Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Golden Berry Fruit Juice
2.3. Determination of Phytochemical Properties
2.4. Yogurt Drink Manufacture
- -
- Control yogurt drink (C): plain yogurt was mixed with 50% sterilized distilled water sweetened with 10% sugar (to achieve 5% sugar in the yogurt drink) at 25 °C.
- -
- Yogurt drink fortified with 10% golden berry juice (T1): yogurt was mixed with 30% sterilized distilled water sweetened with 10% sugar and 20% pasteurized golden berry juice sweetened with 10% sugar (to achieve 5% sugar and 10% golden berry juice in the yogurt drink).
- -
- Yogurt drink fortified with 20% golden berry juice (T2): yogurt was mixed with 10% sterilized distilled water sweetened with 10% sugar and 40% pasteurized golden berry juice sweetened with 10% sugar (to achieve 5% sugar and 20% golden berry juice in the yogurt drink). The drinking yogurt mixes were placed in 250-g plastic cups and then refrigerated until use in rat feeding. The samples were analyzed at day one.
2.5. Methods of Analysis
2.6. Sensory Evaluation
2.7. Experimental Design
2.8. Blood Sampling and Biochemical Analyses
2.9. Biochemical Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Approximate Composition of the Golden Berry Juice
3.2. Chemical Composition of a Yogurt Drink Fortified with Golden Berry Juice
3.3. Titratable Acidity, pH Values, TPC, and % DPPH Inhibition of a Yogurt Drink Fortified with Golden Berry Juice
3.4. Sensory Properties of a Yogurt Drink Fortified with Golden Berry Juice
3.5. Effect of a Yogurt Drink Fortified with Golden Berry Juice on Serum AST, ALT, γ-GT, ALP, and TB Levels in Rats with Hepatitis
3.6. Effect of a Yogurt Drink Fortified with Golden Berry Juice on Serum MDA, GSH, and TAC and Liver MDA, GSH, CAT, and SOD Levels in Rats with Hepatitis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Al-Olayan, E.M.; El-Khadragy, M.F.; Aref, A.M.; Othman, M.S.; Kassab, R.B.; Abdel Moneim, A.E. The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression. Oxidative Med. Cell. Longev. 2014, 2014, 381413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikal, A.H.; Abd El-Fatta, H.; El-Sheik, N.; Refaie, A.A. Comparative study of marjoram (Origanum majorana L.) and silymarin (Silybum marianum L.) extract against carbon tetrachloride induced hepatic injury. World J. Pharm. Pharm. Sci. 2018, 7, 1969–1992. [Google Scholar]
- Arauz, J.; Rivera-Espinoza, Y.; Shibayama, M.; Favari, L.; Flores-Beltrán, R.E.; Muriel, P. Nicotinic acid prevents experimental liver fibrosis by attenuating the prooxidant process. Int. Immunopharmacol. 2015, 28, 244–251. [Google Scholar] [CrossRef]
- Ramos-Tovar, E.; Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants 2020, 9, 1279. [Google Scholar] [CrossRef]
- Casas-Grajales, S.; Reyes-Gordillo, K.; Cerda-García-Rojas, C.M.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Rebaudioside A administration prevents experimental liver fibrosis: An in vivo and in vitro study of the mechanisms of action involved. J. Appl. Toxicol. 2019, 39, 1118–1131. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Fu, Y.; Zheng, S.; Lin, J.; Ryerse, J.; Chen, A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol. Pharmacol. 2008, 73, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Wang, J.; Zhang, Q.; He, H.; Wu, F.; Feng, T.; Zhou, J.; Zou, K.; Hattori, M. Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats. Biol. Pharm. Bull. 2012, 35, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Thuy, T.; Hai, H.; Kawada, N. Role of oxidative and nitrosative stress in hepatic fibrosis. In Liver Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 213–224. [Google Scholar]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts supplemented with juices from grapes and berries. Foods 2020, 9, 1158. [Google Scholar] [CrossRef]
- Bimbo, F.; Bonanno, A.; Nocella, G.; Viscecchia, R.; Nardone, G.; De Devitiis, B.; Carlucci, D. Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite 2017, 113, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, Physicochemical and Sensory Properties of Probiotic Yoghurt Made from Whole Milk Powder Reconstituted in Aqueous Fennel Extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; El-Zahar, K.M.; Elmaadawy, A.A.; Hijazy, H.H.A.; Sitohy, M.Z.; Albrakati, A.; Elmahallawy, E.K. Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. Fermentation 2022, 8, 41. [Google Scholar] [CrossRef]
- Swelam, S.; Zommara, M.A.; Abd El-Aziz, A.E.-A.M.; Elgammal, N.A.; Baty, R.S.; Elmahallawy, E.K. Insights into Chufa Milk Frozen Yoghurt as Cheap Functional Frozen Yoghurt with High Nutritional Value. Fermentation 2021, 7, 255. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.; Hernández-Mendoza, A.; Torres-Llanez, M.; González-Córdova, A.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, A.; Ishayek, N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients 2018, 10, 1994. [Google Scholar] [CrossRef] [Green Version]
- Munekata, P.E.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Z.; Shabbir, M.I.; Saqib, Z.; Gilani, S.A.; Jogezai, N.U.; Kiyani, M.M.; Malik, M.A. Investigation of polyphenol profile, antioxidant activity and hepatoprotective potential of Aconogonon alpinum (All.) Schur roots. Open Chem. 2020, 18, 516–536. [Google Scholar] [CrossRef]
- Othman, M.S.; Nada, A.; Zaki, H.S.; Moneim, A.E.A. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats. Biol. Trace Elem. Res. 2014, 159, 278–287. [Google Scholar] [CrossRef]
- Grigolo, C.R.; Oliveira, M.d.C.; Loss, E.S.; Ropelato, J.; Oldoni, T.; Batista, C.B. Physico-chemical characterization and antioxidant content of Physalis fruits. Rev. Mex. Cienc. Agríc. 2020, 11, 607–618. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Abdallah, H.M.; Yassen, N.N.; Radwan, R.A.; Mostafa, E.S.; Salama, M.M.; Salem, M.A. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed. Pharmacother. 2021, 142, 111948. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-T.; Liu, J.-K.; Li, B. Ten new withanolides from Physalis peruviana. Steroids 2012, 77, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; An, L.; Yang, X.; Zhang, X.; Zhang, J.; Tuerhong, M.; Jin, D.-Q.; Ohizumi, Y.; Lee, D.; Xu, J. Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chem. 2019, 87, 585–593. [Google Scholar] [CrossRef]
- Llano, S.M.; Muñoz-Jiménez, A.M.; Jiménez-Cartagena, C.; Londoño-Londoño, J.; Medina, S. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits. Food Chem. 2018, 244, 120–127. [Google Scholar] [CrossRef]
- Olivares-Tenorio, M.-L.; Dekker, M.; Verkerk, R.; van Boekel, M.A. Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Technol. 2016, 57, 83–92. [Google Scholar] [CrossRef]
- Rahimzadeh, G.; Tay, A.; Mac Regenstein, J.; Rokhzadi, A.; Dabiri, H. Evaluation of microbial and sensory properties of flavored yogurt drink produced by Noaea mucronata and liquid smoke treatment. Infect. Dis. Herb. Med. 2020, 77, 5–10. [Google Scholar] [CrossRef]
- Teles, C.D.; Flores, S.H. The influence of additives on the rheological and sensory properties of nonfat yogurt. Int. J. Dairy Technol. 2007, 60, 270–276. [Google Scholar] [CrossRef]
- Kamel, D.G.; Othman, A.A.; Osman, D.M.; Hammam, A.R. Probiotic yogurt supplemented with nanopowdered eggshell: Shelf-life stability, physicochemical, and sensory characteristics. Food Sci. Nutr. 2021, 9, 1736–1742. [Google Scholar] [CrossRef]
- de Campo, C.; Assis, R.Q.; da Silva, M.M.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; de Oliveira Rios, A.; Flôres, S.H. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem. 2019, 301, 125230. [Google Scholar] [CrossRef]
- Kamel, D.G.; Hammam, A.R.; Alsaleem, K.A.; Osman, D.M. Addition of inulin to probiotic yogurt: Viability of probiotic bacteria (Bifidobacterium bifidum) and sensory characteristics. Food Sci. Nutr. 2021, 9, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Ismail, E.; Shenana, M.; Elalfy, M.; Essawy, E.; Abdelhahim, S. Novel Probiotic Adjunct Cultures for the Production of Fruit-Flavoured Drinkable Yoghurt. Egypt. J. Food Sci. 2020, 48, 213–228. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Odabasoglu, F.; Aslan, A.; Cakir, A.; Suleyman, H.; Karagoz, Y.; Halici, M.; Bayir, Y. Comparison of antioxidant activity and phenolic content of three lichen species. Phytother. Res. 2004, 18, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Illupapalayam, V.V.; Smith, S.C.; Gamlath, S. Consumer acceptability and antioxidant potential of probiotic-yogurt with spices. LWT—Food Sci. Technol. 2014, 55, 255–262. [Google Scholar] [CrossRef]
- Maksimović, Z.; Malenčić, Đ.; Kovačević, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.-I.; Shetty, K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8, 46–54. [Google Scholar] [CrossRef]
- Bajaj, K.; Kaur, G. Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst 1981, 106, 117–120. [Google Scholar] [CrossRef]
- Horwitz, W. (Ed.) Agricultural Chemicals, Contaminants, Drugs. In Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2010; Volume I. [Google Scholar]
- Thomas, N.; Wansapala, M. Utilization of green tea (Camellia sinensis) extract for the production of antioxidant rich functional drinking yoghurt. Int. J. Food Sci. Nutr. 2017, 2, 188–195. [Google Scholar]
- Heymann, H.; Lawless, H.T. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Jayasekhar, P.; Mohanan, P.; Rathinam, K. Hepatoprotective activity of ethyl acetate extract of Acacia catechu. Indian J. Pharm. 1997, 29, 426. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Belfield, A.; Goldberg, D. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 1971, 12, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Szasz, G. A kinetic photometric method for serum γ-glutamyl transpeptidase. Clin. Chem. 1969, 15, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.C. Jendrassik--Grof analysis for total and direct bilirubin in serum with a centrifugal analyzer. Clin. Chem. 1981, 27, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001, 54, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutmann, I. L-(+)-lactate determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis; Academic Press: Cambridge, MA, USA, 1974; pp. 1464–1468. [Google Scholar]
- Nishikimi, M.; Roa, N.; Yogi, K. Measurement of superoxide dismutase. Biochem. Biophys. Res. Commun 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Gl, E. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar]
- Boyd, C.; Petersen, S.; Gilbert, W.; Rodgers, R.; Fuhlendorf, S.; Larsen, R.; Wolfe, D.; Jensen, K.; Gonzales, P.; Nenneman, M. Evaluation of Methods Used to Improve Grasslands as Ring-Necked Pheasant (Phasianus colchicus) Brood Habitat; Analytical Software, Statistix 9; ProQuest Dissertations Publishing: Tallahassee, FL, USA, 2018; Volume 72, p. 82. [Google Scholar]
- El Sheikha, A.; Zaki, M.; Bakr, A.; El Habashy, M.; Montet, D. Physico-chemical properties and biochemical composition of Physalis (Physalis pubescens L.) fruits. Food 2008, 2, 124–130. [Google Scholar]
- El Sheikha, A.F.; Piombo, G.; Goli, T.; Montet, D. Main composition of Physalis (Physalis pubescens L.) fruit juice from Egypt. Fruits 2010, 65, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.A.; Hassan, L.K.; El-Aziz, M.A. Enhancing the pro-health and physical properties of ice cream fortified with concentrated golden berry juice. Acta Sci. Pol. Technol. Aliment. 2019, 18, 97–107. [Google Scholar]
- Ballesteros-Vivas, D.; Alvarez-Rivera, G.; León, C.; Morantes, S.J.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A.; Valdés, A. Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J. Funct. Foods 2019, 63, 103567. [Google Scholar] [CrossRef]
- El-Gengaihi, S.E.; Hassan, E.E.; Hamed, M.A.; Zahran, H.G.; Mohammed, M.A. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent. J. Diet. Suppl. 2013, 10, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.-Y.; Tsai, J.-Y.; Lin, Y.-H.; Chang, F.-R.; Wang, H.-C.; Wu, C.-C. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci. Rep. 2021, 11, 4610. [Google Scholar] [CrossRef]
- Coballase-Urrutia, E.; Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Huerta-Gertrudis, B.; García-Cruz, M.E.; Ramírez-Morales, A.; Sanchez-Gonzalez, D.J.; Martínez-Martínez, C.M.; Camacho-Carranza, R.; Espinosa-Aguirre, J.J. Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl4-induced toxicity in rats. Exp. Toxicol. Pathol. 2011, 63, 363–370. [Google Scholar] [CrossRef]
- Tatiya, A.U.; Surana, S.J.; Sutar, M.P.; Gamit, N.H. Hepatoprotective effect of poly herbal formulation against various hepatotoxic agents in rats. Pharmacogn. Res. 2012, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Taj, D.; Khan, H.; Sultana, V.; Ara, J.; Ehteshamul-Haque, S. Antihepatotoxic effect of golden berry (Physalis peruviana Linn.) in carbon tetrachloride (CCl4) intoxicated rats. Pak. J. Pharm. Sci. 2014, 27, 491–494. [Google Scholar]
- Fields, R.D. NIH policy: Mandate goes too far. Nature 2014, 510, 340. [Google Scholar] [CrossRef] [Green Version]
- Clayton, J.A. Studying both sexes: A guiding principle for biomedicine. FASEB J. 2016, 30, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Flórez-Vargas, O.; Brass, A.; Karystianis, G.; Bramhall, M.; Stevens, R.; Cruickshank, S.; Nenadic, G. Bias in the reporting of sex and age in biomedical research on mouse models. Elife 2016, 5, e13615. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.Y.; Mansukhani, N.A.; Stubbs, V.C.; Helenowski, I.B.; Woodruff, T.K.; Kibbe, M.R. Sex bias exists in basic science and translational surgical research. Surgery 2014, 156, 508–516. [Google Scholar] [CrossRef]
- Prendergast, B.J.; Onishi, K.G.; Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2014, 40, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Feng, F.; Liu, X.; Sun, C.; Yang, X.; Fang, Y.; Li, S. Exogenous secretin improves parenteral nutrition-associated liver disease in rats. J. Pediatric Gastroenterol. Nutr. 2020, 70, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.G.; Zamora, A.G.; Gonsebatt, M.; Mata, E.M.; Vargas, G.G.; Rincón, E.C.; Morales, R.P. Subacute intoxication with sodium nitrate induces hematological and biochemical alterations and liver injury in male Wistar rats. Ecotoxicol. Environ. Saf. 2018, 166, 48–55. [Google Scholar] [CrossRef]
- Gheshlaghi-Ghadim, A.; Mohammadi, V.; Zadeh-Hashem, E. Protective Effects of Quercetin on Clothianidin-Induced Liver Damage in the Rat Model. Evid.-Based Complementary Altern. Med. 2022, 2022, 9399695. [Google Scholar] [CrossRef]
- Yadsar, M.; Shahabpour, E.; Moradi Sarabi, M. Effect of Different Doses of Nitrate Supplements on hepatocellular Damage Markers in Male Sprague Dawley Rats Following One Session of Exercise. Yafteh 2021, 23, 119–133. [Google Scholar]
- Boll, M.; Lutz, W.; Becker, E.; Stampfl, A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z. Naturforschung C 2001, 56, 649–659. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Tatsimo, S.J.N.; de Dieu Tamokou, J.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Boots, A.W.; Wilms, L.C.; Swennen, E.L.; Kleinjans, J.C.; Bast, A.; Haenen, G.R. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 2008, 24, 703–710. [Google Scholar] [CrossRef]
Components (%) | Golden Berry Juice |
---|---|
Moisture | 88.40 |
Protein | 1.06 |
Fat | 0.16 |
Ash | 0.80 |
Total phenol (mg GAE/100 mL) | 112.40 |
Ascorbic acid (mg/100 mL) | 52.68 |
Carotenoids (μg mL−1) | 86.54 |
% DPPH Inhibition | 78.34 |
Components (%) | Treatments | |||
---|---|---|---|---|
C | T1 | T2 | LSD | |
Total solids | 11.70 C | 12.78 B | 13.84 A | 0.1681 |
Protein | 2.12 A | 2.24 A | 2.46 A | 0.6162 |
Fat | 1.25 A | 1.28 A | 1.30 A | 0.1269 |
Ash | 0.50 A | 0.56 A | 0.64 A | 0.1513 |
Parameters | Treatments | |||
---|---|---|---|---|
C | T1 | T2 | LSD | |
Acidity% | 0.45 C | 0.62 B | 0.75 A | 0.1177 |
pH values | 6.02A | 5.37 AB | 4.72 B | 1.0176 |
Ascorbic acid (mg/100 mL) | 0.78 C | 4.34 B | 6.92 A | 1.798 |
Carotenoids (μg/mL) | 0.84 C | 7.40 B | 11.78 A | 1.748 |
TPC (mg/100 g) | 15.33 C | 24.72 B | 36.84 A | 1.680 |
% DPPH Inhibition | 11.46 C | 19.54 B | 28.60 A | 6.723 |
Items | Treatments | |||
---|---|---|---|---|
C | T1 | T2 | LSD | |
Taste | 3.90 C | 4.70 B | 5.0 A | 0.1681 |
Odor | 3.70 B | 4.30 AB | 4.80 A | 0.6724 |
Appearance | 4.80 B | 4.50 AB | 4.30 A | 0.3362 |
Overall acceptance | 3.90 C | 4.40 B | 4.90 A | 0.1681 |
Parameters | Groups | |||||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | LSD | |
AST (U/mL) | 74.14 C | 156.70 A | 86.24 B | 80.46 B | 76.84 BC | 11.192 |
ALT (U/mL) | 60.22 D | 128.52 A | 96.60 B | 84.32 C | 66.50 D | 9.036 |
ALP (IU/L) | 138.40 D | 240.84 A | 190.62 B | 170.24 BC | 146.30 CD | 29.848 |
γ-GT (U/L) | 40.02 C | 54.86 A | 48.24 B | 43.58 BC | 40.60 C | 4.887 |
TB (mg/dL) | 3.04 D | 6.22 A | 4.20 B | 3.78C | 3.22 C | 0.2768 |
Parameters | Groups | |||||
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | LSD | |
Serum MDA (nmol/mL) | 35.22 C | 52.48 A | 42.84 B | 38.60 BC | 36.54 C | 5.043 |
Serum GSH (mmol/mL) | 65.40 B | 36.72 E | 58.26 D | 62.86 C | 68.38 A | 1.259 |
Serum TAC (mmol/L) | 0.94 A | 0.58 D | 0.66 CD | 0.74 BC | 0.82 B | 0.1168 |
Liver MDA (nmol/g tissue) | 412.86 D | 574.50 A | 486.24 B | 442.66 C | 404.80 E | 7.342 |
Liver GSH (mmol/g tissue) | 38.30 B | 24.52 D | 32.62 C | 40.06 B | 46.74 A | 3.084 |
Liver CAT (U/g) | 92.46 B | 65.30 E | 73.84 D | 86.22 C | 96.20 A | 1.542 |
Liver SOD (U/g) | 132.82 A | 66.14 E | 80.76 D | 94.60 C | 104.54 B | 6.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Albrakati, A.; Elmahallawy, E.K. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022, 8, 112. https://doi.org/10.3390/fermentation8030112
Shahein MR, Atwaa ESH, Radwan HA, Elmeligy AA, Hafiz AA, Albrakati A, Elmahallawy EK. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation. 2022; 8(3):112. https://doi.org/10.3390/fermentation8030112
Chicago/Turabian StyleShahein, Magdy Ramadan, El Sayed Hassan Atwaa, Hanan A. Radwan, Abdelmoneim Ahmed Elmeligy, Amin A. Hafiz, Ashraf Albrakati, and Ehab Kotb Elmahallawy. 2022. "Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats" Fermentation 8, no. 3: 112. https://doi.org/10.3390/fermentation8030112
APA StyleShahein, M. R., Atwaa, E. S. H., Radwan, H. A., Elmeligy, A. A., Hafiz, A. A., Albrakati, A., & Elmahallawy, E. K. (2022). Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation, 8(3), 112. https://doi.org/10.3390/fermentation8030112