Microbial Resources and Sparkling Wine Differentiation: State of the Arts
Abstract
:1. Introduction
2. Sparkling Wine Production Process
3. Yeast Strain for Sparkling Wine Production
3.1. Selection Criteria for Microbial Resources in Sparkling/Sparkling Wine
3.2. Impact of Microbial Resources on the Sensory Quality of Sparkling Wine
3.3. Autochthonous Saccharomyces Starter Strains
3.4. Role of Non-Saccharomyces in Sparkling Wine Production
4. Lactic Acid Bacteria
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Gianvito, P.; Arfelli, G.; Suzzi, G.; Tofalo, R. 11—New Trends in Sparkling Wine Production: Yeast Rational Selection. In Alcoholic Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 347–386. ISBN 978-0-12-815269-0. [Google Scholar]
- OIV Focus—The Global Sparkling Wine Market. Available online: https://www.oiv.int/public/medias/7291/oiv-sparkling-focus-2020.pdf (accessed on 17 May 2022).
- Cebollero, E.; Gonzalez, R. Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines. Appl. Environ. Microbiol. 2006, 72, 4121–4127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, C.; Arena, M.P.; Laddomada, B.; Cappello, M.S.; Bleve, G.; Grieco, F.; Beneduce, L.; Berbegal, C.; Spano, G.; Capozzi, V. Starter Cultures for Sparkling Wine. Fermentation 2016, 2, 21. [Google Scholar] [CrossRef]
- 3 2/2010 Enometrica. Available online: http://eum.unimc.it/it/enometrica/242-3-22010-enometrica (accessed on 3 May 2022).
- Buxaderas, S.; López-Tamames, E. Chapter 1—Sparkling Wines: Features and Trends from Tradition. In Advances in Food and Nutrition Research; Henry, J., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 66, pp. 1–45. [Google Scholar]
- Sardaro, R.; Bozzo, F.; Petrillo, F.; Fucilli, V. Measuring the Financial Sustainability of Vine Landraces for Better Conservation Programmes of Mediterranean Agro-Biodiversity. Land Use Policy 2017, 68, 160–167. [Google Scholar] [CrossRef]
- Fanelli, V.; Volpicella, M.; Giampetruzzi, A.; Saldarelli, P.; Leoni, C.; Ceci, L.R.; Di Rienzo, V.; Venerito, P.; Taranto, F.; Giannini, P.; et al. Valorization of Autochthonous Apulian Grapevine Cultivars for Spumante Production. Acta Hortic. 2019, 1248, 457–462. [Google Scholar] [CrossRef]
- Tufariello, M.; Pati, S.; D’Amico, L.; Bleve, G.; Losito, I.; Grieco, F. Quantitative Issues Related to the Headspace-SPME-GC/MS Analysis of Volatile Compounds in Wines: The Case of Maresco Sparkling Wine. LWT-Food Sci. Technol. 2019, 108, 268–276. [Google Scholar] [CrossRef]
- The Common Organisation of Agricltural Markets in the EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:0302_1 (accessed on 28 April 2022).
- Carrascosa, A.V.; Martinez-Rodriguez, A.; Cebollero, E.; González, R. Chapter 2—Saccharomyces Yeasts II: Secondary Fermentation. In Molecular Wine Microbiology; Carrascosa, A.V., Muñoz, R., González, R., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 33–49. ISBN 978-0-12-375021-1. [Google Scholar]
- Perpetuini, G.; Di Gianvito, P.; Arfelli, G.; Schirone, M.; Corsetti, A.; Tofalo, R.; Suzzi, G. Biodiversity of Autolytic Ability in Flocculent Saccharomyces Cerevisiae Strains Suitable for Traditional Sparkling Wine Fermentation. Yeast 2016, 33, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Raymond Eder, M.L.; Rosa, A.L. Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation 2021, 7, 321. [Google Scholar] [CrossRef]
- Torresi, S.; Frangipane, M.T.; Anelli, G. Biotechnologies in Sparkling Wine Production. Interesting Approaches for Quality Improvement: A Review. Food Chem. 2011, 129, 1232–1241. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Alderees, F.; Mereddy, R.; Were, S.; Netzel, M.E.; Sultanbawa, Y. Anti-Yeast Synergistic Effects and Mode of Action of Australian Native Plant Essential Oils. Appl. Sci. 2021, 11, 10670. [Google Scholar] [CrossRef]
- Cilindre, C.; Henrion, C.; Coquard, L.; Poty, B.; Barbier, J.-E.; Robillard, B.; Liger-Belair, G. Does the Temperature of the Prise de Mousse Affect the Effervescence and the Foam of Sparkling Wines? Molecules 2021, 26, 4434. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Berbegal, C.; Grieco, F.; Tufariello, M.; Spano, G.; Capozzi, V. Selection of Indigenous Yeast Strains for the Production of Sparkling Wines from Native Apulian Grape Varieties. Int. J. Food Microbiol. 2018, 285, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Borrull, A.; Poblet, M.; Rozès, N. New Insights into the Capacity of Commercial Wine Yeasts to Grow on Sparkling Wine Media. Factor Screening for Improving Wine Yeast Selection. Food Microbiol. 2015, 48, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. Effect of Production Phase on Bottle-Fermented Sparkling Wine Quality. J. Agric. Food Chem. 2015, 63, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Coloretti, F.; Zambonelli, C.; Tini, V. Characterization of Flocculent Saccharomyces Interspecific Hybrids for the Production of Sparkling Wines. Food Microbiol. 2006, 23, 672–676. [Google Scholar] [CrossRef]
- Mann, M.A.; Frisch, L.M.; Vogel, R.F.; Niessen, L. Influence of Fermentation Conditions on the Secretion of Seripauperin 5 (PAU5) by Industrial Sparkling Wine Strains of Saccharomyces Cerevisiae. Food Res. Int. 2021, 139, 109912. [Google Scholar] [CrossRef]
- Kupfer, V.M.; Vogt, E.I.; Siebert, A.K.; Meyer, M.L.; Vogel, R.F.; Niessen, L. Foam-Stabilizing Properties of the Yeast Protein PAU5 and Evaluation of Factors That Can Influence Its Concentration in Must and Wine. Food Res. Int. 2017, 102, 111–118. [Google Scholar] [CrossRef]
- Vogt, E.I.; Kupfer, V.M.; Vogel, R.F.; Niessen, L. Evidence of Gushing Induction by Penicillium Oxalicum Proteins. J. Appl. Microbiol. 2017, 122, 708–718. [Google Scholar] [CrossRef]
- Dorignac, E.; Gosselin, Y. Important Considerations for Yeast Preparation and Indole Production in Sparkling Winemaking. Aust. N. Z. Grapegrow. Winemak. 2020, 674, 65–67. [Google Scholar] [CrossRef]
- Alfonzo, A.; Francesca, N.; Mercurio, V.; Prestianni, R.; Settanni, L.; Spanò, G.; Naselli, V.; Moschetti, G. Use of Grape Racemes from Grillo Cultivar to Increase the Acidity Level of Sparkling Base Wines Produced with Different Saccharomyces Cerevisiae Strains. Yeast 2020, 37, 475–486. [Google Scholar] [CrossRef]
- Bely, M.; Stoeckle, P.; Masneuf-Pomarède, I.; Dubourdieu, D. Impact of Mixed Torulaspora Delbrueckii-Saccharomyces Cerevisiae Culture on High-Sugar Fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Tofalo, R.; Perpetuini, G.; Di Gianvito, P.; Schirone, M.; Corsetti, A.; Suzzi, G. Genetic Diversity of FLO1 and FLO5 Genes in Wine Flocculent Saccharomyces Cerevisiae Strains. Int. J. Food Microbiol. 2014, 191, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Soares, E.V. Flocculation in Saccharomyces Cerevisiae: A Review. J. Appl. Microbiol. 2011, 110, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, B.E.N.; Fleet, G.H.; Henschke, P.A. Promotion of Autolysis Through the Interaction of Killer and Sensitive Yeasts: Potential Application in Sparkling Wine Production. Am. J. Enol. Vitic. 2000, 51, 65–72. [Google Scholar]
- Nunez, Y.P.; Carrascosa, A.V.; González, R.; Polo, M.C.; Martínez-Rodríguez, A.J. Effect of Accelerated Autolysis of Yeast on the Composition and Foaming Properties of Sparkling Wines Elaborated by a Champenoise Method. J. Agric. Food Chem. 2005, 53, 7232–7237. [Google Scholar] [CrossRef]
- Frisch, L.M.; Mann, M.A.; Marek, D.N.; Baudrexl, M.; Vogel, R.F.; Niessen, L. Studies on the Gushing Potential of Penicillium Expansum. Food Res. Int. 2021, 139, 109915. [Google Scholar] [CrossRef]
- Liger-Belair, G. Effervescence in Champagne and Sparkling Wines: From Grape Harvest to Bubble Rise. Eur. Phys. J. Spec. Top. 2017, 226, 3–116. [Google Scholar] [CrossRef]
- Culbert, J.A.; McRae, J.M.; Condé, B.C.; Schmidtke, L.M.; Nicholson, E.L.; Smith, P.A.; Howell, K.S.; Boss, P.K.; Wilkinson, K.L. Influence of Production Method on the Chemical Composition, Foaming Properties, and Quality of Australian Carbonated and Sparkling White Wines. J. Agric. Food Chem. 2017, 65, 1378–1386. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Tesnière, C.; Suzzi, G.; Blondin, B.; Tofalo, R. FLO5 Gene Controls Flocculation Phenotype and Adhesive Properties in a Saccharomyces Cerevisiae Sparkling Wine Strain. Sci. Rep. 2017, 7, 10786. [Google Scholar] [CrossRef]
- Cotea, V.V.; Focea, M.C.; Luchian, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of Different Commercial Yeasts on Volatile Fraction of Sparkling Wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef]
- Martínez-García, R.; Moreno, J.; Bellincontro, A.; Centioni, L.; Puig-Pujol, A.; Peinado, R.A.; Mauricio, J.C.; García-Martínez, T. Using an Electronic Nose and Volatilome Analysis to Differentiate Sparkling Wines Obtained under Different Conditions of Temperature, Ageing Time and Yeast Formats. Food Chem. 2021, 334, 127574. [Google Scholar] [CrossRef] [PubMed]
- Gnoinski, G.B.; Schmidt, S.A.; Close, D.C.; Goemann, K.; Pinfold, T.L.; Kerslake, F.L. Novel Methods to Manipulate Autolysis in Sparkling Wine: Effects on Yeast. Molecules 2021, 26, E387. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, S.J.; De Leonardis, A.; Lustrato, G.; Testa, B.; Iorizzo, M. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces Cerevisiae Strains in Co-Culture. Recent Pat. Biotechnol. 2015, 9, 223–230. [Google Scholar] [CrossRef] [PubMed]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of Two Yeast Strains in Free, Bioimmobilized or Immobilized with Alginate Forms on the Aromatic Profile of Long Aged Sparkling Wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Arevalo-Villena, M.; Bartowsky, E.J.; Capone, D.; Sefton, M.A. Production of Indole by Wine-Associated Microorganisms under Oenological Conditions. Food Microbiol. 2010, 27, 685–690. [Google Scholar] [CrossRef]
- Berbegal, C.; Spano, G.; Fragasso, M.; Grieco, F.; Russo, P.; Capozzi, V. Starter Cultures as Biocontrol Strategy to Prevent Brettanomyces Bruxellensis Proliferation in Wine. Appl. Microbiol. Biotechnol. 2018, 102, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Berbegal, C.; Spano, G.; Tristezza, M.; Grieco, F.; Capozzi, V. Microbial Resources and Innovation in the Wine Production Sector. S. Afr. J. Enol. Vitic. 2017, 38, 156–166. [Google Scholar] [CrossRef]
- Berbegal, C.; Fragasso, M.; Russo, P.; Bimbo, F.; Grieco, F.; Spano, G.; Capozzi, V. Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. Fermentation 2019, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Tufariello, M.; Rizzuti, A.; Palombi, L.; Ragone, R.; Capozzi, V.; Gallo, V.; Mastrorilli, P.; Grieco, F. Non-Targeted Metabolomic Approach as a Tool to Evaluate the Chemical Profile of Sparkling Wines Fermented with Autochthonous Yeast Strains. Food Control 2021, 126, 108099. [Google Scholar] [CrossRef]
- Grieco, F.; Tristezza, M.; Vetrano, C.; Bleve, G.; Panico, E.; Grieco, F.; Mita, G.; Logrieco, A. Exploitation of Autochthonous Micro-Organism Potential to Enhance the Quality of Apulian Wines. Ann. Microbiol. 2011, 61, 67–73. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and Its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Indigenous Yeasts: Emerging Trends and Challenges in Winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Vigentini, I.; Barrera Cardenas, S.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Foschino, R. Use of Native Yeast Strains for In-Bottle Fermentation to Face the Uniformity in Sparkling Wine Production. Front. Microbiol. 2017, 8, 1225. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Francesca, N.; Matraxia, M.; Craparo, V.; Naselli, V.; Mercurio, V.; Moschetti, G. Diversity of Saccharomyces Cerevisiae Strains Associated to Racemes of Grillo Grape Variety. FEMS Microbiol. Lett. 2020, 367, fnaa079. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Chiriatti, M.A.; Grieco, F.; Perrotta, C.; Capone, S.; Rampino, P.; Tristezza, M.; Mita, G.; Grieco, F. Influence of Autochthonous Saccharomyces Cerevisiae Strains on Volatile Profile of Negroamaro Wines. LWT-Food Sci. Technol. 2014, 58, 35–48. [Google Scholar] [CrossRef]
- Bozdogan, A.; Canbas, A. Influence of Yeast Strain, Immobilisation and Ageing Time on the Changes of Free Amino Acids and Amino Acids in Peptides in Bottle-Fermented Sparkling Wines Obtained from Vitis Vinifera Cv. Emir. Int. J. Food Sci. Technol. 2011, 46, 1113–1121. [Google Scholar] [CrossRef]
- Bozdogan, A.; Canbas, A. The Effect of Yeast Strain, Immobilisation, and Ageing Time on the Amount of Free Amino Acids and Amino Acids in Peptides of Sparkling Wines Obtained from Cv. Dimrit Grapes. S. Afr. J. Enol. Vitic. 2012, 33, 257–263. [Google Scholar] [CrossRef]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological Consequences of Sequential Inoculation with Non-Saccharomyces Yeasts (Torulaspora Delbrueckii or Metschnikowia Pulcherrima) and Saccharomyces Cerevisiae in Base Wine for Sparkling Wine Production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Canals, J.M.; Zamora, F. Effect of Sequential Inoculation (Torulaspora Delbrueckii/Saccharomyces Cerevisiae) in the First Fermentation on the Foaming Properties of Sparkling Wine. Eur. Food Res. Technol. 2017, 243, 681–688. [Google Scholar] [CrossRef]
- Ivit, N.N.; Loira, I.; Morata, A.; Benito, S.; Palomero, F.; Suárez-Lepe, J.A. Making Natural Sparkling Wines with Non-Saccharomyces Yeasts. Eur. Food Res. Technol. 2018, 244, 925–935. [Google Scholar] [CrossRef]
- Velázquez, R.; Zamora, E.; Álvarez, M.L.; Ramírez, M. Using Torulaspora Delbrueckii Killer Yeasts in the Elaboration of Base Wine and Traditional Sparkling Wine. Int. J. Food Microbiol. 2019, 289, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora Delbrueckii for Secondary Fermentation in Sparkling Wine Production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage Yeasts in the Wine Industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Liu, S.-Q. A Review: Malolactic Fermentation in Wine—Beyond Deacidification. J. Appl. Microbiol. 2002, 92, 589–601. [Google Scholar] [CrossRef]
- Capozzi, V.; Tufariello, M.; De Simone, N.; Fragasso, M.; Grieco, F. Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. Fermentation 2021, 7, 24. [Google Scholar] [CrossRef]
- Alexandre, H. Yeasts and Sparkling Wine Production. In Yeasts in the Production of Wine; Romano, P., Ciani, M., Fleet, G.H., Eds.; Springer: New York, NY, USA, 2019; pp. 395–432. ISBN 978-1-4939-9782-4. [Google Scholar]
- Petrontino, A.; Frem, M.; Fucilli, V.; Tricarico, G.; Bozzo, F. Health-Nutrients and Origin Awareness: Implications for Regional Wine Market-Segmentation Strategies Using a Latent Analysis. Nutrients 2022, 14, 1385. [Google Scholar] [CrossRef] [PubMed]
Type of Product | Production Process | CO2 Value (Bar) | Total/Actual Alcohol Content of Cuvee (% v/v) |
---|---|---|---|
Quality sparkling wine. | Obtained from the first or second alcoholic fermentation of fresh grapes, grape must, or wine. | >3.5 bar of CO2 in solution at 20 °C. | strength > 9% v/v. |
Quality sparkling wine of the aromatic type. | Obtained from grape must or partially fermented grape must derived from specific wine grape varieties | >3 bars of CO2 in solution at 20 °C. | Total alcoholic strength > 10% v/v; actual alcoholic strength > 6% v/v. |
Gasified sparkling wine. | Obtained from wine without PDO or PGI with the addition of exogenous CO2 | >3 bars of CO2 in solution at 20 °C. | - |
Sparkling wine | Obtained from wine, new wine still in fermentation, grape must, or partially fermented grape must. | Endogenous CO2 in solution between 1 bar and 2.5 bar at 20 °C. | Total alcoholic strength > 9% v/v; Actual alcoholic strength > 7% v/v. |
Aerated sparkling wine. | Made from wine, new wine still in fermentation, grape must, or partially fermented grape must | CO2 added (partially or totally) in solution between 1 bar and 2.5 bar at 20 °C. | Total alcoholic strength > 9% v/v; actual alcoholic strength > 7% v/v. |
Technological and Qualitative Properties | Bibliographic Reference |
---|---|
Tolerance to ethanol (10–12% v/v) | [4,19,20] |
Total SO2 (50–80 mg/L) | [4,19,20] |
Resistance to low pH (2.9–3.5) | [4,19,20] |
Low refermentation temperatures (10–15 °C) | [4,19,20] |
Autolytic capacity and killer activity | [4,19,20] |
High CO2/pressure values (5–6 bars) | [4,19,20] |
High total acidity (12–18 g/L tartaric acid) | [4,19,20] |
Low volatile acidity (0.2–0.4 g/L) | [15] |
Interspecific hybrid strains | [21] |
PAU5 mannoprotein synthesis | [22,23,24] |
Reduced indole production | [22,25] |
Flocculant capacity | [12,26] |
Autochthonous Strain | Viticultural Zone | Technological Characteristics | Qualitative Characteristics | Bibliographic Reference |
---|---|---|---|---|
16 Strains (S. cerevisiae) | Salento (Apulia, Southern Italy) | Fermentative vigour, ethanol and SO2 tolerance | Volatile compound production, but also influenced by the levels of polysaccharides, organic acids, phenolic acids, and lipids | [45] |
16 strains (S. cerevisiae) | Daunia (Apulia, Southern Italy) | Fermentative vigour, ethanol and SO2 tolerance, flocculent and autolytic capacities, killer activity, CO2 content–pressure | Low volatile acidity, total acidity, glycerol, H2S, volatile compounds production | [18] |
4 strains (S. cerevisiae) | Franciacorta (Oltrepò pavese, Northern Italy) | Fermentative vigour, fermentative power, tolerance to ethanol and SO2, flocculating capacities | Low volatile acidity, glycerol, H2S production | [49] |
4 strains (S. cerevisiae) | Marsala (Sicily, Southern Italy) | Fermentative vigour, high total acidity | Low volatile acidity, off-odours absence, volatile compounds production | [50] |
Yeast Species | Technological and Qualitative Features | Effects on Wine Properties | Bibliographic Reference |
---|---|---|---|
T. delbrueckii | Fermentation vigour/power, CO2, and pressure values | Negative effects on flavour profile and incomplete secondary fermentation | [57] |
T. delbrueckii | Ethanol, pH, sugars, volatile acidity, volatile compounds, and sensory analysis | Positive effects on aroma and overall sensory characteristics | [58] |
S. pombe/ S. ludwigii | Ethanol, pH, total and volatile acidity, glycerol, anthocyanins, volatile compounds, amino acids, biogenic amines, and sensory analysis | Positive effects on colour, acidity, volatile compounds, biogenic amines, and sensory evaluation | [56] |
T. delbrueckii/S. cerevisiae | Protein content and foaming properties | Positive effects on protein content, volatile compounds, and higher foam heights | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzi, V.; Tufariello, M.; Berbegal, C.; Fragasso, M.; De Simone, N.; Spano, G.; Russo, P.; Venerito, P.; Bozzo, F.; Grieco, F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation 2022, 8, 275. https://doi.org/10.3390/fermentation8060275
Capozzi V, Tufariello M, Berbegal C, Fragasso M, De Simone N, Spano G, Russo P, Venerito P, Bozzo F, Grieco F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation. 2022; 8(6):275. https://doi.org/10.3390/fermentation8060275
Chicago/Turabian StyleCapozzi, Vittorio, Maria Tufariello, Carmen Berbegal, Mariagiovanna Fragasso, Nicola De Simone, Giuseppe Spano, Pasquale Russo, Pasquale Venerito, Francesco Bozzo, and Francesco Grieco. 2022. "Microbial Resources and Sparkling Wine Differentiation: State of the Arts" Fermentation 8, no. 6: 275. https://doi.org/10.3390/fermentation8060275
APA StyleCapozzi, V., Tufariello, M., Berbegal, C., Fragasso, M., De Simone, N., Spano, G., Russo, P., Venerito, P., Bozzo, F., & Grieco, F. (2022). Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation, 8(6), 275. https://doi.org/10.3390/fermentation8060275