Conversion of Enantiomers during the Separation of Acetoin from Fermentation Broth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Stains, and Culture Media
2.2. Preparation of AC Fermentation Broth
2.3. Extraction of AC from the Fermentation Broth
2.4. Solvent Recovery from AC Extract Solution
2.5. Crystallization of AC Samples
2.6. Determination of Components
2.7. Statistical Analysis
3. Results
3.1. Changes in the Ratio of AC Enantiomers in Each Separation Stage
3.2. Change in the Concentration of AC Enantiomers during Distillation ee%
3.3. Effect of Temperature on the Racemization
3.4. Effect of pH on the Racemization
3.5. Optimization of the Recovery Process of Ethyl Acetate from the AC Extract Solution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.J.; Lv, C.J.; Gao, C.; Qin, J.Y.; Ma, C.Q.; Liu, Z.; Liu, P.H.; Li, L.X.; Xu, P. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS ONE 2010, 5, e8860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Asnin, L.; Chudinov, A. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J. Sep. Sci. 2015, 37, 2447–2466. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, E.; Sivakumar, D.; Korsten, L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control. 2010, 53, 122–128. [Google Scholar] [CrossRef]
- Toda, F.; Tanaka, K.; Tange, H. ChemInform abstract: New reduction method of α-diketones, oxo amides, and quinones with Zn-EtOH in the presence of a salt. ChemInform 1989, 20, 1555–1557. [Google Scholar] [CrossRef]
- Al-Othman, Z.A.; Al-Warthan, A.; Ali, I. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. J. Sep. Sci. 2014, 37, 1033–1057. [Google Scholar] [CrossRef]
- Xu, Q.; Xie, L.; Li, Y.; Lin, H.; Sun, S.; Guan, X.; Hu, K.; Shen, Y.; Zhang, L. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 2015, 90, 93–100. [Google Scholar] [CrossRef]
- Hilmi, A.; Belgsir, E.M.; Léger, J.M.; Lamy, C. Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes. J. Electroanal. Chem. 1997, 435, 69–75. [Google Scholar] [CrossRef]
- Otsuka, M.; Harada, N.; Itabashi, T.; Ohmori, S. Blood and urinary levels of ethanol, acetaldehyde, and C4 compounds such as diacetyl, acetoin, and 2,3-butanediol in normal male students after ethanol ingestion. Alcohol 1999, 17, 119–124. [Google Scholar] [CrossRef]
- Xiao, Z.J.; Liu, P.H.; Qin, J.Y.; Xu, P. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl. Microbiol. Biotechnol. 2007, 74, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Yong, Y.C.; Ji, Z.; Ma, X.; Xu, Z.; Chen, S. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem. 2011, 46, 390–394. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, J.R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol. Adv. 2014, 32, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Ui, S.; Mimura, A.; Okuma, M.; Kudo, T. The production of D-Acetoin by a transgenic Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Ui, S.; Masuda, T.; Masuda, H.; Muraki, H. Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J. Ferment. Technol. 1986, 64, 481–486. [Google Scholar] [CrossRef]
- Ui, S.; Hosaka, T.; Watanabe, K.; Mimura, A. Discovery of a new mechanism of 2,3-butanediol stereoisomer formation in Bacillus cereus YUF-4. J. Ferment. Bioeng. 1998, 85, 79–83. [Google Scholar] [CrossRef]
- Chen, C.; Wei, D.; Shi, J.P.; Wang, M.; Hao, J. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 2014, 98, 4603–4613. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, Z.; Xiu, Z.L. High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141. Bioprocess Biosyst. Eng. 2019, 42, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.J.; Kim, S.; Park, H.J.; Kim, J.; Jin, H.; Kim, B.G.; Hahn, J.S. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate. Metab. Eng. 2021, 66, 68–78. [Google Scholar] [CrossRef]
- Mao, Y.; Fu, J.; Tao, R.; Huang, C.; Wang, Z.; Tang, Y.J.; Chen, T.; Zhao, X. Systematic metabolic engineering of Corynebacterium glutamicum for the industrial-level production of optically pure D-(-)-acetoin. Green Chem. 2017, 19, 5691–5702. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhao, X.Y.; Zhang, J.X.; Zhao, C.; Liu, J.J.; Tian, Y.J.; Yang, L.P. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Prep. Biochem. Biotechnol. 2017, 47, 761–767. [Google Scholar] [CrossRef]
- Cui, Z.Z.; Mao, Y.F.; Zhao, Y.J.; Zheng, M.Y.; Wang, Z.W.; Ma, H.W.; Chen, T. One-pot efficient biosynthesis of (3R)-acetoin from pyruvate by a two-enzyme cascade. Catal. Sci. Technol. 2020, 10, 7734–7744. [Google Scholar] [CrossRef]
- Kochius, S.; Paetzold, M.; Scholz, A.; Merkens, H.; Vogel, A.; Ansorge-Schumacherb, M.; Hollmannd, F.; Schradera, J.; Holtmann, D. Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J. Mol. Catal. B Enzym. 2014, 103, 61–66. [Google Scholar] [CrossRef]
- Guo, Z.W.; Zhao, X.H.; He, Y.Z.; Yang, T.X.; Gao, H.F.; Li, G.X.; Chen, F.X.; Sun, M.J.; Lee, J.K.; Zhang, L.Y. Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin. J. Microbiol. Biotechnol. 2017, 27, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.Y.; Xiao, Z.J.; Ma, C.Q.; Xie, N.Z.; Liu, P.H.; Xu, P. Production of 2,3-Butanedioi by Klebsiella Pneumoniae Using Glucose and Ammonium Phosphate. Chin. J. Chem. Eng. 2006, 14, 132–136. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.Y.; Xiu, Z.L. Salting-out extraction of acetoin from fermentation broths using hydroxylammonium ionic liquids as extractants. Sep. Purif. Technol. 2020, 240, 116584. [Google Scholar] [CrossRef]
- Sun, J.A.; Rao, B.; Zhang, L.Y.; Shen, Y.L.; Wei, D.Z. Extraction of acetoin from fermentation broth using an acetone/phosphate aqueous two-phase system. Chem. Eng. Commun. 2012, 199, 1492–1503. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Tian, Y.; Zhang, J.; Fan, Y.; Yang, L.; Han, Y. A Method for the Isolation and Extraction of 3-Hydroxy-2-butanone from Fermented Broth. China Patent CN103524316A, 22 January 2014. [Google Scholar]
- Liu, J.; Tian, Y.; Zhao, X.; Zhang, J.; Fan, Y. A Salted Extraction and Distillation Method for the Isolation of 3-Hydroxy-2-butanone from Fermentation Broth. China Patent CN103524315A, 22 January 2014. [Google Scholar]
- Boyarskiy, V.P.; Ryabukhin, D.S.; Bokach, N.A.; Vasilyev, A.V. Alkenylation of arenes and heteroarenes with alkynes. Chem. Rev. 2016, 116, 5894–5986. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.S. Enolization and racemization reactions of glucose and fructose on heating with amino-acid enantiomers and the formation of melanoidins as a result of the Maillard reaction. Amino Acids 2009, 36, 465–474. [Google Scholar] [CrossRef]
- Xing, Q.Y.; Pei, W.; Xu, R.Q.; Pei, J. Fundamental Organic Chemistry, 3rd ed; Higher Education: Beijing, China, 2005; pp. 120–121. [Google Scholar]
- Dai, J.Y.; Guan, W.; Ma, L.; Xiu, Z. Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K2HPO4. Sep. Purif. Technol. 2017, 184, 275–279. [Google Scholar] [CrossRef]
Separation Stage | CAC (g/L) | e.e. (%) | Volume (L) | pH | Recovery (%) |
---|---|---|---|---|---|
Fermentation broth | 45.1 ± 1.51 b | 93.18 ± 0.17 a | 5 | 4.54 ± 0.17 a | 100.0 ± 3.35 a |
primary AC distillate | 43.2 ± 1.86 b | 93.16 ± 0.12 a | 4.7 | 3.52 ± 0.11 b | 90.20 ± 4.32 b |
Extract | 18.8 ± 0.47 c | 93.14 ± 0.10 a | 9.3 | 3.67 ± 0.07 b | 77.52 ± 2.25 c |
Kettle bottom liquid | 918.3 ± 37.4 a | 0.50 ± 0.02 b | 0.178 | 3.53 ± 0.12 b | 72.51 ± 3.04 d |
AC crystal | \ | 0 ± 0.01 b | \ | \ | 71.26 ± 2.79 d |
Separation Stage | CAC (g/L) | e.e. (%) | Volume (L) | Operation Time (h) | AC Yield (%) |
---|---|---|---|---|---|
Extract (initial conditions) | 18.8 ± 0.47 c | 93.14 ± 0.22 a | 9.3 | / | 100.0 |
Vacuum Rotational Evaporation | 796.8 ± 18.5 b | 93.06 ± 0.15 b | 0.081 | 3.2 | 37.12 ± 1.35 b |
Atmospheric + vacuum distillation | 978.5 ± 35.1 a | 93.03 ± 0.07 a | 0.171 | 4.3 | 95.93 ± 2.79 a |
Direct vacuum distillation | 969.3 ± 31.7 a | 93.13 ± 0.08 a | 0.170 | 5.6 | 94.28 ± 3.21 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Fu, Z.; Zhao, X.; Yao, M.; Li, Y.; Liu, L.; Liu, J.; Tian, Y. Conversion of Enantiomers during the Separation of Acetoin from Fermentation Broth. Fermentation 2022, 8, 312. https://doi.org/10.3390/fermentation8070312
Zhang J, Fu Z, Zhao X, Yao M, Li Y, Liu L, Liu J, Tian Y. Conversion of Enantiomers during the Separation of Acetoin from Fermentation Broth. Fermentation. 2022; 8(7):312. https://doi.org/10.3390/fermentation8070312
Chicago/Turabian StyleZhang, Jiaxiang, Zhihao Fu, Xiangying Zhao, Mingjing Yao, Yuchen Li, Liping Liu, Jianjun Liu, and Yanjun Tian. 2022. "Conversion of Enantiomers during the Separation of Acetoin from Fermentation Broth" Fermentation 8, no. 7: 312. https://doi.org/10.3390/fermentation8070312
APA StyleZhang, J., Fu, Z., Zhao, X., Yao, M., Li, Y., Liu, L., Liu, J., & Tian, Y. (2022). Conversion of Enantiomers during the Separation of Acetoin from Fermentation Broth. Fermentation, 8(7), 312. https://doi.org/10.3390/fermentation8070312