Investigating the Evolution of Structural Characteristics of Humic Acid Generated during the Continuous Anaerobic Digestion and Its Potential for Chromium Adsorption and Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestate Collection
2.2. HA Component Analysis
2.3. HAs Extraction
2.4. Characteristics of HAs
2.5. Chromium Adsorption and Reduction Potential of HAs
3. Results and Discussion
3.1. Evolution of HA Component
3.2. Characterization of the HA Component
3.3. Dynamics of Functional Groups of HA
3.4. Cr (VI) Adsorption and Reduction by HA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maynaud, G.; Druilhe, C.; Daumoin, M.; Jimenez, J.; Patureau, D.; Torrijos, M.; Pourcher, A.-M.; Wéry, N. Characterization of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter. Bioresour. Technol. 2017, 231, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Muhmood, A.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes. Chem. Eng. J. 2021, 408, 127322. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Xiao, N.; Zheng, X.; Li, M. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge. Environ. Sci. Technol. 2015, 49, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hao, X.; Loosdrecht, M.C.M.; Yu, J.; Liu, R. Adaptation of semi-continuous anaerobic sludge digestion to humic acids. Water Res. 2019, 161, 329–334. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Dong, B.; Huang, J.; Wei, Y.; Dai, X.; Dai, L. Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Res. 2018, 143, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresour. Technol. 2021, 320, 124331. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hao, X.; van Loosdrecht, M.C.M.; Luo, Y.; Cao, D. Effect of humic acids on batch anaerobic digestion of excess sludge. Water Res. 2019, 155, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Azman, S.; Khadem, A.F.; Plugge, C.M.; Stams, A.J.M.; Bec, S.; Zeeman, G. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: Inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl. Microbiol. Biot. 2017, 101, 889–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Du, M.; Lee, D.J.; Wan, C.; Zheng, L.; Wan, F. Improved volatile fatty acids production from proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobic condition. Bioresour. Technol. 2012, 103, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, X.; Wu, J.; Lu, Y.; Fu, L.; Zhang, F.; Lau, T.; Zeng, R.J. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Res. 2018, 164, 114935. [Google Scholar] [CrossRef]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Wu, S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Hodson, M.E. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. Sci. Total Environ. 2018, 635, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wen, J.; Hu, Y.; Fang, Y.; Zhang, H.; Xing, L.; Wang, Y.; Zeng, G. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J. Hazard. Mater. 2019, 366, 210–218. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.; Chen, L.; Liu, F.; Chen, H. The role of different functional groups in a novel adsorption- complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid. Environ. Pollut. 2018, 237, 740–746. [Google Scholar] [CrossRef]
- Xu, J.; Dai, Y.; Shi, Y.; Zhao, S.; Tian, H.; Zhu, K.; Jia, H. Mechanisms of Cr (VI) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species. Sci. Total Environ. 2020, 725, 138413. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Parr, T.B.; Ohno, T.; Cronan, C.S.; Simon, K.S. comPARAFAC: A Library and Tools for Rapid and Quantitative Comparison of Dissolved Organic Matter Components Resolved by Parallel Factor Analysis. Limnol. Oceanogr. Methods 2014, 12, 114–125. Available online: http://digitalcommons.library.umaine.edu/mitchellcenter_pubs/78 (accessed on 5 June 2021). [CrossRef]
- Kamjunke, N.; Herzsprung, P.; Neu, T.R. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci. Total Environ. 2015, 506–507, 353–360. [Google Scholar] [CrossRef]
- Kellerman, A.M.; Guillemette, F.; Podgorski, D.C.; Aiken, G.R.; Butler, K.D.; Spencer, R.G.M. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environ. Sci. Technol. 2018, 52, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
- He, X.S.; Xi, B.D.; Gao, R.T.; Wang, L.; Ma, Y.; Cui, D.Y.; Tan, W.B. Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater. Environ. Sci. Pollut. Res. 2015, 22, 8499–8506. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tan, W.; Zhao, Y.; Wu, J.; Sun, Q.; Qi, H.; Xie, X.; Wei, Z. Diversity in the mechanisms of humin formation during composting with different materials. Environ. Sci. Technol. 2019, 53, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. J. Hazard. Mater. 2021, 413, 125252. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xi, B.D.; He, X.S.; Zhang, H.; Li, D.; Zhao, X.Y.; Zhang, X.H. Hydrophobicity-dependent electron transfer capacities of dissolved organic matter derived from chicken manure compost. Chemosphere 2019, 222, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Y.; Jin, Y.; Zou, S.; Li, C. Recovery of sludge humic acids with alkaline pretreatment and its impact on subsequent anaerobic digestion. J. Chem. Technol. Biotechnol. 2014, 89, 707–713. [Google Scholar] [CrossRef]
- Mclntyre, A.M.; Gueguen, C. Binding interactions of algal-derived dissolved organic matter with metal ions. Cheremosphere 2013, 90, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.K.; Boyer, T.H. Behavior of recoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2013, 37, 5701–5710. [Google Scholar] [CrossRef]
- Santin, C.; Yamashita, Y.; Otero, X.L.; Alvarez, M.A.; Jaffe, R. Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry 2009, 96, 131–147. [Google Scholar] [CrossRef]
- Liu, R.; Hao, X.; van Loosdrecht, M.C.M.; Zhou, P.; Li, J. Dynamics of humic substance composition during anaerobic digestion of excess activated sludge. Int. Biodeter. Biodegr. 2019, 145, 104771. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Li, C. Evolution of humic substances during anaerobic sludge digestion. Environ. Eng. Manag. J. 2017, 16, 1577–1582. [Google Scholar] [CrossRef]
- Tedetti, M.; Cuet, P.; Guigue, C.; Goutx, M. Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures using multi-dimensional fluorescence spectroscopy. Sci. Total Environ. 2011, 409, 2198–2210. [Google Scholar] [CrossRef]
- Wu, H.; Qi, Y.; Dong, L.; Zhao, X.; Liu, H. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis. Chemosphere 2019, 228, 264–270. [Google Scholar] [CrossRef]
- Huguest, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- He, X.S.; Xi, B.D.; Jiang, Y.H.; Li, M.X.; Yu, H.B.; An, D.; Yang, Y.; Liu, H.L. Elemental and spectroscopic methods with chemometric analysis for characterizing composition and transformation of dissolved organic matter during chicken manure composting. Environ. Technol. 2012, 33, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Wu, Q.T.; Wong, J.W.C.; Nagar, B.B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.; Wang, H.; Xu, L.; Samuel, B.; Chang, J.; Liu, F.; Chen, H. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction. Sci. Total Environ. 2019, 651, 2975–2984. [Google Scholar] [CrossRef]
- Wang, X.; Muhmood, A.; Dong, R.; Wu, S. Synthesis of humic-like acid from biomass pretreatment liquor: Quantitative appraisal of electron transferring capacity and metal-binding potential. J. Clean. Prod. 2020, 255, 120243. [Google Scholar] [CrossRef]
- Yan, M.; Li, X.; Zhao, T.; Li, Z.; Wu, C.; He, Z.; Luo, J. Analysis of dynamic changes of sugars in the solid fermentation of monascus. Food Res. Dev. 2018, 39, 79–83. [Google Scholar]
- Jang, E.H.; Pack, S.P.; Kim, I.; Chung, S. A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Sci. Rep. 2020, 10, 5558. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Lalhmunsiama; Tiwari, D.; Lee, S.-M. Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights. Chem. Eng. J. 2016, 283, 1414–1423. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Yin, H.; Jin, S.; Liu, F.; Chen, H. Mechanism study of humic acid functional groups for Cr (VI) retention: Two-dimensional FTIR and 13C CP /MAS NMR correlation spectroscopic. Environ. Pollut. 2017, 225, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Barrera-díaz, C.E.; Lugo-lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12. [Google Scholar] [CrossRef]
Time (d) | C (%) | H (%) | N (%) | H/C | C/N |
---|---|---|---|---|---|
28 | 38.0 ± 0.15 | 5.89 ± 0.11 | 7.62 ± 0.10 | 1.86 | 5.83 |
56 | 37.0 ± 0.31 | 6.06 ± 0.13 | 8.56 ± 0.11 | 1.80 | 5.05 |
84 | 38.2 ± 0.26 | 5.48 ± 0.05 | 7.89 ± 0.10 | 1.72 | 5.66 |
112 | 39.6 ± 0.19 | 6.26 ± 0.13 | 8.06 ± 0.08 | 1.90 | 5.73 |
140 | 40.1 ± 0.18 | 6.05 ± 0.10 | 8.65 ± 0.12 | 1.81 | 5.41 |
168 | 41.3 ± 0.20 | 6.35 ± 0.09 | 8.85 ± 0.09 | 1.85 | 5.44 |
Time (d) | Total Acidify Groups (mmol/g) | Carboxylic Acid Groups (mmol/g) | Phenolic-OH Groups (mmol/g) |
---|---|---|---|
28 | 7.78 ± 0.31 | 4.54 ± 0.48 | 3.08 ± 0.24 |
56 | 8.13 ± 0.43 | 4.99 ± 0.42 | 3.13 ± 0.18 |
84 | 8.19 ± 0.17 | 4.85 ± 0.46 | 3.34 ± 0.20 |
112 | 8.53 ± 0.32 | 5.44 ± 0.21 | 3.09 ± 0.17 |
140 | 8.80 ± 0.45 | 5.35 ± 0.43 | 3.44 ± 0.13 |
168 | 9.01 ± 0.35 | 5.38 ± 0.35 | 3.63 ± 0.37 |
Time | Pseudo First Order Kinetic Model | Pseudo Second Order Kinetic Model | ||||
---|---|---|---|---|---|---|
Qe (mg g−1) | K1 (h−1) | R2 | Qe (mg g−1) | K1 (mg g−1 h−1) | R2 | |
28 | 146.1 | 0.013 | 0.95 | 166.0 | 0.042 | 0.96 |
56 | 168.2 | 0.004 | 0.94 | 185.3 | 0.050 | 0.98 |
84 | 191.8 | 0.017 | 0.93 | 220.4 | 0.044 | 0.99 |
112 | 220.9 | 0.066 | 0.95 | 242.3 | 0.025 | 0.98 |
140 | 228.2 | 0.027 | 0.96 | 250.6 | 0.051 | 0.99 |
168 | 242.4 | 0.030 | 0.97 | 266.1 | 0.039 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tian, P.; Muhmood, A.; Liu, J.; Su, Y.; Zhang, Q.; Zheng, Y.; Dong, R. Investigating the Evolution of Structural Characteristics of Humic Acid Generated during the Continuous Anaerobic Digestion and Its Potential for Chromium Adsorption and Reduction. Fermentation 2022, 8, 322. https://doi.org/10.3390/fermentation8070322
Wang X, Tian P, Muhmood A, Liu J, Su Y, Zhang Q, Zheng Y, Dong R. Investigating the Evolution of Structural Characteristics of Humic Acid Generated during the Continuous Anaerobic Digestion and Its Potential for Chromium Adsorption and Reduction. Fermentation. 2022; 8(7):322. https://doi.org/10.3390/fermentation8070322
Chicago/Turabian StyleWang, Xiqing, Pengjiao Tian, Atif Muhmood, Juan Liu, Yingjie Su, Qianqian Zhang, Yi Zheng, and Renjie Dong. 2022. "Investigating the Evolution of Structural Characteristics of Humic Acid Generated during the Continuous Anaerobic Digestion and Its Potential for Chromium Adsorption and Reduction" Fermentation 8, no. 7: 322. https://doi.org/10.3390/fermentation8070322
APA StyleWang, X., Tian, P., Muhmood, A., Liu, J., Su, Y., Zhang, Q., Zheng, Y., & Dong, R. (2022). Investigating the Evolution of Structural Characteristics of Humic Acid Generated during the Continuous Anaerobic Digestion and Its Potential for Chromium Adsorption and Reduction. Fermentation, 8(7), 322. https://doi.org/10.3390/fermentation8070322