Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Cultivation Conditions
2.2. Molecular Biology Techniques
2.3. Plasmid Construction
2.4. Quantitative Real-Time PCR
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Construction of Riboflavin-Producing Strains
3.2. Biochemical Characteristics of Strains Producing Riboflavin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef] [Green Version]
- Dmytruk, K.V.; Yatsyshyn, V.Y.; Sybirna, N.O.; Fedorovych, D.V.; Sibirny, A.A. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab. Eng. 2011, 13, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Abbas, C.A.; Sibirny, A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75, 321–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, D.R.; Libardi, S.H.; Skibsted, L.H. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 2012, 3, 487–502. [Google Scholar] [CrossRef]
- Buehler, B.A. Vitamin B2: Riboflavin. J. Evid.-Based Integr. Med. 2011, 16, 88–90. [Google Scholar] [CrossRef]
- Lim, S.H.; Choi, J.S.; Park, E.Y. Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famata: An overview. Biotechnol. Bioprocess Eng. 2001, 6, 75–88. [Google Scholar] [CrossRef]
- Stahmann, K.-P.; Revuelta, J.L.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiolol. Biotechnol. 2000, 53, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, E.J. Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J. Chem. Technol. Biotechnol. 1992, 53, 313–327. [Google Scholar] [CrossRef]
- Schwechheimer, S.K.; Park, E.Y.; Revuelta, J.L.; Becker, J.; Wittmann, C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016, 100, 2107–2119. [Google Scholar] [CrossRef]
- Burgess, C.M.; Smid, E.J.; van Sinderen, D. Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int. J. Food Microbiol. 2009, 133, 1–7. [Google Scholar] [CrossRef]
- Lim, S.H.; Ming, H.; Park, E.Y.; Choi, J.S. Improvement of riboflavin production using mineral support in the culture of Ashbya gossypii. Food Technol. Biotechnol. 2003, 41, 137–144. [Google Scholar]
- Dmytruk, K.V.; Sibirny, A.A. Candida famata (Candida flareri). Yeast 2012, 29, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Bacher, A. Biosynthesis of flavocoenzymes. Nat. Prod. Rep. 2005, 22, 324–350. [Google Scholar] [CrossRef] [PubMed]
- Voronovsky, A.A.; Abbas, C.A.; Fayura, L.R.; Kshanovska, B.V.; Dmytruk, K.V.; Sybirna, K.A.; Sibirny, A.A. Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res. 2002, 2, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Abbas, C.A.; Voronovsky, A.Y.; Fayura, L.R.; Kshanovska, B.V.; Dmytruk, K.V.; Sibirna, K.A.; Sibirny, A.A. Transformation Systems for Flavinogenic Yeast. U.S. Patent 7,009,045B2, 7 March 2006. [Google Scholar]
- Dmytruk, K.V.; Abbas, C.A.; Voronovsky, A.Y.; Kshanovska, B.V.; Sybirna, K.A.; Sibirny, A.A. Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata. Ukr. Biokhim. Zh. 2004, 76, 78–87. [Google Scholar]
- Voronovsky, A.Y.; Abbas, C.A.; Dmytruk, K.V.; Ishchuk, O.P.; Kshanovska, B.V.; Sybirna, K.A.; Gaillardin, C.; Sibirny, A.A. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis. Yeast 2004, 21, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Dmytruk, K.V.; Voronovsky, A.Y.; Sibirny, A.A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr. Genet. 2006, 50, 183–191. [Google Scholar] [CrossRef]
- Dmytruk, K.; Lyzak, O.; Yatsyshyn, V.; Kluz, M.; Sibirny, V.; Puchalski, C.; Sibirny, A. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J. Biotechnol. 2014, 172, 11–17. [Google Scholar] [CrossRef]
- Dmytruk, K.V.; Ruchala, J.; Fedorovych, D.V.; Ostapiv, R.D.; Sibirny, A.A. Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Candida famata. Biotechnol. J. 2020, 15, e1900468. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsh, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Millerioux, Y.; Clastre, M.; Simkin, A.J.; Courdavault, V.; Marais, E.; Sibirny, A.A.; Papon, N. Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEMS Yeast Res. 2011, 11, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Tsyrulnyk, A.O.; Fedorovych, D.V.; Dmytruk, K.V.; Sibirny, A.A. Overexpression of riboflavin excretase enhances riboflavin production in the yeast Candida famata. Methods Mol. Biol. 2021, 2280, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Andreieva, Y.; Petrovska, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast 2020, 37, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Heefner, D.L.; Boyts, A.; Burdzinski, L.; Yarus, M. Efficient Riboflavin Production with Yeast. U.S. Patent 5,231,007, 27 July 1993. [Google Scholar]
- Heefner, D.L.; Weaver, C.A.; Yarus, M.J.; Burdzinski, L.A. Method for Producing Riboflavin with Candida famata. U.S. Patent 5,164,303, 17 November 1992. [Google Scholar]
- Palma, M.; Mondo, S.; Pereira, M.; Vieira, E.; Grigoriev, I.V.; Sá-Correia, I. Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens IST 626. J. Fungi 2022, 8, 254. [Google Scholar] [CrossRef]
- Duan, Y.X.; Chen, T.; Chen, X.; Zhao, X.M. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2010, 85, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Sun, Y.; Fu, S.; Xia, M.; Su, Y.; Liu, C.; Zhang, C.; Zhang, D. Improving the Production of Riboflavin by Introducing a Mutant Ribulose 5-Phosphate 3-Epimerase Gene in Bacillus subtilis. Front. Bioeng. Biotechnol. 2021, 9, 704650. [Google Scholar] [CrossRef] [PubMed]
- Ladenstein, R.; Fischer, M.; Bacher, A. The lumazine synthase/riboflavin synthase complex: Shapes and functions of a highly variable enzyme system. FEBS J. 2013, 280, 2537–2563. [Google Scholar] [CrossRef]
Strain | Biomass (g/L) | Riboflavin (mg/L) | Riboflavin Yield (mg/g CDW) |
---|---|---|---|
AF-4 | 2.71 ± 0.13 | 204.00 ± 9.80 | 75.28 ± 3.57 |
AF-4/RIB6 | 2.55 ± 0.09 | 213.00 ± 10.24 | 83.53 ± 4.18 |
AF-4/RIB1-RIB6 | 2.26 ± 0.10 | 230.32 ± 10.85 | 101.69 ± 4.85 |
BRP | 2.56 ± 0.14 | 261.20 ± 12.46 | 102.03 ± 5.10 |
BRP/RIB6 | 2.35 ± 0.16 | 295.00 ± 13.95 | 125.53 ± 6.28 |
BRPI | 1.69 ± 0.07 | 511.26 ± 24.10 | 302.34 ± 14.96 |
BRPI/RIB1-RIB6 | 1.62 ± 0.08 | 652.70 ± 30.63 | 403.40 ± 20.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovska, Y.; Lyzak, O.; Ruchala, J.; Dmytruk, K.; Sibirny, A. Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation 2022, 8, 141. https://doi.org/10.3390/fermentation8040141
Petrovska Y, Lyzak O, Ruchala J, Dmytruk K, Sibirny A. Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation. 2022; 8(4):141. https://doi.org/10.3390/fermentation8040141
Chicago/Turabian StylePetrovska, Yana, Oleksii Lyzak, Justyna Ruchala, Kostyantyn Dmytruk, and Andriy Sibirny. 2022. "Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata" Fermentation 8, no. 4: 141. https://doi.org/10.3390/fermentation8040141
APA StylePetrovska, Y., Lyzak, O., Ruchala, J., Dmytruk, K., & Sibirny, A. (2022). Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation, 8(4), 141. https://doi.org/10.3390/fermentation8040141