Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Growth Medium and Culture Conditions
2.3. Gene Deletion with CRISPR/Cas9
2.4. Gene Overexpression
2.5. Construction and Verification of the Serine-Biosensor
2.6. Biosensor-Driven Evolution Experiment
2.7. Genome Sequencing
2.8. Analytical Methods
3. Results
3.1. Improved the Precursor l-Serine Accumulation by Decreasing l-Serine Degradation in E. coli
3.2. Increased l-Serine Production through ALE Combined with a Serine-Biosensor
3.2.1. Construction and Verification of a Serine-Biosensor in E. coli
3.2.2. Increased l-Serine Yield Achieved by Biosensor-Driven Evolution
3.3. Construction of l-Cysteine-Producing Recombinant Strain
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takagi, H.; Ohtsu, I. l-cysteine metabolism and fermentation in microorganisms. Adv. Biochem. 2017, 159, 129–151. [Google Scholar]
- Wendisch, V.F. Metabolic engineering advances and prospects for amino acid production. Metab. Eng. 2020, 58, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Hou, Y.; Li, Z. Fitness of chassis cells and metabolic pathways for l-cysteine overproduction in Escherichia coli. J. Agric. Food. Chem. 2020, 68, 14928–14937. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; et al. l-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food. Res. 2016, 60, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Kishino, K.; Kondoh, M.; Takagi, H. Enhanced l-cysteine production by overexpressing potential l-cysteine exporter genes in an l-cysteine-producing recombinant strain of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 2019, 83, 2390–2393. [Google Scholar] [CrossRef]
- Kawano, Y.; Ohtsu, I.; Takumi, K.; Tamakoshi, A.; Nonaka, G.; Funahashi, E.; Ihara, M.; Takagi, H. Enhancement of l-cysteine production by disruption of yciW in Escherichia coli. J. Biosci. Bioeng. 2015, 119, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, H.; Xu, N.; Zhou, W.; Ju, J.; Liu, J.; Ma, Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl. Microbiol. Biotechnol. 2019, 103, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fang, G.; Wu, H.; Li, Z.; Ye, Q. l-cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy. Biotechnol. J. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Kawano, Y.; Onishi, F. Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Appl. Microbiol. Biotechnol. 2017, 101, 6879–6889. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, K.; Albermann, C.; Sprenger, G.A. Improvement of l-phenylalanine production from glycerol by recombinant Escherichia coli strains: The role of extra copies of glpK, glpX, and tktA genes. Microb. Cell. Fact. 2014, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Vo, T.P.; Liang, Y.; Sankaranarayanan, M.; Seol, E.; Chun, A.Y.; Ashok, S.; Chauhan, A.S.; Kim, J.R.; Park, S. Development of 3-hydroxypropionic-acid-tolerant strain of Escherichia coli W and role of minor global regulator yieP. Metab. Eng. 2019, 53, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, G.A. Engineering of microorganisms for the production of chemicals and fuels from renewable resources. Springer Nat. Verl. 2017, 4, 93–123. [Google Scholar]
- Luo, X.; Ge, X.; Cui, S.; Li, Y. Value-added processing of crude glycerol into chemicals and polymers. Bioresour. Technol. 2016, 215, 144–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trondle, J.; Trachtmann, N.; Sprenger, G.A.; Weuster-Botz, D. Fed-batch production of l-tryptophan from glycerol using recombinant Escherichia coli. Biotechnol. Bioeng. 2018, 115, 2881–2892. [Google Scholar] [CrossRef]
- Yang, F.X.; Hanna, M.A.; Sun, R.C. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels. 2012, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wu, H.; Li, Z.; Ye, Q. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresour. Technol. 2016, 218, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Litsanov, B.; Brocker, M.; Bott, M. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb. Biotechnol. 2013, 6, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, S.; Blankschien, M.D.; Clomburg, J.M.; Gonzalez, R. Efficient synthesis of l-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb. Cell. Fact. 2013, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Weiner, M.; Albermann, C.; Gottlieb, K.; Sprenger, G.A.; Weuster-Botz, D. Fed-batch production of l-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochem. Eng. J. 2014, 83, 62–69. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhu, J.F.; Liu, W.; Xu, G.Q.; Zhang, X.M.; Shi, J.S.; Xu, Z.H. High-yield production of l-serine from glycerol by engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 2019, 46, 883–885. [Google Scholar] [CrossRef] [Green Version]
- Rennig, M.; Mundhada, H.; Wordofa, G.G.; Gerngross, D.; Wulff, T.; Worberg, A.; Nielsen, A.T.; Nørholm, M.H.H. Industrializing a bacterial strain for l-serine production through translation initiation optimization. ACS. Synth. Biol. 2019, 8, 2347–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.M.; Zhang, J.; Ji, X.M.; Fang, Z.; Wu, Z.M.; Chen, J.; Du, G.C. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 2018, 102, 4615–4627. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, J.M.; Wagner, J.M.; Tu, C.C.; Tong, A.; Liu, Y.Y.; Alper, H.S. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 2017, 12, 9. [Google Scholar] [CrossRef]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.O.; Feist, A.M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 2019, 56, 1–16. [Google Scholar] [CrossRef]
- Della, C.D.; Van, B.H.L.; Syberg, F.; Schallmey, M.; Tobola, F.; Cormann, K.U.; Schlicker, C.; Baumann, P.T.; Krumbach, K.; Sokolowsky, S.; et al. Engineering and application of a biosensor with focused ligand specificity. Nat. Commun. 2020, 11, 4851. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.; Schendzielorz, G.; Stabler, N.; Krumbach, K.; Hoffmann, K.; Bott, M.; Eggeling, L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome. Biol. 2012, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, S.; Jiang, P.; Yao, J.; He, Y.; Chen, L.; Gui, X.; Dong, Z.; Tang, S.Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab. Eng. 2015, 30, 149–155. [Google Scholar] [CrossRef]
- Cress, B.F.; Trantas, E.A.; Ververidis, F.; Linhardt, R.J.; Koffas, M.A.G. Sensitive cells: Enabling tools for static and dynamic control of microbial metabolic pathways. Curr. Opin. Biotechnol. 2015, 36, 205–214. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Zheng, P.; Zhang, Z.; Liu, Y.; Sun, C.; Cao, G.; Zhou, W.; Wang, X.; Zhang, D.; et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb. Cell. Fact. 2015, 14, 11. [Google Scholar] [CrossRef] [Green Version]
- Schulte, J.; Baumgart, M.; Bott, M. Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J. Biotechnol. 2017, 258, 33–40. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Tang, S.Y.; Yang, S. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Front. Chem. Sci. Eng. 2017, 11, 15–26. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.M.; Xu, G.Q.; Shi, J.S.; Xu, Z.H. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve l-serine yield in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2018, 102, 5939–5951. [Google Scholar] [CrossRef]
- Martinez, A.; Grabar, T.B.; Shanmugam, K.T.; Yomano, L.P.; York, S.W.; Ingram, L.O. Low salt medium for lactate and ethanol production by recombinant Escherichia coli. B. Biotechnol. Lett. 2007, 29, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Feist, A.M.; Zielinski, D.C.; Orth, J.D.; Schellenberger, J.; Herrgard, M.J.; Palsson, B.O. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab. Eng. 2010, 12, 173–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, B.C.; Otten, R.; Krewulak, K.D.; Mulder, F.A.; Vogel, H.J. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J. Biol. Chem. 2014, 289, 29219–29234. [Google Scholar] [CrossRef] [Green Version]
- Storek, K.M.; Vij, R.; Sun, D.; Smith, P.A.; Koerber, J.T.; Rutherford, S.T. The Escherichia coli β-barrel assembly machinery is sensitized to perturbations under high membrane fluidity. J. Bacteriol. 2018, 201, e00517-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.T.; Bernstein, H.D. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. Mol. Cell. 2021, 81, 2000–2012. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Cottrill, M.A.; Forsberg, C.W.; Jia, Z. Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. J. Biol. Chem. 2003, 278, 31412–31418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Corsi, I.D.; Bier, N.; Koehler, T.M. BrnQ-type branched-chain amino acid transporters Influence Bacillus anthracis growth and virulence. mBio 2022, 25, e03640-21. [Google Scholar] [CrossRef]
- Eggeling, L.; Bott, M. A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2015, 99, 3387–3394. [Google Scholar] [CrossRef]
- Johnson, A.O.; Gonzalez-Villanueva, M.; Wong, L.; Steinbuchel, A.; Tee, K.L.; Xu, P.; Wong, T.S. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab. Eng. 2017, 44, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, P. Production of chemicals using dynamic control of metabolic fluxes. Curr. Opin. Biotechnol. 2018, 53, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Mahr, R.; Von Boeselager, R.F.; Wiechert, J.; Frunzke, J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Appl. Microbiol. Biotechnol. 2016, 100, 6739–6753. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Lee, Y.J.; Park, J.W.; Kim, S.N.; Kim, E.Y.; Kim, Y.; Kim, O.B. An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation. mSphere 2021, 6, e0065421. [Google Scholar] [CrossRef] [PubMed]
- Volpon, L.; Lievre, C.; Osborne, M.J.; Gandhi, S.; Iannuzzi, P.; Larocque, R.; Cygler, M.; Gehring, K.; Ekiel, I. The solution structure of YbcJ from Escherichia coli reveals a recently discovered alphal motif involved in RNA binding. J. Bacteriol. 2003, 185, 4204–4210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliabue, L.; Antoniani, D.; Maciąg, A.; Bocci, P.; Raffaelli, N.; Landini, P. The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. Microbiology 2010, 156, 2901–2911. [Google Scholar] [CrossRef] [Green Version]
- Masulis, I.S.; Sukharycheva, N.A.; Kiselev, S.S.; Andreeva, Z.S.; Ozoline, O.N. Between computational predictions and high-throughput transcriptional profiling: In depth expression analysis of the OppB trans-membrane subunit of Escherichia coli OppABCDF oligopeptide transporter. Res. Microbiol. 2020, 171, 55–63. [Google Scholar] [CrossRef]
- Minamino, T.; Inoue, Y.; Kinoshita, M.; Namba, K. FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus. J. Bacteriol. 2020, 202, e00637-19. [Google Scholar] [CrossRef]
- Lolkema, J.S. Domain structure and pore loops in the 2-hydroxycarboxylate transporter family. J. Mol. Microbiol. Biotechnol. 2006, 11, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Poyner, R.R.; Larsen, T.M.; Wong, S.W.; Reed, G.H. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Arch. Biochem. Biophys. 2002, 401, 155–163. [Google Scholar] [CrossRef]
Strains or Plasmids | Description | Sources |
Strains E. coli JM109 | recA1, endA1, gyrA96, thi-1, hsd R17(rk- mk+) supE44 | Invitrogen |
4W | W3110△tdcG△sdaA△sdaB serAdr | Invitrogen |
4WG | 4W with glyA deletion | This study |
4W-pDer | 4W harboring serine-biosensor pDser | This study |
4WGX | A mutant derived from 4W | This study |
4WG-pDer | 4WG harboring serine- biosensor pDser | This study |
4WG-cysE | 4WG harboring pEtac-cysE | This study |
4WG-cysE-ydeD | 4WG harboring pEtac-cysE-ydeD | This study |
4WG-∆tnaA | 4WG with tnaA deletion | This study |
4WG-∆tnaA-cysE | 4WG-∆tnaA harboring pEtac-cysE | This study |
4WG-∆tnaA-cysE-ydeD | 4WG-∆tnaA harboring pEtac-cyE-ydeD | This study |
Plasmids | ||
pCas | Carrying Cas9 and λRed System, kan | Invitrogen |
pTargetF | Carrying N20 sequence, spc or smr | Invitrogen |
pDser | Biosensor, kan | Invitrogen |
pEtac | Inducible expression plasmid, tac, kan | This study |
pEtac-cysE | Carrying cysE gene from E. coli | This study |
pEtac-cysE-ydeD | Carrying cysE and ydeD gene from E. coli | This study |
Primers | Sequence |
pTargetF-△glyA1-F | ACTGTGGCAGGCTATGGAGCGTTTTAGAGCTAGAAATAGCAAGTT |
pTargetF-△glyA1-R | GCTCCATAGCCTGCCACAGTACTAGTATTATACCTAGGACTGAGC |
pTargetF-△glyA2-F | AGAAGCCGAAGCGAAAGAACGTTTTAGAGCTAGAAA-TAGCAAGTT |
pTargetF-△glyA2-R | GTTCTTTCGCTTCGGCTTCTACTAGTATTATACCTAGGACTGAGC |
glyA-U-F | AGCCCTGCAATGTAAATGGTT |
glyA-U-R | ACAGCAAATCACCGTTTCGCCCGCATCTCCTGACTCAGCTA |
glyA-D-F | AGCTGAGTCAGGAGATGCGGGCGAAACGGTGATTTGCTGTC |
glyA-D-R | TCGCCAGACAGGATTTAACCC |
pTargetF:1756F23 | CCCTGATTCTGTGGATAACCGTA |
pTargetF:78R23 | ACATCAGTCGATCATAGCACGAT |
cysE-F | TTCACACAGGAAACAGAATTCATGTCGTGTGAAGAACTGGAAATTG |
cysE-R | TGCGGCCGCAAGCTTGTCGACTTAGATCCCATCCCCATACTCAA |
ydeD-F | GGGATCTAAGTCGACAAGCTTCGCTGAGCAATAACTAGCATAACC |
ydeD-R | GTGGTGGTGGTGGTGCTCGAGTTAACTTCCCACCTTTACCGCT |
tnaA-U-F | TTGCATATATATCTGGCGAATTAATCGG |
tnaA-U-R | GCCACTCTGTAGTATTAAGTATCAAAGAAATAGTTAGAGAACGCCA |
tnaA-D-F | ACTTAATACTACAGAGTGGCTATAAGGATGTT |
tnaA-D-R | ACGAAAATGGCTGTGCAGAT |
pTargetF-∆tnaA-F | CGTTCTCTTTCACATGTTTAACTAGTATTATACCTAGGACTG |
pTargetF-∆tnaA-R | TAAACATGTGAAAGAGAACGTTTTAGAGCTAGAAATAGCAA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, Z.; Bian, J.; Gao, Y.; Zhang, D.; Xu, G.; Zhang, X.; Li, H.; Shi, J.; Xu, Z. Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation 2022, 8, 299. https://doi.org/10.3390/fermentation8070299
Zhang X, Sun Z, Bian J, Gao Y, Zhang D, Xu G, Zhang X, Li H, Shi J, Xu Z. Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation. 2022; 8(7):299. https://doi.org/10.3390/fermentation8070299
Chicago/Turabian StyleZhang, Xiaomei, Zhenhang Sun, Jinyu Bian, Yujie Gao, Dong Zhang, Guoqiang Xu, Xiaojuan Zhang, Hui Li, Jinsong Shi, and Zhenghong Xu. 2022. "Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli" Fermentation 8, no. 7: 299. https://doi.org/10.3390/fermentation8070299
APA StyleZhang, X., Sun, Z., Bian, J., Gao, Y., Zhang, D., Xu, G., Zhang, X., Li, H., Shi, J., & Xu, Z. (2022). Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation, 8(7), 299. https://doi.org/10.3390/fermentation8070299