google Scholar]
- Mesa, J.J.; Infante, J.J.; Rebordinos, L.; Sanchez, J.A.; Cantoral, J.M. Influence of the Yeast Genotypes on Enological Characteristics of Sherry Wines. Am. J. Enol. Vitic. 2000, 51, 15–21. [Google Scholar]
- Mardanov, A.V.; Eldarov, M.A.; Beletsky, A.V.; Tanashchuk, T.N.; Kishkovskaya, S.A.; Ravin, N.V. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front. Microbiol. 2020, 11, 538. [Google Scholar] [CrossRef]
- italianwinecentral.com. Available online: https://italianwinecentral.com/denomination/vernaccia-di-oristano-doc/ (accessed on 1 June 2022).
- Lorch, W. Pre-Revolutionary Vin Jaune and the Dawn of a New Renaissance. World Fine Wine 2012, 35, 70–75. [Google Scholar]
- Winesofhungary.Hu. Available online: https://winesofhungary.hu/grape-varieties/white-grape-varieties-white-wine-styles/tokaji-szamorodni (accessed on 27 June 2022).
- David-Vaizant, V.; Alexandre, H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front. Microbiol. 2018, 9, 2235. [Google Scholar] [CrossRef] [PubMed]
- Consejería de Agricultura, Ganaderia, Pesca y Desarrollo Sostenible. In Pliego de Condiciones de La Denominacion de Origen «Jerez-Xérès-Sherry»; Junta de Andalucía: Sevilla, Spain, 2019.
- Wine-Searcher.Com. Available online: https://www.wine-searcher.com/ (accessed on 27 June 2022).
- Harveyssherry.Com. Available online: https://harveyssherry.com/ (accessed on 28 June 2022).
- Golubitskoe-Estate.Ru. Available online: https://golubitskoe-estate.ru/#about_point (accessed on 27 June 2022).
- Jantarnoe.Ucoz.Ru. Available online: https://jantarnoe.ucoz.ru/index/rezerv/0-9 (accessed on 27 June 2022).
- Derkonyak.Ru. Available online: https://derkonyak.ru/products/vine/4/ (accessed on 5 June 2022).
- Www.Moscowine.Ru. Available online: https://www.moscowine.ru/sherry/massandra/ (accessed on 28 June 2022).
- Massandra.Su. Available online: https://massandra.su/ (accessed on 2 June 2022).
- Magarach-Institut.Ru. Available online: http://magarach-institut.ru/ (accessed on 1 June 2022).
- Shabo.Ua. Available online: http://shabo.ua/en/productcategories/ (accessed on 10 June 2022).
- Wineofmoldova.Com. Available online: https://wineofmoldova.com/en/ (accessed on 1 June 2022).
- Eniw.Ru. Available online: https://eniw.ru/ashtarak.htm (accessed on 10 June 2022).
- Cruess, W.V. Investigation of the Flor Sherry Process; Brousson Press: Plano, TX, USA, 1948; ISBN 978-1447464105. [Google Scholar]
- Wine.Md. Available online: https://wine.md/ (accessed on 28 June 2022).
- Kozub, G.I. Fine and Sparkling Wines of Moldova; Kartya Mol.: Chisinau, Moldova, 1983. [Google Scholar]
- Saenko, N.F.; Kozub, G.I.; Averbukh, B.Y.; Shur, I.M. Vino Kheres i Tekhnologiya Ego Proizvodstva (Sherry and Technology for Its Production); Kartya Mol.: Chisinau, Moldova, 1975. [Google Scholar]
- Pozo-Bayón, M.A.; Moreno-Arribas, M.V. Sherry Wines: Manufacture, Composition and Analysis. Encycl. Food Health 2016, 1, 779–784. [Google Scholar] [CrossRef]
- Roldán, A.; Lasanta, C.; Caro, I.; Palacios, V. Effect of Lysozyme on “Flor” Velum Yeasts in the Biological Aging of Sherry Wines. Food Microbiol. 2012, 30, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Zarzoso, B.; Peris-Torán, M.J.; García-Maiquez, E.; Uruburu, F.; Querol, A. Yeast Population Dynamics during the Fermentation and Biological Aging of Sherry Wines. Appl. Environ. Microbiol. 2001, 67, 2056. [Google Scholar] [CrossRef]
- Kishkovskaya, S.A.; Tanashchuk, T.N.; Shalamitskiy, M.Y.; Zagoryiko, V.I.; Shiryaev, M.I.; Avdanina, D.A.; Eldarov, M.A.; Ravin, N.V.; Mardanov, A.V. Natural Yeast Strains of Saccharomyces cerevisiae that are Promising for Sherry Production. Appl. Biochem. Microbiol. 2020, 56, 329–335. [Google Scholar] [CrossRef]
- Eldarov, M.A.; Avdanina, D.A.; Ivanova, E.; Shalamitskiy, M.Y.; Tanashchuk, T.N.; Vybornaya, T.; Ravin, N.V.; Kishkovskaya, S.A.; Mardanov, A.V. Stress resistance and adhesive properties of commercial flor and wine strains, and environmental isolates of saccharomyces cerevisiae. Fermentation 2021, 7, 188. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Yang, H. Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control 2017, 73, 889–899. [Google Scholar] [CrossRef]
- Perpetuini, G.; Rossetti, A.P.; Battistelli, N.; Arfelli, G.; Tofalo, R. Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021, 9, 654. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Ruiz-Muñoz, M.; González-Moreno, M.; Chirino, S.; del Carmen Bernal-Grande, M.; Cantoral, J.M. The microbial diversity of Sherry wines. Fermentation 2018, 4, 19. [Google Scholar] [CrossRef]
- Moreno-García, J.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Stress Responsive Proteins of a Flor Yeast Strain during the Early Stages of Biofilm Formation. Process Biochem. 2016, 51, 578–588. [Google Scholar] [CrossRef]
- Carrasco, P.; Querol, A.; Del Olmo, M. Analysis of the stress resistance of commercial wine yeast strains. Arch. Microbiol. 2001, 175, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, T. Sotheby’s (Firm). In The Sotheby’s Wine Encyclopedia; DK: London, UK, 2011; ISBN 0756686849. [Google Scholar]
- Zea, L.; Moyano, L.; Ruiz, M.J.; Medina, M. Chromatography-Olfactometry Study of the Aroma of Fino Sherry Wines. Int. J. Anal. Chem. 2010, 2010, 626298. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; Serratosa, M.P.; Monforte, A.; Ferreira, A.C.S. Fortified wines. Manag. Wine Qual. 2022, 2, 629–668. [Google Scholar] [CrossRef]
- Valme García Moreno, M.; García Barroso, C. Comparison of the evolution of low molecular weight phenolic compounds in typical Sherry wines: Fino, Amontillado, and Oloroso. J. Agric. Food Chem. 2002, 50, 7556–7563. [Google Scholar] [CrossRef]
- Collin, S.; Nizet, S.; Claeys Bouuaert, T.; Despatures, P.M. Main Odorants in Jura Flor-Sherry Wines. Relative Contributions of Sotolon, Abhexon, and Theaspirane-Derived Compounds. J. Agric. Food Chem. 2011, 60, 380–387. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Evolution of the colour, antioxidant activity and polyphenols in unusually aged Sherry wines. Food Chem. 2012, 133, 271–276. [Google Scholar] [CrossRef]
- Del Alamo-Sanza, M.; Nevares, I. Recent Advances in the Evaluation of the Oxygen Transfer Rate in Oak Barrels. J. Agric. Food Chem. 2014, 62, 8892–8899. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, M.D.C.; de Valme García-Moreno, M.; Guillén-Sánchez, D.A. Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules 2022, 27, 365. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Medina, M. Odorant active compounds in Amontillado wines obtained by combination of two consecutive ageing processes. Eur. Food Res. Technol. 2008, 227, 1687–1692. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.A.; Medina, M. Evaluation of the active odorants in Amontillado sherry wines during the aging process. J. Agric. Food Chem. 2010, 58, 6900–6904. [Google Scholar] [CrossRef] [PubMed]
- Peinado, R.A.; Mauricio, J.C. Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009; ISBN 9780387741161. [Google Scholar]
- Raj, S.B.; Ramaswamy, S.; Plapp, B.V. Yeast Alcohol DehydrogenaseStructure and Catalysis. Biochemistry 2014, 53, 5791. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; Serratosa, M.P.; Mérida, J.; Moyano, L. Acetaldehyde as Key Compound for the Authenticity of Sherry Wines: A Study Covering 5 Decades. Compr. Rev. Food Sci. Food Saf. 2015, 14, 681–693. [Google Scholar] [CrossRef]
- Bakker, J.; Clarke, R.J. Wine Flawour Chemistry; Wiley Blackwell: New York, NY, USA, 2012; ISBN 978-1-444-33042-7. [Google Scholar]
- Eldarov, M.A.; Kishkovskaia, S.A.; Tanaschuk, T.N.; Mardanov, A.V. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. Biochemistry 2016, 81, 1650–1668. [Google Scholar] [CrossRef]
- Volschenk, H.; van Vuuren, H.J.J.; Viljoen-Bloom, M. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. S. Afr. J. Enol. Vitic. 2017, 27, 123–136. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.J.; Ortega, J.M.; Mauricio, J.C. Effect of Gluconic Acid Consumption During Simulation of Biological Aging of Sherry Wines by a Flor YeastSstrain on the Final Volatile Compounds. J. Agric. Food Chem. 2003, 51, 6198–6203. [Google Scholar] [CrossRef]
- Cortes, M.B.; Moreno, J.; Zea, L.; Moyano, L.; Medina, M. Changes in Aroma Compounds of Sherry Wines during Their Biological Aging Carried out by Saccharomyces cerevisiae Races bayanus and capensis. J. Agric. Food Chem. 1998, 46, 2389–2394. [Google Scholar] [CrossRef]
- Merida, J.; Lopez-Toledano, A.; Marquez, T.; Millan, C.; Ortega, J.M.; Medina, M. Retention of Browning Compounds by Yeasts Involved in the Winemaking of Sherry Type Wines. Biotechnol. Lett. 2005, 27, 1565–1570. [Google Scholar] [CrossRef]
- Paneque, P.; Álvarez-Sotomayor, M.T.; Gómez, I.A. Metal contents in “oloroso” sherry wines and their classification according to provenance. Food Chem. 2009, 117, 302–305. [Google Scholar] [CrossRef]
- Pham, T.T.; Guichard, E.; Schlich, P.; Charpentier, C. Optimal Conditions for the Formation of Sotolon from α-Ketobutyric Acid in the French “Vin Jaune”. J. Agric. Food Chem. 1995, 43, 2616–2619. [Google Scholar] [CrossRef]
- Legras, J.L.; Erny, C.; Charpentier, C. Population Structure and Comparative Genome Hybridization of European Flor Yeast Reveal a Unique Group of Saccharomyces cerevisiae Strains with Few Gene Duplications in Their Genome. PLoS ONE 2014, 9, e108089. [Google Scholar] [CrossRef] [PubMed]
- Botella, M.A.; Perez-Rodriguez, L.; Domecq, B.; Valpuesta, V. Amino Acid Content of Fino and Oloroso Sherry Wines. Am. J. Enol. Vitic. 1990, 41, 12–15. [Google Scholar]
- Ingledew, W.M.; Magnus, C.A.; Sosulski, F.W. Influence of Oxygen on Proline Utilization during the Wine Fermentation. Am. J. Enol. Vitic. 1987, 38, 246–248. [Google Scholar]
- Goffeau, A.; Barrell, G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 Genes. Science 1996, 274, 546–567. [Google Scholar] [CrossRef]
- Eldarov, M.A.; Beletsky, A.V.; Tanashchuk, T.N.; Kishkovskaya, S.A.; Ravin, N.V.; Mardanov, A.V. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts. Front. Microbiol. 2018, 9, 965. [Google Scholar] [CrossRef]
- Charpentier, C.; Colin, A.; Alais, A.; Legras, J.L. French Jura flor yeasts: Genotype and technological diversity. Antonie Leeuwenhoek 2009, 95, 263–273. [Google Scholar] [CrossRef]
- Fidalgo, M.; Barrales, R.R.; Ibeas, J.I.; Jimenez, J. Adaptive evolution by mutations in the FLO11 gene. Proc. Natl. Acad. Sci. USA 2006, 103, 11228–11233. [Google Scholar] [CrossRef]
- Voordeckers, K.; De Maeyer, D.; van der Zande, E.; Vinces, M.D.; Meert, W.; Cloots, L.; Ryan, O.; Marchal, K.; Verstrepen, K.J. Identification of a Complex Genetic Network Underlying Saccharomyces cerevisiae Colony Morphology. Mol. Microbiol. 2012, 86, 225. [Google Scholar] [CrossRef]
- Bumgarner, S.L.; Dowell, R.D.; Grisafi, P.; Gifford, D.K.; Fink, G.R. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 2009, 106, 18321–18326. [Google Scholar] [CrossRef]
- Rupp, S.; Summers, E.; Lo, H.J.; Madhani, H.; Fink, G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999, 18, 1257. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, M.; Barrales, R.R.; Jimenez, J. Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 2008, 25, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Zara, G.; Zara, S.; Pinna, C.; Marceddu, S.; Budroni, M. FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology 2009, 155, 3838–3846. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Zarzoso, B.; Fernández-Espinar, M.T.; Querol, A. Authentication and identification of Saccharomyces cerevisiae ‘flor’ yeast races involved in sherry ageing. Antonie Leeuwenhoek 2004, 85, 151–158. [Google Scholar] [CrossRef] [PubMed]
- El’darov, M.A.; Avdanina, D.A.; Shalamitskii, M.Y.; Ivanova, E.V.; Tanashchuk, T.N.; Kishkovskaya, S.A.; Ravin, N.V.; Mardanov, A.V. Polymorphism of the Iron Homeostasis Genes and Iron Sensitivity in Saccharomyces cerevisiae Flor and Wine Strains. Microbiology 2019, 88, 200–205. [Google Scholar] [CrossRef]
- Strope, P.K.; Skelly, D.A.; Kozmin, S.G.; Mahadevan, G.; Stone, E.A.; Magwene, P.M.; Dietrich, F.S.; McCusker, J.H. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015, 25, 762–774. [Google Scholar] [CrossRef]
- OIV—Compendium of International Methods of Analysis of Wines and Musts, 2022nd ed.; International Organisation of Vine and Wine: Paris, France, 2021; Volume 2, ISBN 978-2-85038-052-5.
- Van Nguyen, P.; Plocek, V.; Váchová, L.; Palková, Z. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes 2020, 6, 7. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Hlaváček, O.; Maršíková, J.; Váchová, L.; Palková, Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018, 14, e1007495. [Google Scholar] [CrossRef]
- Huang, C.W.; Walker, M.E.; Fedrizzi, B.; Gardner, R.C.; Jiranek, V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res. 2017, 17, 1–26. [Google Scholar] [CrossRef]
- Linderholm, A.; Dietzel, K.; Hirst, M.; Bisson, L.F. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2010, 76, 7699–7707. [Google Scholar] [CrossRef]
- Cordente, A.G.; Heinrich, A.; Pretorius, I.S.; Swiegers, J.H. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009, 9, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Saenko, N.F. Voprosy mikrobiologii v vinodelii i vinogradarstve. In Microbiological Issues in Winemaking and Viticulture; Moscow, Russia, 1952; pp. 33–49. [Google Scholar] [CrossRef]
- Rosenberg, M. Adhesion to hydrocarbons and microbial hydrophobicity—do the MATH. FEMS Microbiol. Lett. 2017, 364, 69. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Galeote, V.; Sanchez, I.; Legras, J.-L.; Ortiz-Julien, A.; Dequin, S. Yeast multistress resistance and lag-phase characterisation during wine fermentation. FEMS Yeast Res. 2017, 17, 51. [Google Scholar] [CrossRef]
- Leão, C.; Van Uden, N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta (BBA)-Biomembr. 1984, 774, 43–48. [Google Scholar] [CrossRef]
- Matallana, E.; Aranda, A. Biotechnological impact of stress response on wine yeast. Lett. Appl. Microbiol. 2017, 64, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Taymaz-Nikerel, H.; Cankorur-Cetinkaya, A.; Kirdar, B. Genome-wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations. Front. Bioeng. Biotechnol. 2016, 4, 17. [Google Scholar] [CrossRef]
- Reynolds, T.B.; Fink, G.R. Bakers’ Yeast, a Model for Fungal Biofilm Formation. Science 2001, 291, 878–881. [Google Scholar] [CrossRef]
- Hsu, P.-H.; Chiang, P.-C.; Liu, C.-H.; Chang, Y.-W. Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence. PLoS ONE 2015, 10, e0135174. [Google Scholar] [CrossRef]
- Donovan, A.; Roy, C.N.; Andrews, N.C. The ins and outs of iron homeostasis. Physiology 2006, 21, 115–123. [Google Scholar] [CrossRef]
- Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T.; Puig, S. Iron Regulatory Mechanisms in Saccharomyces cerevisiae. Front. Microbiol. 2020, 11, 2222. [Google Scholar] [CrossRef]
- Martins, T.S.; Costa, V.; Pereira, C. Signaling pathways governing iron homeostasis in budding yeast. Mol. Microbiol. 2018, 109, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pastor, M.T.; Perea-García, A.; Puig, S. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2017, 33, 75. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef]
- Li, L.; Ward, D.M. Iron toxicity in yeast: Transcriptional regulation of the vacuolar iron importer Ccc1. Curr. Genet. 2018, 64, 413–416. [Google Scholar] [CrossRef]
- Rodrigues-Pousada, C.; Devaux, F.; Caetano, S.M.; Pimentel, C.; da Silva, S.; Cordeiro, A.C.; Amaral, C. Yeast AP-1 like transcription factors (Yap) and stress response: A current overview. Microb. Cell 2019, 6, 267. [Google Scholar] [CrossRef]
- Protchenko, O.; Ferea, T.; Rashford, J.; Tiedeman, J.; Brown, P.O.; Botstein, D.; Philpott, C.C. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276, 49244–49250. [Google Scholar] [CrossRef]
- Benítez, P.; Castro, R.; Pazo, J.A.S.; Barroso, C.G. Influence of metallic content of fino sherry wine on its susceptibility to browning. Food Res. Int. 2002, 35, 785–791. [Google Scholar] [CrossRef]
- Martínez-Garay, C.A.; de Llanos, R.; Romero, A.M.; Martínez-Pastor, M.T.; Puig, S. Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations. Appl. Environ. Microbiol. 2016, 82, 1906–1916. [Google Scholar] [CrossRef]
- Lopes, C.A.; Van Broock, M.; Querol, A.; Caballero, A.C. Saccharomyces cerevisiae Wine Yeast Populations in a Cold Region in Argentinean Patagonia. A study at Different Fermentation Scales. J. Appl. Microbiol. 2002, 93, 608–615. [Google Scholar] [CrossRef]
- Schuller, D.; Alves, H.; Dequin, S.; Casal, M. Ecological Survey of Saccharomyces cerevisiae Strains from Vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 2005, 51, 167–177. [Google Scholar] [CrossRef]
- Valero, E.; Cambon, B.; Schuller, D.; Casal, M.; Dequin, S. Biodiversity of Saccharomyces Yeast Strains from Grape Berries of Wine-Producing Areas Using Starter Commercial Yeasts. FEMS Yeast Res. 2007, 7, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, R.; Polsinelli, M. On the Origins of Wine Yeast. Res. Microbiol. 1999, 150, 199–204. [Google Scholar] [CrossRef]
- Stefanini, I.; Dapporto, L.; Legras, J.L.; Calabretta, A.; Di Paola, M.; De Filippo, C.; Viola, R.; Capretti, P.; Polsinelli, M.; Turillazzi, S.; et al. Role of Social Wasps in Saccharomyces cerevisiae Ecology and Evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 13398–13403. [Google Scholar] [CrossRef] [PubMed]
- Francesca, N.; Canale, D.E.; Settanni, L.; Moschetti, G. Dissemination of Wine-Related Yeasts by Migratory Birds. Environ. Microbiol. Rep. 2012, 4, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Burian, N.I.; Tyrina, L.V. Mikrobiologia Vinodeliya; Pis.promis.: Moscow, Russia, 1979. [Google Scholar]
- Zhgun, A.; Dumina, M.; Valiakhmetov, A.; Eldarov, M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS ONE 2020, 15, e0238452. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Nuraeva, G.K.; Eldarov, M.A. The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. Appl. Biochem. Microbiol. 2019, 55, 639–648. [Google Scholar] [CrossRef]
- Domratcheva, A.G.; Zhgun, A.A.; Novak, N.V.; Dzhavakhiya, V.V. The Influence of Chemical Mutagenesis on the Properties of the Cyclosporine a High-Producer Strain Tolypocladium inflatum VKM F-3630D. Appl. Biochem. Microbiol. 2018, 54, 53–57. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Potapov, M.P.; Avdanina, D.A.; Karpova, N.V.; Yaderets, V.V.; Dzhavakhiya, V.V.; Kardonsky, D.A. Biotransformation of Androstenedione by Filamentous Fungi Isolated from Cultural Heritage Sites in the State Tretyakov Gallery. Biology 2022, 11, 883. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C.; et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef]
- Zhgun, A.; Avdanina, D.; Shumikhin, K.; Simonenko, N.; Lyubavskaya, E.; Volkov, I.; Ivanov, V. Detection of potential biodeterioration risks for tempera painting in 16th century exhibits from State Tretyakov Gallery. PLoS ONE 2020, 15, e0230591. [Google Scholar] [CrossRef]
- Arnau, J.; Yaver, D.; Hjort, C.M. Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell Factories. In Grand Challenges in Fungal Biotechnology; Nature Publishing Group: Berlin/Heidelberg, Germany, 2020; pp. 179–210. [Google Scholar]
- Gudynaite-Savitch, L.; White, T.C. Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. In Fungal Biology; Springer International Publishing Switzerland: Cham, Switzerland, 2016; pp. 395–439. [Google Scholar]
- Hu, H.L.; van den Brink, J.; Gruben, B.S.; Wösten, H.A.B.; Gu, J.D.; de Vries, R.P. Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int. Biodeterior. Biodegrad. 2011, 65, 248–252. [Google Scholar] [CrossRef]
- Jun, H.; Kieselbach, T.; Jönsson, L.J. Enzyme production by filamentous fungi: Analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb. Cell Fact. 2011, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, J.K.; Lasure, L.L. Organic Acid Production by Filamentous Fungi. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine; Springer: New York, NY, USA, 2004; pp. 307–340. [Google Scholar]
- Yang, L.; Lübeck, M.; Lübeck, P.S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol. Rev. 2017, 31, 33–49. [Google Scholar] [CrossRef]
- Kure, C.F.; Skaar, I. The fungal problem in cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Ly, S.; Kakahi, F.B.; Mith, H.; Phat, C.; Fifani, B.; Kenne, T.; Fauconnier, M.L.; Delvigne, F. Engineering synthetic microbial communities through a selective biofilm cultivation device for the production of fermented beverages. Microorganisms 2019, 7, 206. [Google Scholar] [CrossRef]
- Anupma, A.; Tamang, J.P. Diversity of Filamentous Fungi Isolated From Some Amylase and Alcohol-Producing Starters of India. Front. Microbiol. 2020, 11, 905. [Google Scholar] [CrossRef]
- Geisen, R.; Färber, P. New Aspects of Fungal Starter Cultures for Fermented Foods. In Applied Microbiology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; pp. 13–29. [Google Scholar]
- Sugiharto, S. A review of filamentous fungi in broiler production. Ann. Agric. Sci. 2019, 64, 1–8. [Google Scholar] [CrossRef]
- Eldarov, M.A.; Mardanov, A.V. Metabolic engineering of wine strains of Saccharomyces cerevisiae. Genes 2020, 11, 964. [Google Scholar] [CrossRef]
Country | Region/City | Brand | Alcohol, % | Sugar, g/L | Type | Grape Varieties | References |
---|---|---|---|---|---|---|---|
Spain | Andalusia (Jerez de la Frontera, El Puerto de Santa María, Sanlúcar de Barrameda) | Fino | 15 | 0–5 | Dry (Vinos Generosos) | Palomino | [6,22] |
Manzanilla | 15 | ||||||
Amontillado | 16–22 | ||||||
Oloroso | 17–22 | ||||||
Palo Cortado | 17–22 | ||||||
Dry | 15–22 | 5–45 | Sweet (Vinos Generosos de Licor) | Mix of Palomino, Pedro Ximénez, Moscatel de Alejandria | |||
Medium | 15.5–22 | 5–115 | |||||
Pale Cream | 15.5–22 | 45–115 | |||||
Cream | 15.5–22 | 115–140 | |||||
Moscatel | 15–22 | 160+ | Natural Sweet (Vinos Dulces Naturales) | Moscatel de Alejandria | |||
Dulce | 15–22 | 160+ | Pedro Ximénez | ||||
Pedro Ximénez | 15–22 | 212+ | |||||
Italy | Sardinia | Vernaccia di Oristano Bianco | 15 | N/D 1 | Dry | Vernaccia di Oristano | [18,22] |
Vernaccia di Oristano Superiore | 15.5+ | ||||||
Vernaccia di Oristano Riserva | 15.5+ | ||||||
Vernaccia di Oristano Liquoroso | 16.5+ | Sweet | |||||
France | Jura | Vin Jaune | 14 | 0.4 | Dry | Savagnin | [19] |
Hungary | Tokaj-Hegyalja | Tokaji Szamorodni | 13.5 | 9 | Dry | Furmint, Hárslevelű, and Sárga Muskotály | [20] |
13.5 | 45+ | Sweet | |||||
USA | California | Sheffield Very Dry Sherry | 17 | 0.4–1.4 | Dry | Local Grape Varieties | [10,23] |
Sheffield Cellars Cream Sherry | 18 | 10.6 | Medium Dry | ||||
Paul Masson Pale Dry Sherry | N/D | N/D | Dry | ||||
Paul Masson Medium Dry Sherry | Medium Dry | ||||||
Golden Cream Sherry | Sweet | ||||||
Australia | McLaren Vale | Tinlins Dry Sherry-Apera | 17.5 | N/D | Dry | Local Grape Varieties | [10,23] |
Tinlins Cream Sherry-Apera | Sweet | ||||||
Tinlins Sweet Sherry-Apera | Sweet | ||||||
Tinlins Muscat Sherry-Apera | N/D | Sweet | |||||
Africa | South Africa | Old Brown Sherry | N/D | N/D | Dry | Local Grape Varieties | [10,23] |
Cream Sherry | Medium Sweet | ||||||
Cyprus | Cyprus | Emva Cream Sweet Sherry | 15 | N/D | Sweet | Local Grape Varieties | [23] |
Emva Medium Dry Sherry | 17.5 | Medium Dry | |||||
UK | Bristol | Harveys Fino | 15 | 0 | Dry | Palomino | [24] |
Harveys Fine Old Amontillado | 19 | 5 | |||||
Harveys Palo Cortado | 19 | 19 | Palomino, Pedro Ximénez | ||||
Harveys Medium Dry | 17.5 | 38 | Medium Sweet | ||||
Harveys Rich Old Olorosso | 20 | 53 | Sweet | ||||
Signature by Harveys | 19 | 120 | Sweet | ||||
Harveys Bristol Cream | 17.5 | 135 | Sweet | ||||
Harveys Pedro Ximénez | 16 | 440 | Sweet | Pedro Ximénez | |||
Russia | Krasnodar Krai (stanitsa Golubitskaya) | Xeres Tamanskii | 20 | 30 | Medium Sweet | Sauvignon Blanc | [25] |
Rostov-on-Don | Xeres Krepki Donskoi | 19 | 3 | Dry | Aligote, Plavai, and Riesling | [26] | |
Republic of Dagestan (Derbent) | Xeres Dagestanskii | 19 | 30 | Medium Sweet | Rkatsiteli, Narma, Gulyabi, Khatmi, Ag-izym | [27] | |
Republic of Crimea | Yalta | Xeres Oreanda | 16 | 0 | Dry | Aligote, Albillo, Kokur | [28] |
Xeres Massandra | 19.5 | 25 | Medium Sweet | Sersial, Verdelho, Albillo | [29] | ||
Xeres Magarach | Aligote, Sauvignon, Rkatsiteli | [30] | |||||
Ukraine | Odessa | Shabo Reserve Sherry Dessert | N/D | N/D | Medium Sweet | Muscat Ottonel | [23,31] |
Moldova | Ialoveni | Ialoveni Sec Reserva | 16 | 0–5 | Dry | Muscat de Ialoveni, Aligote, Traminer, White Pinot, Rkatsiteli | [32] |
Ialoveni Armonios Reserva | 18 | 15 | Medium Dry | ||||
Ialoveni Tare Reserva | 20 | 30 | Medium Sweet | ||||
Ialoveni Desert Reserva | 19 | 90 | Sweet | ||||
Armenia | Ashtarak, Shaumyan, Echmiadzin | Ashtarak | 20 | 30 | Medium Sweet | Voskeat, Chilar | [33] |
Major Properties | Sherry Wine Type | ||
---|---|---|---|
Fino | Amontillado | Oloroso | |
The grape variety used in the manufacture | Palomino | Palomino | Palomino |
Soil type used for cultivating grapes | White Albariza | White Albariza | White Albariza |
Extraction of grape must | First | First | Second |
Type of Aging | Biological | Mixed (Biological and Oxidative) | Oxidative |
Final alcohol concentration, % | 15–15.5 | 16–22 | 17–22 |
Main aromatic notes | Floral, Fruity, Cheesy, Chemical, Balsamic | Nutty, Smoky, Herbs, Ethereal | Nutty, Smoky, Dry Fallen Leaves, Spices, Truffles, Ethereal |
Color | Pale Yellow | Golden-amber to Brown | Mahogany |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avdanina, D.; Zghun, A. Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. Fermentation 2022, 8, 381. https://doi.org/10.3390/fermentation8080381
Avdanina D, Zghun A. Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. Fermentation. 2022; 8(8):381. https://doi.org/10.3390/fermentation8080381
Chicago/Turabian StyleAvdanina, Daria, and Alexander Zghun. 2022. "Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts" Fermentation 8, no. 8: 381. https://doi.org/10.3390/fermentation8080381
APA StyleAvdanina, D., & Zghun, A. (2022). Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. Fermentation, 8(8), 381. https://doi.org/10.3390/fermentation8080381