Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy
Abstract
1. Introduction
2. Agro-Industrial Wastewaters Overview
| Parameter | SV, Sugarcane Vinasse | POME, Palm Oil Mixed Effluent | CPW, Cassava Processing Wastewater | AW, Abattoir Wastewater | DW, Dairy Wastewater | AqW, Aquaculture Wastewater | |
|---|---|---|---|---|---|---|---|
| Main effluent characteristics | COD (gO2 L−1) | 27.7–299.5 | 22.65–85.71 | 1.4–141.3 | 190–12800 | 91.6–4000 | 6.1–165 |
| BOD5 (gO2 L−1) | 5.04–47.63 | 34.71–52.67 | 1.96–44.6 | 53–2250 | 90–1814 | 8.5 | |
| pH | 4.04–6.5 | 4.3–5.2 | 3.9–7.2 | 6.4–7.7 | 4.33–7.35 | 7–8.2 | |
| Total solids (g L−1) | 7.5–36.6 | 47–64.6 | 5.4–92.9 | - | 10.8–9290 | - | |
| Fixed solids (g L−1) | 0.27–14.16 | - | - | 2594 | - | ||
| Volatile solids (g L−1) | 4.7–26.3 | 24.84–30.92 | 3.5 | - | - | - | |
| Nutrients | Ammonia (mg L−1) | 18–118.1 | 77–101 | 61.53 | 6.5–532.3 | 53–115 | ≤0.1–6.25 |
| TKN (mg L−1) | 122–540 | 180–1400 | 180 | 22–2209 | |||
| Nitrate (mg L−1) | 0,1–45.3 | 109–136 | 4 | 11.97–140 | 18.05 | 0.35–152.8 | |
| Nitrite (mg L−1) | 0.1–0.4 | - | - | 13.7–54 | 0.398 | 0.3–24.7 | |
| Sulfate(mg L−1) | 669–3070 | - | 63.77 | 12.63–500 | 17 | 420.6 | |
| Phosphorus (mg L−1) | 44–232 | 109–136 | 0.4 -3000 | 7–108 | 11.6–3055 | 16.1 | |
| Magnesium (mg L−1) | 343–616 | 279–296 | 17.68–43.08 | 18.64 | 18 | 39.6–49.75 | |
| Calcium (mg L−1) | 344–609 | 282–290 | 18.41–86.49 | 4.9–67 | 129 | 168.9–118 | |
| Potassium (mg L−1) | 1542–3652 | 1696–2043 | 15.92–435.75 | 8.1–90 | - | 195.1 | |
| Sodium (mg L−1) | 27–57 | 94–113 | 16.42–17.68 | 621 | - | 246.4 | |
| Fluoride(mg L−1) | 0.14–0.44 | - | - | - | |||
| Chloride (mg L−1) | 209–3548 | 94–113 | 52 | 352 | 1204 | 147.3 | |
| Metals | Aluminum (mg L−1) | 1.13–11.9 | - | 1.12 | - | - | - |
| Barium (mg L−1) | 0.23–0.56 | - | - | - | - | - | |
| Cadmium (mg L−1) | 0.08–0.027 | 0.01–0.02 | - | 0.009 | - | - | |
| Arsenic (mg L−1) | 0.098–0,14 | - | - | - | - | - | |
| Chrome (mg L−1) | 0.028–0.084 | 0.05–0.43 | - | - | - | - | |
| Cobalt (mg L−1) | 0.011–0.035 | 0.04–0.06 | - | - | - | - | |
| Copper (mg L−1) | 0.19–1.16 | 0.8–1.6 | 3.26 | - | - | - | |
| Iron (mg L−1) | 5.8–18.6 | 65–164 | 72,65 | 0.9–21 | - | - | |
| Lead (mg L−1) | 0.01–0.59 | 0.72 | 0.5–4 | - | - | ||
| Manganese (mg L−1) | 1.04–4.62 | 2.1–4.4 | 3.3 | - | - | - | |
| Mercury (mg L−1) | 0.01 | - | - | - | - | - | |
| Molybdenum (mg L−1) | 0.016–0.066 | - | - | - | - | - | |
| Nickel (mg L−1) | 0.038–0.12 | 0.1–3.6 | - | - | - | - | |
| Selenium (mg L−1) | 0.02–0.076 | - | - | - | - | ||
| Zinc (mg L−1) | 0.2–1.19 | 1.2–2.72 | 25,11 | 0.178 | - | - | |
| Compounds | Lipids (g L−1) | - | 8.81–37.88 | - | - | 34.217 | - |
| Glycerol (mg L−1) | 3333 | - | - | - | - | - | |
| Reducing sugar (mg L−1) | - | 228–236 | 1300 | - | - | - | |
| Cyanide (mg L−1) | - | - | 46,75 | - | - | - | |
| References | [40,44] | [48,49,50] | [51,52,53] | [28,29,30,31,54,55,56,57] | [58,59,60,61,62] | [63,64,65,66,67] | |
3. Direct Microalgae Cultivation in Residues—Description and Examples
3.1. Vinasse
3.2. POME, Palm Oil Mixed Effluent
3.3. CPW, Cassava Processing Wastewater
3.4. Abattoir Wastewaters
3.5. Dairy Processing Wastewater
3.6. Aquaculture Wastewater
| Agro-Industrial Effluent | Microalgae | Medium Additives | Productivity (g L−1 day−1) | Biomass (g L−1) | COD Reduction (%) | BOD Reduction (%) | Bio-Products | Reference |
|---|---|---|---|---|---|---|---|---|
| Vinasse | Chlorella vulgaris | 10% saline medium is composed by (g L−1):(0.25) Mg (NO3)2·6H2O; (0.025) CaCl2·2H2O; (0.0075) MgSO4·7H2O; (0.015) KH2PO4 (0.0025) NaCl and 1 mL L−1 of trace elements. 540 mg L−1 oxytetracycline 450 mg L−1 of ampicillin | 2.1 | 10.5 | 49.1 | 70.0 | Biomass | [114] |
| Vinasse | Scenedesmus bajacalifornicus | - | 0.325 | 3.9 | 51.9 | 60.3 | Biomass | [115] |
| Vinasse | Desmodesmus subspicatus | - | 1.450 | 2.9 | 66 (TOC*) | - | Biomass | [116] |
| Vinasse | Arthrospira maxima | 70% water | 0.150 | 2.25 | 81 | 89.2 | Peptide fractions (57% of proteins in biomass) | [117] |
| Vinasse | Desmodesmus sp. | - | 2.426 | 4.0 | 36.2 | - | Biomass | [118] |
| Vinasse | Chlorella vulgaris | - | 0.073 | 2.7 | 15.6 | - | Biomass(10% of lipids in biomass) | [119] |
| Vinasse | Scenedesmus sp. | - | 0.055 | 1.06 | 41.5 | - | Biomass | [82] |
| Slaughterhouse | Chlorella vulgaris | - | 0.575 | 1.15 | 85 | - | Biomass | [120] |
| Slaughterhouse | Chlorella vulgaris | - | 0.433 | 1.3 | 19.4 | - | Chlorophyll-a (6.8 mg L−1) | [121] |
| Slaughterhouse | Chlorella vulgaris | - | 0.194 | 5.4 | 94 | 99 | Biomass | [99] |
| Slaughterhouse | Tetradesmus obliquus | - | 0.234 | 6.6 | 96 | 99 | Biomass | [99] |
| Slaughterhouse | Chlorella vulgaris | - | 0.424 | 1.2 | 81 | - | Biomass | [97] |
| Slaughterhouse | Chlorella sp. and Scenedesmus sp. (1:1) | - | 0.033 | 0.231 | 13.4 | - | Biomass | [57] |
| Slaughterhouse | Chlorella sp. (Trebouxiophyceae) | 1% CO2 at a flow rate of 0.5 L min−1 | 0.030 | 0.18 | 49.4 | - | Biomass | [57] |
| POME | Chlorella sorokiniana and Pseudomonas sp. (1:1) | 70% (v/v) water; 200 mg L−1 of glucose; 2.5% urea and glycerol 0.1 vvm CO2 aeration. | 0.409 | 5.74 | 93.7 | - | Lipids(14.43% of the biomass) | [122] |
| POME | Scenedesmus sp. | - | 0.018 | 0.55 | 48 | - | Biomass | [86] |
| POME | Chlorella pyrenoidosa | 75% (v/v) waterurea and TSP (2:1) | - | - | 90.42 | - | Lipids(36% of the biomass) | [123] |
| POME | Arthrospira platensis | - | 0.032 | 0.19 | 15 | - | Biomass | [124] |
| POME | Nannochloropsis sp. | 20% Walne’s medium | 0.05 | 0.7 | 47.5 | 47.2 | Lipids(45% of the biomass) | [125] |
| POME | Chlorella sp. | 50% BBM | - | - | 57.6 | - | Biomass | [126] |
| POME | Chlorophyceae (not identified) | 25% water | 0.047 | 0.7 | 89.6 | 99.4 | Biomass | [127] |
| POME | Scenedesmus sp. | - | 0.027 | 0.8 | 60 | - | Biomass | [86] |
| Cassava | Desmodesmus subspicatus LC172266 | 10% BBM 10% Trace elements solution | 0.041 | 0.63 | 89.04 | 85.85 | Lipids (21.40%) | [128] |
| Cassava | Desmodesmus subspicatus LC172266 | 10% BBM 10% Trace elements solution | 0.07 | 1.04 | 51.39 | 62.22 | Lipids (24.70%) | [128] |
| Cassava | Desmodesmus armatus | 10% BBM 10% Trace elements solution | 0.07 | 0.73 | 92 | 87 | Lipids | [94] |
| Cassava | Chlorella sorokiniana | - | 0.021 | - | - | 90 | Biomass | [95] |
| Cassava | Scenedesmus sp. | - | - | - | 72 | 74 | Lipids | [129] |
| Cassava | Chlorella sorokiniana P21 | - | 0.48 | 2.11 | 88 | - | Biomass (58% lipid) | [130] |
| Cassava | Chlorella sorokiniana P21 | - | 0.18 | 2.56 | 73.78 | - | Biomass | [130] |
| Cassava | Chlorella sorokiniana WB1DG | - | 0.049 | 1.3 | 63.42 | - | Biomass | [130] |
| Aquaculture | Tetraselmis suecica | 0.02g L−1 N 0.01g L−1 P | 0.068 | 0.9 | - | - | Biomass, carbohydrate (10.62%), lipids (25.06%) proteins (50.20%) | [63] |
| Aquaculture | Chlorella vulgaris | - | - | - | 71 | 55.72 | - | [113] |
| Aquaculture | Chlorella vulgaris | - | 0.465 | - | 98.10 | - | Biomass | Gao,2021 |
| Aquaculture | Spirulina sp. | 25% Zarrouk medium | 0.2 | 1.1 | 90 | - | Biomass, protein (63.73%), phycocyanin (16.60 mg ml−1), polyunsaturated fatty acids (38.20%) and C18:3n6 (38.20%) | [131] |
| Aquaculture | Chlorella sorokiniana | - | 0.353 | 4.02 | 71.88 | - | Biomass, Lipids, Protein, Carbohydrate | [132] |
| Aquaculture | Ankistrodesmus falcatus | - | 0.16 | 2.25 | 61 | - | Biomass, Lipids, Protein, | [133] |
| Aquaculture | Chlorella sorokiniana | - | 0.107 | 1.51 | 69 | - | Biomass, Lipids, Proteins | [133] |
| Dairy | Chlorella sorokiniana | - | not show | 17 | 93 | - | Protein, lipids, biomass | [111] |
| Dairy | Chlamydomonas polypyrenoideum | 25% water | not show | 7.7 | 55.7 | - | Lipids (42%) | [134] |
| Dairy | Chlorella sp. | - | 0.000175 | 0.26 | 80.63 | - | Lipids | [109] |
| Dairy | Chlorella sorokiniana SU-1 | - | 1.96 | 0.153 | 67.6 | - | Lipids | [20] |
| Dairy | Chlorella sorokiniana | - | 1.667 | 0.108 | 57.17 | 56.95 | Biomass | [135] |
| Dairy | Chlorella vulgaris | - | 0.42 | 0.02 | - | - | Lipids | [136] |
| Dairy | Chlorella sp. T4 | 40% water | 0.0085 | 0.85 | 59.7 | - | Lipids | [137] |
| Dairy | Chlorella vulgaris | 25% water | 0.225 | 2.43 | 81.48 | - | Lipids | [138] |
4. Anaerobic Digestion as Pretreatment and Energy Recovery Strategy
4.1. Anaerobic Digestion as a Pretreatment Step
4.2. Secondary Effluents Composition
5. CO2 Fixation and Biogas Upgrading
5.1. Microalgae Potential for Flue Gases Fixation
| Microalgae | Wastewater | Flue Gases | CO2 Biofixation | Considerations | Reference | ||
|---|---|---|---|---|---|---|---|
| Origin | Composition | CO2 Content Injected | |||||
| Chlorella sp. GD | Aquaculture | Natural gas | 8% CO2 57% NO | 8% CO2 | 2333 mg L−1 d−1 | Growth is higher when aerated with flue gas compared to equivalent pure CO2 | [179] |
| Chlorella sp. L166 | Soybean processing | Simulated | n.a. | 5% CO2 | 25% | Diluted effluent (5x) and pure CO2 injection | [196] |
| Chlorella vulgaris | Industrial wastewater (textile and food) | Coal-fired | 10% CO2 0.554% CO 61 ppm NO2 30 ppm SOx 9 ppm HC | 5% CO2 | 187.65 mg L−1 d−1 | Increased lipid and carbohydrate accumulation | [183] |
| Phormidium valderianum BDU 20041 | Ossein effluent (Gelatin industry) | Coal-fired | 15% CO2 | 15% CO2 | 56.4 mg L−1 d−1 | High cell density to overcome metabolic stress | [197] |
| Scenedesmus sp. UKM9 Chlorella sp. UKM2 | Palm oil mill effluent (POME) | Simulated | n.a. | 10% CO2 | 829 mg L−1 d−1 | Process conducted in two steps: effluent treatment and CO2 fixation | [184] |
5.2. Biogas Upgrading
6. Tertiary Liquid Residues Destination and Water Reuse
7. Fate of Xenobiotics and Heavy Metals
8. Microalgae Products
9. Circular Bioeconomy in Microalgal Production from Agro-Industrial Wastes
10. Process Development and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Show, P.L. Global Market and Economic Analysis of Microalgae Technology: Status and Perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef] [PubMed]
- Yellapu, S.K.; Klai, N.; Kaur, R.; Tyagi, R.D.; Surampalli, R.Y. Oleaginous Yeast Biomass Flocculation Using Bioflocculant Produced in Wastewater Sludge and Transesterification Using Petroleum Diesel as a Co-Solvent. Renew Energy 2019, 131, 217–228. [Google Scholar] [CrossRef]
- Carvalho, J.C.D.; Goyzueta-Mamani, L.D.; Molina-Aulestia, D.T.; Júnior, A.I.M.; Iwamoto, H.; Ambati, R.; Ravishankar, G.A.; Soccol, C.R. Microbial Astaxanthin Production from Agro-Industrial Wastes—Raw Materials, Processes, and Quality. Fermentation 2022, 8, 484. [Google Scholar] [CrossRef]
- Melo, J.M.; Ribeiro, M.R.; Telles, T.S.; Amaral, H.F.; Andrade, D.S. Microalgae Cultivation in Wastewater from Agricultural Industries to Benefit next Generation of Bioremediation: A Bibliometric Analysis. Environ. Sci. Pollut. Res. 2021, 29, 22708–22720. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Sydney, E.B.; Assú Tessari, L.F.; Soccol, C.R. Culture Media for Mass Production of Microalgae. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-Industrial Wastewater Reuse for Irrigation of a Vegetable Crop Succession under Mediterranean Conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Bittencourt Sydney, E.; Bianchi Pedroni Medeiros, A.; Magalhães, A.I.; de Carvalho, J.C.; Karp, S.G.; Porto de Souza Vandenberghe, L.; Junior Letti, L.A.; Thomaz Soccol, V.; de Melo Pereira, G.V.; et al. Agro-Industrial Wastewater in a Circular Economy: Characteristics, Impacts and Applications for Bioenergy and Biochemicals. Bioresour. Technol. 2021, 341, 125795. [Google Scholar] [CrossRef]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A Review on Agro-Industrial Waste (AIW) Derived Adsorbents for Water and Wastewater Treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef]
- Vieira, G.E.G.; Cardoso, A.D.S.; Marques, A.K.; Pickler, A. Assessment of the Potential of Residuary Microalgae from Stabilization Ponds for the Production of Biofuel. WIT Trans. State Art Sci. Eng. 2014, 83, 25–35. [Google Scholar] [CrossRef]
- Florentino, A.P.; Costa, M.C.; Nascimento, J.G.S.; Abdala-Neto, E.F.; Mota, C.R.; dos Santos, A.B. Identification of Microalgae from Waste Stabilization Ponds and Evaluation of Electroflotation by Alternate Current for Simultaneous Biomass Separation and Cell Disruption. Eng. Sanit. E Ambient. 2019, 24, 177–186. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT-Database; FAO: Rome, Italy. Available online: https://www.fao.org/faostat/ (accessed on 28 October 2022).
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, F.; Kuang, Y.; He, H.; Qin, A. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: A Review. Appl. Biochem. Biotechnol. 2016, 178, 1220–1238. [Google Scholar] [CrossRef]
- de Faria Ferreira Carraro, C.; Loures, C.C.A.; de Castro, J.A. Microalgae Technique for Bioremediation Treatment of Cassava Wastewater. Water Air Soil Pollut. 2021, 232, 281. [Google Scholar] [CrossRef]
- Sorgatto, V.G.; Soccol, C.R.; Molina-Aulestia, D.T.; de Carvalho, M.A.; de Melo Pereira, G.V.; de Carvalho, J.C. Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass. Fuels 2021, 2, 521–532. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [Google Scholar] [CrossRef]
- Molina, D.; de Carvalho, J.C.; Júnior, A.I.M.; Faulds, C.; Bertrand, E.; Soccol, C.R. Biological Contamination and Its Chemical Control in Microalgal Mass Cultures. Appl. Microbiol. Biotechnol. 2019, 103, 9345–9358. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Lu, P.H.; Huang, C.Y.; Leong, Y.K.; Yen, H.W.; Chang, J.S. Integrating Anaerobic Digestion and Microalgae Cultivation for Dairy Wastewater Treatment and Potential Biochemicals Production from the Harvested Microalgal Biomass. Chemosphere 2022, 291, 133057. [Google Scholar] [CrossRef]
- Dourou, M.; Dritsas, P.; Baeshen, M.N.; Elazzazy, A.; Al-Farga, A.; Aggelis, G. High-Added Value Products from Microalgae and Prospects of Aquaculture Wastewaters as Microalgae Growth Media. FEMS Microbiol. Lett. 2021, 367, fnaa081. [Google Scholar] [CrossRef]
- Dixit, R.; Singh, S.; Enamala, M.K.; Patel, A. Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus Rotundus-MG910488 under Autotrophic Condition. Clean Technol. 2022, 4, 733–751. [Google Scholar] [CrossRef]
- Sydney, E.B.; Carvalho, J.C.D.; Letti, L.A.J.; Magalhães, A.I.; Karp, S.G.; Martinez-Burgos, W.J.; Candeo, E. de S.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Neto, C.J.D.; et al. Current Developments and Challenges of Green Technologies for the Valorization of Liquid, Solid, and Gaseous Wastes from Sugarcane Ethanol Production. J. Hazard. Mater. 2021, 404, 124059. [Google Scholar] [CrossRef] [PubMed]
- Statista Fuel Ethanol Production Worldwide in 2021, by Country. 2022. Volume 2022. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 15 October 2022).
- World-In-Data Cassava Production. 2022. pp. 2003–2005. Available online: Https://Ourworldindata.Org/Grapher/Cassava-Production?Tab=table&time=1961..2018 (accessed on 15 October 2022).
- Statista Palm Oil Industry Worldwide-Statistics & Facts. 2022. Available online: Https://Www.Statista.Com/Topics/6079/Global-Palm-Oil-Industry/#dossierKeyfigures (accessed on 15 October 2022).
- FAO. Meat Market Review: Emerging Trends and Outlook. 2021. Available online: https://www.fao.org/3/cb7886en/cb7886en.pdf (accessed on 15 October 2022).
- Bustillo-Lecompte, C.; Mehrvar, M.; Quiñones-Bolaños, E. Slaughterhouse Wastewater Characterization and Treatment: An Economic and Public Health Necessity of the Meat Processing Industry in Ontario, Canada. Int. Conf. Environ. Pollut. Public Health EPPH 2016, 4, 175–186. [Google Scholar] [CrossRef]
- Ansari, A. Assessment of Laboratory Scale Cylindrical Sequencing Batch Reactor for the Treatment of Abattoir Effluent. Innov. Infrastruct. Solut. 2022, 7, 100. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Nwabanne, J.T.; Aniagor, C.O.; Okey-Onyesolu, C.F.; Ohale, N.J. A Comparative Optimization and Modeling of Ammonia–Nitrogen Adsorption from Abattoir Wastewater Using a Novel Iron-Functionalized Crab Shell. Appl. Water Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
- Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic Digestion of Dairy Wastewater: Effect of Different Parameters and Co-Digestion Options—A Review. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Kaur, N. Different Treatment Techniques of Dairy Wastewater. Groundw. Sustain. Dev. 2021, 14, 100640. [Google Scholar] [CrossRef]
- Bentahar, J.; Doyen, A.; Beaulieu, L.; Deschênes, J.S. Acid Whey Permeate: An Alternative Growth Medium for Microalgae Tetradesmus Obliquus and Production of β-Galactosidase. Algal Res. 2019, 41, 101559. [Google Scholar] [CrossRef]
- OECD. Agricultural Outlook 2021–2030. In OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France, 2021; ISBN 978-92-5-134608-2. [Google Scholar]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture Wastewater Treatment Technologies and Their Sustainability: A Review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Wang, H.; Hu, X.; Yang, F.; Tang, M.; Zhang, M.; Zhong, J. Internal Nitrogen and Phosphorus Loading in a Seasonally Stratified Reservoir: Implications for Eutrophication Management of Deep-Water Ecosystems. J. Environ. Manag. 2022, 319, 115681. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and Phosphorus Losses and Eutrophication Potential Associated with Fertilizer Application to Cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Junios, J.R.; Medeiros, A.B.P.; Herrmann, L.W.; Sydney, E.B.; Soccol, C.R. Biohydrogen Production from Agro-Industrial Wastes Using Clostridium Beijerinckii and Isolated Bacteria as Inoculum. Bioenergy Res. 2021, 15, 987–997. [Google Scholar] [CrossRef]
- Parsaee, M.; Kiani Deh Kiani, M.; Karimi, K. A Review of Biogas Production from Sugarcane Vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Gozan, M.; Aulawy, N.; Rahman, S.F.; Budiarto, R. Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent). Int. J. Appl. Eng. Res. 2018, 13, 6151–6157. [Google Scholar]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Molina, D.; Soccol, C.R. Hydrogen Production by Dark Fermentation Using a New Low-Cost Culture Medium Composed of Corn Steep Liquor and Cassava Processing Water: Process Optimization and Scale-Up. Bioresour. Technol. 2021, 320, 124370. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L.; Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with Sugarcane Vinasse: Foreseeing Potential Impacts on Soil and Water Resources through Vinasse Characterization. J. Environ. Sci. Health 2017, 52, 1063–1072. [Google Scholar] [CrossRef]
- de Godoi, L.A.G.; Camiloti, P.R.; Bernardes, A.N.; Sanchez, B.L.S.; Torres, A.P.R.; da Conceição Gomes, A.; Botta, L.S. Seasonal Variation of the Organic and Inorganic Composition of Sugarcane Vinasse: Main Implications for Its Environmental Uses. Environ. Sci. Pollut. Res. 2019, 26, 29267–29282. [Google Scholar] [CrossRef]
- Olaoye, R.A.; Afolayan, O.D.; Adeyemi, K.A.; Ajisope, L.O.; Adekunle, O.S. Adsorption of Selected Metals from Cassava Processing Wastewater Using Cow-Bone Ash. Sci. Afr. 2020, 10, e00653. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Chong, C.C.; Lam, M.K.; Leong, W.H.; Chuah, L.F.; Yusup, S.; Setiabudi, H.D.; Tang, Y.; Lim, J.W. Identification of Microbial Inhibitions and Mitigation Strategies towards Cleaner Bioconversions of Palm Oil Mill Effluent (POME): A Review. J. Clean. Prod. 2021, 280, 124346. [Google Scholar] [CrossRef]
- Malik, S.; Shahid, A.; Betenbaugh, M.J.; Liu, C.; Mehmood, A. A Novel Wastewater-Derived Cascading Algal Biorefinery Route for Complete Valorization of the Biomass to Biodiesel and Value-Added Bioproducts. Energy Convers. Manag. 2022, 256, 115360. [Google Scholar] [CrossRef]
- Mahmod, S.S.; Arisht, S.N.; Jahim, J.M.; Takriff, M.S.; Tan, J.P.; Luthfi, A.A.I.; Abdul, P.M. Enhancement of Biohydrogen Production from Palm Oil Mill Effluent (POME): A Review. Int. J. Hydrog. Energy 2021, 47, 40637–40655. [Google Scholar] [CrossRef]
- Loh, S.K.; Nasrin, A.B.; Mohamad Azri, S.; Nurul Adela, B.; Muzzammil, N.; Daryl Jay, T.; Stasha Eleanor, R.A.; Lim, W.S.; Choo, Y.M.; Kaltschmitt, M. First Report on Malaysia’s Experiences and Development in Biogas Capture and Utilization from Palm Oil Mill Effluent under the Economic Transformation Programme: Current and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 74, 1257–1274. [Google Scholar] [CrossRef]
- Rosa, D.; Medeiros, A.B.P.; Martinez-Burgos, W.J.; Do Nascimento, J.R.; De Carvalho, J.C.; Sydney, E.B.; Soccol, C.R. Biological Hydrogen Production from Palm Oil Mill Effluent (POME) by Anaerobic Consortia and Clostridium beijerinckii. J. Biotechnol. 2020, 323, 17–23. [Google Scholar] [CrossRef] [PubMed]
- HO, O.; Eruteyan, O. A Study on the Effects of Cassava Processing Wastes on the Soil Environment of a Local Cassava Mill. J. Pollut. Eff. Control 2016, 4, 4–7. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Soccol, V.T.; de Souza Vandenberghe, L.P.; Woiciechowski, A.L.; Soccol, C.R. Biohydrogen Production in Cassava Processing Wastewater Using Microbial Consortia: Process Optimization and Kinetic Analysis of the Microbial Community. Bioresour. Technol. 2020, 309, 123331. [Google Scholar] [CrossRef]
- Costa, R.C.; Ramos, M.D.N.; Fleck, L.; Gomes, S.D.; Aguiar, A. Critical Analysis and Predictive Models Using the Physicochemical Characteristics of Cassava Processing Wastewater Generated in Brazil. J. Water Process Eng. 2022, 47, 102629. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Hazzwan Bohari, M.; Sicilia, A.; Avignone-Rossa, C.; Bussemaker, M.; Saroj, D.; Lee, J. Tertiary Treatment of Real Abattoir Wastewater Using Combined Acoustic Cavitation and Ozonation. Ultrason. Sonochem. 2020, 64, 104986. [Google Scholar] [CrossRef]
- Oyeniran, D.O.; Sogbanmu, T.O.; Adesalu, T.A. Antibiotics, Algal Evaluations and Subacute Effects of Abattoir Wastewater on Liver Function Enzymes, Genetic and Haematologic Biomarkers in the Freshwater Fish, Clarias gariepinus. Ecotoxicol. Environ. Saf. 2021, 212, 111982. [Google Scholar] [CrossRef]
- Okey-Onyesolu, C.F.; Onukwuli, O.D.; Ejimofor, M.I.; Okoye, C.C. Kinetics and Mechanistic Analysis of Particles Decontamination from Abattoir Wastewater (ABW) Using Novel Fish Bone Chito-Protein (FBC). Heliyon 2020, 6, e04468. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Foster, L.; Kwambai, C.; Bahri, P.A.; Moheimani, N.R. Microalgae Cultivation for the Treatment of Anaerobically Digested Municipal Centrate (ADMC) and Anaerobically Digested Abattoir Effluent (ADAE). Sci. Total Environ. 2021, 775, 145853. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Guerreiro, R.C.S.; Jerónimo, E.; Luz, S.; Pinheiro, H.M.; Prazeres, A.R. Cheese Manufacturing Wastewater Treatment by Combined Physicochemical Processes for Reuse and Fertilizer Production. J. Environ. Manag. 2020, 264, 110470. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.D.C.S.D.; Maranduba, H.L.; Hafner, M.B.; Rodrigues, L.B.; de Almeida Neto, J.A. Life Cycle Thinking Applied to Phytoremediation of Dairy Wastewater Using Aquatic Macrophytes for Treatment and Biomass Production. J. Clean. Prod. 2020, 267, 122006. [Google Scholar] [CrossRef]
- Ekka, B.; Mieriņa, I.; Juhna, T.; Turks, M.; Kokina, K. Quantification of Different Fatty Acids in Raw Dairy Wastewater. Clean. Eng. Technol. 2022, 7, 100430. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Cruz-Rodríguez, R.I.; Cruz-Salomón, K.D.C.; Hernández-Méndez, J.M.E.; Domínguez-Espinosa, M.E. Treatment of Cheese Whey Wastewater Using an Expanded Granular Sludge Bed (EGSB) Bioreactor with Biomethane Production. Processes 2020, 8, 931. [Google Scholar] [CrossRef]
- Andreotti, V.; Solimeno, A.; Rossi, S.; Ficara, E.; Marazzi, F.; Mezzanotte, V.; García, J. Bioremediation of Aquaculture Wastewater with the Microalgae Tetraselmis suecica: Semi-Continuous Experiments, Simulation and Photo-Respirometric Tests. Sci. Total Environ. 2020, 738, 139859. [Google Scholar] [CrossRef]
- Tejido-Nuñez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of Aquaculture Effluent with Chlorella vulgaris and Tetradesmus Obliquus: The Effect of Pretreatment on Microalgae Growth and Nutrient Removal Efficiency. Ecol. Eng. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Meril, D.; Piliyan, R.; Perumal, S.; Sundarraj, D.K.; Binesh, A. Efficacy of Alginate Immobilized Microalgae in the Bioremediation of Shrimp Aquaculture Wastewater. Process Biochem. 2022, 122, 196–202. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of Real Aquaculture Wastewater from a Fishery Utilizing Phytoremediation with Microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910. [Google Scholar] [CrossRef]
- Akmukhanova, N.R.; Sadvakasova, A.K.; Torekhanova, M.M.; Bauenova, M.O. Feasibility of Waste—Free Use of Microalgae in Aquaculture. J. Appl. Phycol. 2022, 34, 2297–2313. [Google Scholar] [CrossRef]
- Nunes, N.S.P.; de Almeida, J.M.O.; Fonseca, G.G.; de Carvalho, E.M. Clarification of Sugarcane (Saccharum Officinarum) Vinasse for Microalgae Cultivation. Bioresour. Technol. Rep. 2022, 19, 101125. [Google Scholar] [CrossRef]
- Cea Barcia, G.E.; Imperial Cervantes, R.A.; Torres Zuniga, I.; van den Hende, S. Converting Tequila Vinasse Diluted with Tequila Process Water into Microalgae-Yeast Flocs and Dischargeable Effluent. Bioresour. Technol. 2020, 300, 122644. [Google Scholar] [CrossRef]
- Megawati, M.; Damayanti, A.; Bahlawan, Z.A.S.; Nurunia, E.; Agustina, F.J.E.; Fidyawati, F.; Hanifah, H. Growth rate and biochemical characterization of Chlorella pyrenoidosa cultivated in sugarcane vinasse medium. ASEAN Eng. J. 2022, 12, 127–134. [Google Scholar] [CrossRef]
- Candido, C.; Lombardi, A.T. Mixotrophy in Green Microalgae Grown on an Organic and Nutrient Rich Waste. World J. Microbiol. Biotechnol. 2020, 36, 20. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.C.; Bonomi, A.; Filho, R.M. Integration of Microalgae Production with Industrial Biofuel Facilities: A Critical Review. Renew. Sustain. Energy Rev. 2018, 82, 1376–1392. [Google Scholar] [CrossRef]
- Santana, H.; Cereijo, C.R.; Teles, V.C.; Nascimento, R.C.; Fernandes, M.S.; Brunale, P.; Campanha, R.C.; Soares, I.P.; Silva, F.C.P.; Sabaini, P.S.; et al. Microalgae Cultivation in Sugarcane Vinasse: Selection, Growth and Biochemical Characterization. Bioresour. Technol. 2017, 228, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Candido, C.; Bernardo, A.; Lombardi, A.T. Optimization and Qualitative Comparison of Two Vinasse Pre-Treatments Aiming at Microalgae Cultivation. Eng. Sanit. Ambient. 2021, 26, 359–367. [Google Scholar] [CrossRef]
- Siqueira, J.C.; Braga, M.Q.; Ázara, M.S.; Garcia, K.J.; Alencar, S.N.M.; Ramos, T.S.; Siniscalchi, L.A.B.; Assemany, P.P.; Ensinas, A.V. Recovery of Vinasse with Combined Microalgae Cultivation in a Conceptual Energy-Efficient Industrial Plant: Analysis of Related Process Considerations. Renew. Sustain. Energy Rev. 2022, 155, 111904. [Google Scholar] [CrossRef]
- Fu, S.F.; Xu, X.H.; Dai, M.; Yuan, X.Z.; Guo, R.B. Hydrogen and Methane Production from Vinasse Using Two-Stage Anaerobic Digestion. Process Saf. Environ. Prot. 2017, 107, 81–86. [Google Scholar] [CrossRef]
- Marques, S.S.I.; Nascimento, I.A.; de Almeida, P.F.; Chinalia, F.A. Growth of Chlorella vulgaris on Sugarcane Vinasse: The Effect of Anaerobic Digestion Pretreatment. Appl. Biochem. Biotechnol. 2013, 171, 1933–1943. [Google Scholar] [CrossRef]
- Trevisan, E.; Godoy, R.F.B.; Radomski, F.A.D.; Crisigiovanni, E.L.; Branco, K.B.Z.F.; Arroyo, P.A. Chlorella vulgaris Growth in Different Biodigested Vinasse Concentrations: Biomass, Pigments and Final Composition. Water Sci. Technol. 2020, 82, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [Google Scholar] [CrossRef]
- Perera, I.A.; Abinandan, S.; Panneerselvan, L.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Co-Culturing of Microalgae and Bacteria in Real Wastewaters Alters Indigenous Bacterial Communities Enhancing Effluent Bioremediation. Algal Res. 2022, 64, 102705. [Google Scholar] [CrossRef]
- Sydney, E.B.; Neto, C.J.D.; de Carvalho, J.C.; Vandenberghe, L.P.D.S.; Sydney, A.C.N.; Letti, L.A.J.; Karp, S.G.; Soccol, V.T.; Woiciechowski, A.L.; Medeiros, A.B.P.; et al. Microalgal Biorefineries: Integrated Use of Liquid and Gaseous Effluents from Bioethanol Industry for Efficient Biomass Production. Bioresour. Technol. 2019, 292, 121955. [Google Scholar] [CrossRef] [PubMed]
- Shayesteh, H.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Long Term Outdoor Microalgal Phycoremediation of Anaerobically Digested Abattoir Effluent. J. Environ. Manag. 2022, 323, 116322. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.A.; Wan Maznah, W.O.; Morad, N.; Lalung, J.; Ismail, N.; Talebi, A.; Oyekanmi, A.A. Advances in POME Treatment Methods: Potentials of Phycoremediation, with a Focus on South East Asia. Int. J. Environ. Sci. Technol. 2022, 19, 8113–8130. [Google Scholar] [CrossRef]
- Khalid, A.A.H.; Yaakob, Z.; Abdullah, S.R.S.; Takriff, M.S. Assessing the Feasibility of Microalgae Cultivation in Agricultural Wastewater: The Nutrient Characteristics. Environ. Technol. Innov. 2019, 15, 100402. [Google Scholar] [CrossRef]
- Jasni, J.; Arisht, S.N.; Mohd Yasin, N.H.; Abdul, P.M.; Lin, S.K.; Liu, C.M.; Wu, S.Y.; Jahim, J.M.; Takriff, M.S. Comparative Toxicity Effect of Organic and Inorganic Substances in Palm Oil Mill Effluent (POME) Using Native Microalgae Species. J. Water Process Eng. 2020, 34, 101165. [Google Scholar] [CrossRef]
- Mohd Udaiyappan, A.F.; Hasan, H.A.; Takriff, M.S.; Abdullah, S.R.S.; Maeda, T.; Mustapha, N.A.; Mohd Yasin, N.H.; Nazashida Mohd Hakimi, N.I. Microalgae-Bacteria Interaction in Palm Oil Mill Effluent Treatment. J. Water Process Eng. 2020, 35, 101203. [Google Scholar] [CrossRef]
- Takriff, M.S.; Zakaria, M.Z.; Sajab, M.S.; Teow, Y.H. Pre-Treatments Anaerobic Palm Oil Mill Effluent (POME) for Microalgae Treatment. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Low, S.S.; Bong, K.X.; Mubashir, M.; Cheng, C.K.; Lam, M.K.; Lim, J.W.; Ho, Y.C.; Lee, K.T.; Munawaroh, H.S.H.; Show, P.L. Microalgae Cultivation in Palm Oil Mill Effluent (Pome) Treatment and Biofuel Production. Sustainability 2021, 13, 3247. [Google Scholar] [CrossRef]
- Phang, Y.K.; Tey, L.H.; Aminuzzaman, M.; Akhtaruzzaman, M.; Watanabe, A. Investigation of the Growth of Chlorella vulgaris and Chlamydomonas Reinhardtii Cultivated in Pre-Treated Palm Oil Mill Effluent (POME) as the Culture Medium. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 945. [Google Scholar]
- Minturo, G.J.; Noorain, R.; Hitam, S.M.S.; Shoiful, A.; Azni, M.E.; Ernawati, L.; Abdullah, R.; Mohamad, R. Immobilized Nannochloropsis Oculata in a Down-Flow Hanging Sponge (DHS) Reactor for the Treatment of Palm Oil Mill Effluent (POME). In IOP Conference Series: Earth and Environmental Science; Institute of Physics: London, UK, 2022; Volume 1017. [Google Scholar]
- Tan, K.A.; Lalung, J.; Morad, N.; Ismail, N.; Omar, W.M.W.; Khan, M.A.; Sillanpää, M.; Rafatullah, M. Post-Treatment of Palm Oil Mill Effluent Using Immobilised Green Microalgae Chlorococcum Oleofaciens. Sustainability 2021, 13, 1562. [Google Scholar] [CrossRef]
- Colusse, G.A.; Santos, A.O.; Rodrigues, J.M.; Barga, M.C.; Duarte, M.E.R.; de Carvalho, J.C.; Noseda, M.D. Rice Vinasse Treatment by Immobilized Synechococcus Pevalekii and Its Effect on Dunaliella Salina Cultivation. Bioprocess Biosyst. Eng. 2021, 44, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti Pessôa, L.; Pinheiro Cruz, E.; Mosquera Deamici, K.; Bomfim Andrade, B.; Santana Carvalho, N.; Rocha Vieira, S.; Alves Da Silva, J.B.; Magalhães Pontes, L.A.; Oliveira De Souza, C.; Druzian, J.I.; et al. A Review of Microalgae-Based Biorefineries Approach for Produced Water Treatment: Barriers, Pretreatments, Supplementation, and Perspectives. J. Environ. Chem. Eng. 2022, 10, 108096. [Google Scholar] [CrossRef]
- Okpozu, O.O.; Ogbonna, I.O.; Ikwebe, J.; Ogbonna, J.C. Phycoremediation of Cassava Wastewater by Desmodesmus Armatus and the Concomitant Accumulation of Lipids for Biodiesel Production. Bioresour. Technol. Rep. 2019, 7, 100255. [Google Scholar] [CrossRef]
- Melo, J.M.; Telles, T.S.; Ribeiro, M.R.; de Carvalho Junior, O.; Andrade, D.S. Chlorella sorokiniana as Bioremediator of Wastewater: Nutrient Removal, Biomass Production, and Potential Profit. Bioresour. Technol. Rep. 2022, 17, 100933. [Google Scholar] [CrossRef]
- Coutinho Rodrigues, O.H.; Itokazu, A.G.; Rörig, L.; Maraschin, M.; Corrêa, R.G.; Pimentel-Almeida, W.; Moresco, R. Evaluation of Astaxanthin Biosynthesis by Haematococcus Pluvialis Grown in Culture Medium Added of Cassava Wastewater. Int. Biodeterior. Biodegrad. 2021, 163, 105269. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Garcia Bustos, K.A.; Sanchez Vera, F.P.; Colina Andrade, G.J.; Pacheco Tanaka, D.A. Acid Precipitation Followed by Microalgae (Chlorella vulgaris) Cultivation as a New Approach for Poultry Slaughterhouse Wastewater Treatment. Bioresour. Technol. 2021, 335, 125284. [Google Scholar] [CrossRef]
- Katırcıoğlu Sınmaz, G.; Erden, B.; Şengil, I.A. Cultivation of Chlorella vulgaris in Alkaline Condition for Biodiesel Feedstock after Biological Treatment of Poultry Slaughterhouse Wastewater. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Viegas, C.; Gouveia, L.; Gonçalves, M. Evaluation of Microalgae as Bioremediation Agent for Poultry Effluent and Biostimulant for Germination. Environ. Technol. Innov. 2021, 24, 102048. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Matos, A.P.; Chaudry, S.; Bahri, P.A.; Moheimani, N.R. Effect of CO2 addition on Treating Anaerobically Digested Abattoir Effluent (ADAE) Using Chlorella sp. (Trebouxiophyceae). J. CO2 Util. 2020, 38, 273–281. [Google Scholar] [CrossRef]
- Shayesteh, H.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Can CO2 Addition Improve the Tertiary Treatment of Anaerobically Digested Abattoir Effluent (ADAE) by Scenedesmus sp. (Chlorophyta)? Algal Res. 2021, 58, 102379. [Google Scholar] [CrossRef]
- Maza-Márquez, P.; González-Martínez, A.; Rodelas, B.; González-López, J. Full-Scale Photobioreactor for Biotreatment of Olive Washing Water: Structure and Diversity of the Microalgae-Bacteria Consortium. Bioresour. Technol. 2017, 238, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.O.; et al. Wastewater Based Microalgal Biorefinery for Bioenergy Production: Progress and Challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, N.; Zamani, H. Potential of Chlorella sorokiniana Cultivated in Dairy Wastewater for Bioenergy and Biodiesel Production. Bioenergy Res. 2022, 15, 334–345. [Google Scholar] [CrossRef]
- Rahman, D.Y.; Hidhayati, N.; Apriastini, M. Taufikurahman Utilization of Anaerobically Digested Dairy Manure Wastewater for Spirulina maxima Cultivation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012022. [Google Scholar] [CrossRef]
- Pandey, A.; Srivastava, S.; Kumar, S. Isolation, Screening and Comprehensive Characterization of Candidate Microalgae for Biofuel Feedstock Production and Dairy Effluent Treatment: A Sustainable Approach. Bioresour. Technol. 2019, 293, 121998. [Google Scholar] [CrossRef]
- Ghobrini, D.; Brányik, T.; Yakoub-Bougdal, S.; Aïboud, K.; Kebbab, L.; Daoud, D.; Lahouel, N.; Bouarab, R.; Oumsalem, M.; Zanoun, L. Production of Biodiesel from the Locally Isolated Yellow Strain of Chlorella sp. Using Dairy Wastewater as a Growth Medium. AIP Conf. Proc. 2019, 2190, 020097. [Google Scholar] [CrossRef]
- Zapata, D.; Arroyave, C.; Cardona, L.; Aristizábal, A.; Poschenrieder, C.; Llugany, M. Phytohormone Production and Morphology of Spirulina platensis Grown in Dairy Wastewaters. Algal Res. 2021, 59, 102469. [Google Scholar] [CrossRef]
- Choi, Y.K.; Jang, H.M.; Kan, E. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater. Biotechnol. Bioprocess Eng. 2018, 23, 333–340. [Google Scholar] [CrossRef]
- Pang, N.; Bergeron, A.D.; Gu, X.; Fu, X.; Dong, T.; Yao, Y.; Chen, S. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. Environ. Sci. Technol. 2020, 54, 15366–15375. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulou, A.; Zkeri, E.; Panara, A.; Dasenaki, M.; Fountoulakis, M.S.; Thomaidis, N.S.; Stasinakis, A.S. Treatment of Different Dairy Wastewater with Chlorella sorokiniana: Removal of Pollutants and Biomass Characterization. J. Chem. Technol. Biotechnol. 2022, 97, 3193–3201. [Google Scholar] [CrossRef]
- Marella, T.K.; López-Pacheco, I.Y.; Parra-Saldívar, R.; Dixit, S.; Tiwari, A. Wealth from Waste: Diatoms as Tools for Phycoremediation of Wastewater and for Obtaining Value from the Biomass. Sci. Total Environ. 2020, 724, 137960. [Google Scholar] [CrossRef] [PubMed]
- Hesni, M.A.; Hedayati, A.; Qadermarzi, A.; Pouladi, M.; Zangiabadi, S.; Naqshbandi, N. Using Chlorella vulgaris and Iron Oxide Nanoparticles in a Designed Bioreactor for Aquaculture Effluents Purification. Aquac. Eng. 2020, 90, 102069. [Google Scholar] [CrossRef]
- Soto, M.F.; Diaz, C.A.; Zapata, A.M.; Higuita, J.C. BOD and COD Removal in Vinasses from Sugarcane Alcoholic Distillation by Chlorella vulgaris: Environmental Evaluation. Biochem. Eng. J. 2021, 176, 108191. [Google Scholar] [CrossRef]
- Heredia Falconí, J.H.; Soares, J.; Rocha, D.N.; Gomes Marçal Vieira Vaz, M.; Martins, M.A. Strain Screening and Ozone Pretreatment for Algae Farming in Wastewaters from Sugarcane Ethanol Biorefinery. J. Clean. Prod. 2021, 282, 124522. [Google Scholar] [CrossRef]
- Montaño Saavedra, M.D.; Paschino Bissoto, F.; de Souza, R.A.; Cárdenas Concha, V.O.; Gaspar Bastos, R. Growth of Desmodesmus subspicatus Green Microalgae and Nutrient Removal from Sugarcane Vinasse Clarified by Electrocoagulation Using Aluminum or Iron Electrodes. Dyna 2019, 86, 225–232. [Google Scholar] [CrossRef]
- Montalvo, G.E.B.; Thomaz-Soccol, V.; Vandenberghe, L.P.S.; Carvalho, J.C.; Faulds, C.B.; Bertrand, E.; Prado, M.R.M.; Bonatto, S.J.R.; Soccol, C.R. Arthrospira Maxima OF15 Biomass Cultivation at Laboratory and Pilot Scale from Sugarcane Vinasse for Potential Biological New Peptides Production. Bioresour. Technol. 2019, 273, 103–113. [Google Scholar] [CrossRef]
- de Mattos, L.F.A.; Bastos, R.G. COD and Nitrogen Removal from Sugarcane Vinasse by Heterotrophic Green Algae Desmodesmus sp. Desalination Water Treat. 2016, 57, 9465–9473. [Google Scholar] [CrossRef]
- Serejo, M.L.; Ruas, G.; Braga, G.B.; Paulo, P.L.; Boncz, M. Chlorella vulgaris Growth on Anaerobically Digested Sugarcane Vinasse: Influenceofturbidity. An. Acad. Bras. Cienc. 2021, 93, 1–10. [Google Scholar] [CrossRef]
- Hilares, R.T.; Vera, F.P.S.; Andrade, G.J.C.; Meza, K.T.; García, J.C.; Tanaka, D.A.P. Continuous Cultivation of Microalgae in Cattle Slaughterhouse Wastewater Treated with Hydrodynamic Cavitation. Water 2022, 14, 1288. [Google Scholar] [CrossRef]
- Chawla, P.; Gola, D.; Dalvi, V.; Sreekrishnan, T.R.; Ariyadasa, T.U.; Malik, A. Design and Development of Mini-Photobioreactor System for Strategic High Throughput Selection of Optimum Microalgae-Wastewater Combination. Bioresour. Technol. Rep. 2022, 17, 100967. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Yap, Y.J.; Mohd Zaid, H.F.; Lam, M.K.; Lim, J.W.; Ho, Y.C.; Tao, Y. Enhancing Microalga Chlorella sorokiniana CY-1 Biomass and Lipid Production in Palm Oil Mill Effluent (POME) Using Novel-Designed Photobioreactor. Bioengineered 2020, 11, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Elystia, S.; Muria, S.R.; Erlangga, H.F. Cultivation of Chlorella pyrenoidosa as a Raw Material for the Production of Biofuels in Palm Oil Mill Effluent Medium with the Addition of Urea and Triple Super Phosphate. Environ. Health Eng. Manag. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Garcia, G.M.; Boelen, P.; Buma, A.G.J. Influence of Photodegradation on the Removal of Color and Phenolic Compounds from Palm Oil Mill Effluent by Arthrospira platensis. J. Appl. Phycol. 2021, 33, 901–915. [Google Scholar] [CrossRef]
- Resdi, R.; Lim, J.S.; Idris, A. Batch Kinetics of Nutrients Removal for Palm Oil Mill Effluent and Recovery of Lipid by Nannochloropsis sp. J. Water Process Eng. 2021, 40, 101767. [Google Scholar] [CrossRef]
- Ng, F.L.; Phang, S.M.; Thong, C.H.; Periasamy, V.; Pindah, J.; Yunus, K.; Fisher, A.C. Integration of Bioelectricity Generation from Algal Biophotovoltaic (BPV) Devices with Remediation of Palm Oil Mill Effluent (POME) as Substrate for Algal Growth. Environ. Technol. Innov. 2021, 21, 101280. [Google Scholar] [CrossRef]
- Elvitriana, E.; Munir, E.; Delvian, D.; Wahyuningsih, H. Organic Substances Reduction in Palm Oil Mill Effluent (POME) After Cultivation with Locally Isolated Microalgae. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80, 98–105. [Google Scholar] [CrossRef]
- Ogbonna, I.O.; Okpozu, O.O.; Ikwebe, J.; Ogbonna, J.C. Utilisation of Desmodesmus subspicatus LC172266 for Simultaneous Remediation of Cassava Wastewater and Accumulation of Lipids for Biodiesel Production. Biofuels 2019, 10, 657–664. [Google Scholar] [CrossRef]
- Romaidi; Hasanudin, M.; Kholifah, K.; Maulidiyah, A.; Putro, S.P.; Kikuchi, A.; Sakaguchi, T. Lipid Production from Tapioca Wastewater by Culture of Scenedesmus sp. with Simultaneous BOD, COD and Nitrogen Removal. J. Phys. Conf. Ser. 2018, 1025, 012075. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Teaumroong, N.; Piromyou, P.; Piasai, C. Co-Culture of Microalga Chlorella sorokiniana with Syntrophic Streptomyces Thermocarboxydus in Cassava Wastewater for Wastewater Treatment and Biodiesel Production. Bioresour. Technol. 2022, 347, 126732. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.G.; Duarte, J.H.; Costa, J.A.V.; de Jesus Assis, D.; Lemos, P.V.F.; Druzian, J.I.; de Souza, C.O.; Nunes, I.L.; Chinalia, F.A. Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. Bioenergy Res. 2021, 14, 254–264. [Google Scholar] [CrossRef]
- Guldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic Cultivation of Microalgae Using Aquaculture Wastewater: A Biorefinery Concept for Biomass Production and Nutrient Remediation. Ecol. Eng. 2017, 99, 47–53. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal Cultivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Kothari, R.; Prasad, R.; Kumar, V.; Singh, D.P. Production of Biodiesel from Microalgae Chlamydomonas polypyrenoideum Grown on Dairy Industry Wastewater. Bioresour. Technol. 2013, 144, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, N.; Zamani, H. Biomass Production and Nutritional Properties of Chlorella sorokiniana Grown on Dairy Wastewater. J. Water Process Eng. 2022, 47, 102760. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S.; Chand, N.; Mutiyar, P.K. Phycoremediation of Milk Processing Wastewater and Lipid-Rich Biomass Production Using Chlorella vulgaris under Continuous Batch System. Sci. Total Environ. 2022, 833, 155110. [Google Scholar] [CrossRef]
- Gumbi, S.T.; Mutanda, T.; Olaniran, A.O. Nutrient Removal from Dairy and Poultry Wastewater with Simultaneous Biomass and Biodiesel Production by Chlorella sp. T4 Isolated from a Freshwater Stream in South Africa. Waste Biomass Valorization 2021, 12, 6931–6943. [Google Scholar] [CrossRef]
- Sudhanthiran, M.C.; Perumalsamy, M. Bioremediation of Dairy Industry Wastewater and Assessment of Nutrient Removal Potential of Chlorella vulgaris. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Campos, J.L.; Crutchik, D.; Franchi, Ó.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; Mosquera-Corral, A.; Val del Río, Á. Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst. 2019, 2, 91. [Google Scholar] [CrossRef]
- Nunes Ferraz Junior, A.D.; Etchebehere, C.; Perecin, D.; Teixeira, S.; Woods, J. Advancing Anaerobic Digestion of Sugarcane Vinasse: Current Development, Struggles and Future Trends on Production and End-Uses of Biogas in Brazil. Renew. Sustain. Energy Rev. 2022, 157, 112045. [Google Scholar] [CrossRef]
- Chen, K.T.; Bai, M.D.; Yang, H.Y.; Chen, Y.C.; Lu, W.J.; Huang, C. Removal of Ammonia from Leachate by Using Thermophilic Microbial Fuel Cells Equipped with Membrane Electrode. Sustain. Environ. Res. 2020, 30, 5. [Google Scholar] [CrossRef]
- Li, X.; Shen, S.; Xu, Y.; Guo, T.; Dai, H.; Lu, X. Application of Membrane Separation Processes in Phosphorus Recovery: A Review. Sci. Total Environ. 2021, 767, 144346. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Srivastava, S.; Kumar, S. Development and Cost-Benefit Analysis of a Novel Process for Biofuel Production from Microalgae Using Pre-Treated High-Strength Fresh Cheese Whey Wastewater. Environ. Sci. Pollut. Res. 2020, 27, 23963–23980. [Google Scholar] [CrossRef]
- Debowski, M.; Zielinski, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Swica, I.; Rudnicka, A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Al-Mallahi, J.; Ishii, K. Attempts to Alleviate Inhibitory Factors of Anaerobic Digestate for Enhanced Microalgae Cultivation and Nutrients Removal: A Review. J. Environ. Manag. 2022, 304, 114266. [Google Scholar] [CrossRef]
- Yasir, S.; Siddiki, A.; Mofijur, M.; Kumar, P.S.; Forruque, S.; Chyuan, H.; Mahlia, T.M.I. Microalgae Biomass as a Sustainable Source for Biofuel, Biochemical and Biobased Value-Added Products: An Integrated Biorefinery Concept. Fuel 2022, 307, 121782. [Google Scholar]
- Chen, Y.D.; Ho, S.H.; Nagarajan, D.; Ren, N.Q.; Chang, J.S. Waste Biorefineries—Integrating Anaerobic Digestion and Microalgae Cultivation for Bioenergy Production. Curr. Opin. Biotechnol. 2018, 50, 101–110. [Google Scholar] [CrossRef]
- Álvarez, X.; Arévalo, O.; Salvador, M.; Mercado, I.; Velázquez-Martí, B. Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production. Processes 2020, 8, 1290. [Google Scholar] [CrossRef]
- Zafisah, N.S.; Ang, W.L.; Mohammad, A.W. Cake Filtration for Suspended Solids Removal in Digestate from Anaerobic Digested Palm Oil Mill Effluent (POME). Water Conserv. Manag. 2018, 2, 5–9. [Google Scholar] [CrossRef]
- Poh, P.E.; Chong, M.F. Development of Anaerobic Digestion Methods for Palm Oil Mill Effluent (POME) Treatment. Bioresour. Technol. 2009, 100, 1–9. [Google Scholar] [CrossRef]
- Vieira, S.; Schneider, J.; Martinez-Burgos, W.J.; Magalhães, A.; Medeiros, A.B.P.; Carvalho, J.C.; Vandenberghe, L.P.D.S.; Soccol, C.R.; Soccol, C.R. Pretreatments of Solid Wastes for Anaerobic Digestion and Its Importance for the Circular Economy. In Handbook of Solid Waste Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–27. ISBN 9789811575259. [Google Scholar]
- Letti, L.A.; Woiciechowski, A.L.; Medeiros, A.B.P.; Rodrigues, C.; Carvalho, J.C.D.; Vandenberghe, L.P.; Karp, S.G.; Torres, L.A.Z.; Guarnizo, A.F.C.; Soccol, C.R. Valorization of Solid and Liquid Wastes from Palm Oil Industry. In Waste Biorefinery Value Addition Through Resource Utilization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–265. ISBN 9780128218792. [Google Scholar]
- Silva, A.F.R.; Brasil, Y.L.; Koch, K.; Amaral, M.C.S. Resource Recovery from Sugarcane Vinasse by Anaerobic Digestion—A Review. J. Environ. Manag. 2021, 295, 113137. [Google Scholar] [CrossRef]
- Charalambous, P.; Shin, J.; Shin, S.G.; Vyrides, I. Anaerobic Digestion of Industrial Dairy Wastewater and Cheese Whey: Performance of Internal Circulation Bioreactor and Laboratory Batch Test at PH 5–6. Renew. Energy 2020, 147, 1–10. [Google Scholar] [CrossRef]
- Sousa, S.P.; Lovato, G.; Albanez, R.; Ratusznei, S.M.; Rodrigues, J.A.D. Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as Its Co-Substrate: Achieving High Methane Productivity and Yield. Appl. Biochem. Biotechnol. 2019, 189, 987–1006. [Google Scholar] [CrossRef] [PubMed]
- Weiser Meier, T.R.; Cremonez, P.A.; Maniglia, T.C.; Sampaio, S.C.; Teleken, J.G.; da Silva, E.A. Production of Biohydrogen by an Anaerobic Digestion Process Using the Residual Glycerol from Biodiesel Production as Additive to Cassava Wastewater. J. Clean. Prod. 2020, 258, 120833. [Google Scholar] [CrossRef]
- Agabo-García, C.; Solera, R.; Perez, M. Anaerobic Sequential Batch Reactor for CO-DIGESTION of Slaughterhouse Residues: Wastewater and Activated Sludge. Energy 2022, 255, 124575. [Google Scholar] [CrossRef]
- Brooms, T.; Apollo, S.; Otieno, B.; Onyango, M.S.; Kabuba, J.; Ochieng, A. Integrated Anaerobic Digestion and Photodegradation of Slaughterhouse Wastewater: Energy Analysis and Degradation of Aromatic Compounds. J. Mater. Cycles Waste Manag. 2020, 22, 1227–1236. [Google Scholar] [CrossRef]
- Venugopal, V.; Sasidharan, A. Seafood Industry Effluents: Environmental Hazards, Treatment and Resource Recovery. J. Environ. Chem. Eng. 2021, 9, 104758. [Google Scholar] [CrossRef]
- Choudhury, A.; Lepine, C.; Witarsa, F.; Good, C. Anaerobic Digestion Challenges and Resource Recovery Opportunities from Land-Based Aquaculture Waste and Seafood Processing Byproducts: A Review. Bioresour. Technol. 2022, 354, 127144. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.L.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.C.P.; et al. Nutrient Mineralization and Organic Matter Reduction Performance of RAS-Based Sludge in Sequential UASB-EGSB Reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Reis, C.E.R.; Bento, H.B.S.; Alves, T.M.; Carvalho, A.; Castro, H. Vinasse Treatment within the Sugarcane-Ethanol Industry Using Ozone Combined with Anaerobic and Aerobic Microbial Processes. Environments 2019, 6, 5. [Google Scholar] [CrossRef]
- Moraes, B.S.; Petersen, S.O.; Zaiat, M.; Sommer, S.G.; Triolo, J.M. Reduction in Greenhouse Gas Emissions from Vinasse through Anaerobic Digestion. Appl. Energy 2020, 189, 21–30. [Google Scholar] [CrossRef]
- Zafisah, N.S.; Ang, W.L.; Johnson, D.J.; Mohammad, A.W.; Hilal, N. Effect of Different Filter Aids Used in Cake Filtration Process on the Removal of Suspended Solids in Anaerobically Digested Palm Oil Mill Effluent (POME). Desalination Water Treat. 2018, 110, 362–370. [Google Scholar] [CrossRef]
- Beigbeder, J.-B.; Sanglier, M.; de Medeiros Dantas, J.M.; Lavoie, J.-M. CO2 Capture and Inorganic Carbon Assimilation of Gaseous Fermentation Effluents Using Parachlorella kessleri Microalgae. J. CO2 Util. 2021, 50, 101581. [Google Scholar] [CrossRef]
- Iamtham, S.; Sornchai, P. Biofixation of CO2 from a Power Plant through Large-Scale Cultivation of Spirulina maxima. S. Afr. J. Bot. 2022, 147, 840–851. [Google Scholar] [CrossRef]
- Aslam, A.; Thomas-Hall, S.R.; Mughal, T.A.; Schenk, P.M. Selection and Adaptation of Microalgae to Growth in 100% Unfiltered Coal-Fired Flue Gas. Bioresour. Technol. 2017, 233, 271–283. [Google Scholar] [CrossRef]
- Kim, B.; Praveenkumar, R.; Choi, E.; Lee, K.; Jeon, S.; Oh, Y.-K. Prospecting for Oleaginous and Robust Chlorella Spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production. Energies 2018, 11, 2026. [Google Scholar] [CrossRef]
- Moheimani, N.R. Tetraselmis suecica Culture for CO2 Bioremediation of Untreated Flue Gas from a Coal-Fired Power Station. J. Appl. Phycol. 2016, 28, 2139–2146. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Kim, B.; Choi, E.; Lee, K.; Park, J.-Y.; Lee, J.-S.; Lee, Y.-C.; Oh, Y.-K. Improved Biomass and Lipid Production in a Mixotrophic Culture of Chlorella sp. KR-1 with Addition of Coal-Fired Flue-Gas. Bioresour. Technol. 2014, 171, 500–505. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Xie, T.; Seib, M.; Tale, V.P.; Zitomer, D. Anaerobic Digester Biogas Upgrading Using Microalgae. In Integrated Wastewater Management and Valorization Using Algal Cultures; Elsevier: Amsterdam, The Netherlands, 2022; pp. 183–214. [Google Scholar]
- Yadav, G.; Mathimani, T.; Sekar, M.; Sindhu, R.; Pugazhendhi, A. Strategic Evaluation of Limiting Factors Affecting Algal Growth—An Approach to Waste Mitigation and Carbon Dioxide Sequestration. Sci. Total Environ. 2021, 796, 149049. [Google Scholar] [CrossRef]
- de Godos, I.; Mendoza, J.L.; Acién, F.G.; Molina, E.; Banks, C.J.; Heaven, S.; Rogalla, F. Evaluation of Carbon Dioxide Mass Transfer in Raceway Reactors for Microalgae Culture Using Flue Gases. Bioresour. Technol. 2014, 153, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, D.; Yu, Y.; Li, D.; Yadav, R.S.; Feng, Y. Application of a Microalga, Scenedesmus Obliquus PF3, for the Biological Removal of Nitric Oxide (NO) and Carbon Dioxide. Environ. Pollut. 2019, 252, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, P.; Desi, S.; Vurimindi, H. Mixotrophic Cultivation of Microalgae Using Industrial Flue Gases for Biodiesel Production. Environ. Sci. Pollut. Res. 2016, 23, 9345–9354. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.K.; Krishna, S.V.; Verma, K.; Pooja, K.; Bhagawan, D.; Himabindu, V. Phycoremediation of Sewage Wastewater and Industrial Flue Gases for Biomass Generation from Microalgae. S. Afr. J. Chem. Eng. 2018, 25, 133–146. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.; Zhou, J.; Cen, K. Improving the CO2 Fixation Rate by Increasing Flow Rate of the Flue Gas from Microalgae in a Raceway Pond. Korean J. Chem. Eng. 2018, 35, 498–502. [Google Scholar] [CrossRef]
- Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Carbohydrate Biosynthesis in Plants and Bacteria. In Principles of Biochemistry; Lehninger, A.L., Nelson, D.L., Cox, M.M., Eds.; McGraw-Hill Book: New York, NY, USA, 2004; pp. 751–786. [Google Scholar]
- Kuo, C.-M.; Jian, J.-F.; Lin, T.-H.; Chang, Y.-B.; Wan, X.-H.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Simultaneous Microalgal Biomass Production and CO2 Fixation by Cultivating Chlorella sp. GD with Aquaculture Wastewater and Boiler Flue Gas. Bioresour. Technol. 2016, 221, 241–250. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Sahoo, L.; Mohanty, K. Maximize Microalgal Carbon Dioxide Utilization and Lipid Productivity by Using Toxic Flue Gas Compounds as Nutrient Source. Bioresour. Technol. 2022, 348, 126784. [Google Scholar] [CrossRef]
- Duarte, J.H.; de Morais, E.G.; Radmann, E.M.; Costa, J.A.V. Biological CO2 Mitigation from Coal Power Plant by Chlorella fusca and Spirulina sp. Bioresour. Technol. 2017, 234, 472–475. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Chiu, T.-W.; Lin, H.-Y.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Utilization of Carbon Dioxide in Industrial Flue Gases for the Cultivation of Microalga chlorella sp. Bioresour. Technol. 2014, 166, 485–493. [Google Scholar] [CrossRef]
- Yadav, G.; Dash, S.K.; Sen, R. A Biorefinery for Valorization of Industrial Waste-Water and Flue Gas by Microalgae for Waste Mitigation, Carbon-Dioxide Sequestration and Algal Biomass Production. Sci. Total Environ. 2019, 688, 129–135. [Google Scholar] [CrossRef]
- Hariz, H.B.; Takriff, M.S.; Mohd Yasin, N.H.; Ba-Abbad, M.M.; Mohd Hakimi, N.I.N. Potential of the Microalgae-Based Integrated Wastewater Treatment and CO2 Fixation System to Treat Palm Oil Mill Effluent (POME) by Indigenous Microalgae; Scenedesmus sp. and Chlorella sp. J. Water Process Eng. 2019, 32, 100907. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.-H.; Zhang, J.-T.; Chi, Z.-Y.; Kong, F.-T.; Zhang, Q. The Long Overlooked Microalgal Nitrous Oxide Emission: Characteristics, Mechanisms, and Influencing Factors in Microalgae-Based Wastewater Treatment Scenarios. Sci. Total Environ. 2023, 856, 159153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, J.; Zhang, X.; Chen, L.; Liu, J. Metabolic Pathways of Chlorella sp. Cells Induced by Exogenous Spermidine against Nitric Oxide Damage from Coal-Fired Flue Gas. Bioresour. Technol. 2021, 328, 124827. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Banerjee, D.; Das, D. Carbon Dioxide Sequestration from Industrial Flue Gas by Chlorella sorokiniana. Bioresour. Technol. 2014, 152, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cheng, J.; Miao, Y.; Guo, W.; Zhou, J. SO2 Impurity in Simulated Flue Gas with 15% CO2 Affects Dynamic Bubble Dissolution and Arthrospira Photosynthetic Growth. ACS Sustain. Chem. Eng. 2021, 9, 5580–5589. [Google Scholar] [CrossRef]
- Matito-Martos, I.; Sepúlveda, C.; Gómez, C.; Acién, G.; Perez-Carbajo, J.; Delgado, J.A.; Águeda, V.I.; Ania, C.; Parra, J.B.; Calero, S.; et al. Potential of CO2 Capture from Flue Gases by Physicochemical and Biological Methods: A Comparative Study. Chem. Eng. J. 2021, 417, 128020. [Google Scholar] [CrossRef]
- Hong, M.E.; Chang, W.S.; Patel, A.K.; Oh, M.S.; Lee, J.J.; Sim, S.J. Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO2 into Red Gold Astaxanthin: The Potential Applicability. Energies 2019, 12, 1718. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ravindran, B.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Techno-Economic Estimation of Wastewater Phycoremediation and Environmental Benefits Using Scenedesmus Obliquus Microalgae. J. Environ. Manag. 2019, 240, 293–302. [Google Scholar] [CrossRef]
- Yadav, G.; Panda, S.P.; Sen, R. Strategies for the Effective Solid, Liquid and Gaseous Waste Valorization by Microalgae: A Circular Bioeconomy Perspective. J. Environ. Chem. Eng. 2020, 8, 104518. [Google Scholar] [CrossRef]
- Llamas, B.; Suárez-Rodríguez, M.C.; González-López, C.V.; Mora, P.; Acién, F.G. Techno-Economic Analysis of Microalgae Related Processes for CO2 Bio-Fixation. Algal Res. 2021, 57, 102339. [Google Scholar] [CrossRef]
- Song, C.; Hu, X.; Liu, Z.; Li, S.; Kitamura, Y. Combination of Brewery Wastewater Purification and CO2 Fixation with Potential Value-Added Ingredients Production via Different Microalgae Strains Cultivation. J. Clean. Prod. 2020, 268, 122332. [Google Scholar] [CrossRef]
- Rezvani, S.; Moheimani, N.R.; Bahri, P.A. Techno-Economic Assessment of CO2 Bio-Fixation Using Microalgae in Connection with Three Different State-of-the-Art Power Plants. Comput. Chem. Eng. 2016, 84, 290–301. [Google Scholar] [CrossRef]
- Hu, X.; Song, C.; Mu, H.; Liu, Z.; Kitamura, Y. Optimization of Simultaneous Soybean Processing Wastewater Treatment and Flue Gas CO2 Fixation via Chlorella sp. L166 Cultivation. J. Environ. Chem. Eng. 2020, 8, 103960. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Uma, V.S.; Mathimani, T.; Deviram, G.; Arul Ananth, D.; Prabaharan, D.; Uma, L. On-Site Concurrent Carbon Dioxide Sequestration from Flue Gas and Calcite Formation in Ossein Effluent by a Marine Cyanobacterium Phormidium valderianum BDU 20041. Energy Convers. Manag. 2017, 141, 315–324. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. Optimisation and Performance Prediction of Photosynthetic Biogas Upgrading Using a Bubble Column. Chem. Eng. J. 2022, 437, 134988. [Google Scholar] [CrossRef]
- Wu, K.-K.; Zhao, L.; Sun, Z.-F.; Wang, Z.-H.; Chen, C.; Ren, H.-Y.; Yang, S.-S.; Ren, N.-Q. Synergistic Effect of Hydrogen and Nanoscale Zero-Valent Iron on Ex-Situ Biogas Upgrading and Acetate Recovery. Sci. Total Environ. 2023, 856, 159100. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Tabaco-Angoa, T.; Ramírez-García, M.A.; González-Sánchez, A. Strategies for Decreasing the O2 Content in the Upgraded Biogas Purified via Microalgae-Based Technology. J. Environ. Manag. 2021, 279, 111813. [Google Scholar] [CrossRef] [PubMed]
- Meier, L.; Stará, D.; Bartacek, J.; Jeison, D. Removal of H2S by a Continuous Microalgae-Based Photosynthetic Biogas Upgrading Process. Process Saf. Environ. Prot. 2018, 119, 65–68. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Lebrero, R.; Serrano, E.; Lara, E.; Arbib, Z.; García-Encina, P.A.; Muñoz, R. Technology Validation of Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Algal-Bacterial Photobioreactor. Bioresour. Technol. 2019, 279, 43–49. [Google Scholar] [CrossRef]
- Bose, A.; Lin, R.; Rajendran, K.; O’Shea, R.; Xia, A.; Murphy, J.D. How to Optimise Photosynthetic Biogas Upgrading: A Perspective on System Design and Microalgae Selection. Biotechnol. Adv. 2019, 37, 107444. [Google Scholar] [CrossRef]
- Prandini, J.M.; da Silva, M.L.B.; Mezzari, M.P.; Pirolli, M.; Michelon, W.; Soares, H.M. Enhancement of Nutrient Removal from Swine Wastewater Digestate Coupled to Biogas Purification by Microalgae scenedesmus Spp. Bioresour. Technol. 2016, 202, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Rodero, M.D.R.; Carvajal, A.; Arbib, Z.; Lara, E.; de Prada, C.; Lebrero, R.; Muñoz, R. Performance Evaluation of a Control Strategy for Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Photobioreactor. Bioresour. Technol. 2020, 307, 123207. [Google Scholar] [CrossRef] [PubMed]
- Rocher-Rivas, R.; González-Sánchez, A.; Ulloa-Mercado, G.; Muñoz, R.; Quijano, G. Biogas Desulfurization and Calorific Value Enhancement in Compact H2S/CO2 Absorption Units Coupled to a Photobioreactor. J. Environ. Chem. Eng. 2022, 10, 108336. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Integration of Anaerobic Digestion and Microalgal Cultivation for Digestate Bioremediation and Biogas Upgrading. Bioresour. Technol. 2019, 290, 121804. [Google Scholar] [CrossRef] [PubMed]
- Marín, D.; Méndez, L.; Suero, I.; Díaz, I.; Blanco, S.; Fdz-Polanco, M.; Muñoz, R. Anaerobic Digestion of Food Waste Coupled with Biogas Upgrading in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. Fuel 2022, 324, 124554. [Google Scholar] [CrossRef]
- Méndez, L.; García, D.; Perez, E.; Blanco, S.; Muñoz, R. Photosynthetic Upgrading of Biogas from Anaerobic Digestion of Mixed Sludge in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. J. Water Process Eng. 2022, 48, 102891. [Google Scholar] [CrossRef]
- Ángeles, R.; Vega-Quiel, M.J.; Batista, A.; Fernández-Ramos, O.; Lebrero, R.; Muñoz, R. Influence of Biogas Supply Regime on Photosynthetic Biogas Upgrading Performance in an Enclosed Algal-Bacterial Photobioreactor. Algal Res. 2021, 57, 102350. [Google Scholar] [CrossRef]
- González-Sánchez, A.; Posten, C. Fate of H2S during the Cultivation of Chlorella sp. Deployed for Biogas Upgrading. J. Environ. Manag. 2017, 191, 252–257. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Serejo, M.L.; Blanco, S.; Pérez, R.; Lebrero, R.; Muñoz, R. Photosynthetic Biogas Upgrading to Bio-Methane: Boosting Nutrient Recovery via Biomass Productivity Control. Algal Res. 2016, 17, 46–52. [Google Scholar] [CrossRef]
- Xu, M.; Xue, Z.; Sun, S.; Zhao, C.; Liu, J.; Liu, J.; Zhao, Y. Co-Culturing Microalgae with Endophytic Bacteria Increases Nutrient Removal Efficiency for Biogas Purification. Bioresour. Technol. 2020, 314, 123766. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, B.; Zhao, C.; Liu, J.; Zhao, Y.; Sun, S.; Wei, J. Simultaneous Biogas Upgrading and Biogas Slurry Treatment by Different Microalgae-Based Technologies under Various Strigolactone Analog (GR24) Concentrations. Bioresour. Technol. 2022, 351, 127033. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. Design, Commissioning, and Performance Assessment of a Lab-Scale Bubble Column Reactor for Photosynthetic Biogas Upgrading with Spirulina platensis. Ind Eng Chem Res 2021, 60, 5688–5704. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.; Ishika, T.; Nwoba, E.G.; Tait, S.; Ward, A.; Moheimani, N.R. Biomass Production of Marine Microalga Tetraselmis suecica Using Biogas and Wastewater as Nutrients. Biomass Bioenergy 2021, 145, 105945. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Alcántara, C.; Noyola, A.; Muñoz, R.; González-Sánchez, A. A Study of Photosynthetic Biogas Upgrading Based on a High Rate Algal Pond under Alkaline Conditions: Influence of the Illumination Regime. Sci. Total Environ. 2017, 592, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Browne, J.D.; Murphy, J.D. What Is the Level of Incentivisation Required for Biomethane Upgrading Technologies with Carbon Capture and Reuse? Renew. Energy 2019, 133, 951–963. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Toledo-Cervantes, A.; González-Sánchez, A.; Lebrero, R.; Muñoz, R. Integral (VOCs, CO2, Mercaptans and H2S) Photosynthetic Biogas Upgrading Using Innovative Biogas and Digestate Supply Strategies. Chem. Eng. J. 2018, 354, 363–369. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Liu, J.; Zhao, C.; Sun, S.; Zhao, Y. Biogas Slurry Nutrient Removal and Biogas Upgrade in Co-Cultivated Microalgae and Fungi by Induction with Strigolactone. Algal Res. 2021, 59, 102467. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, C.; Liu, J.; Sun, S.; Zhao, Y.; Wei, J. Effects of Exogenous GR24 on Biogas Upgrading and Nutrient Removal by Co-Culturing Microalgae with Fungi under Mixed LED Light Wavelengths. Chemosphere 2021, 281, 130791. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, G.; Sun, S.; Hu, C.; Liu, J. Co-Pelletization of Microalgae and Fungi for Efficient Nutrient Purification and Biogas Upgrading. Bioresour. Technol. 2019, 289, 121656. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Toledo-Cervantes, A.; de Godos, I.; Gouveia, L.; Munõz, R. Life Cycle Assessment of Pilot and Real Scale Photosynthetic Biogas Upgrading Units. Algal Res. 2019, 44, 101668. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Long, A.; Rajendran, K.; Wall, D.; De, S.; Murphy, J.D. The Marginal Abatement Cost of Co-Producing Biomethane, Food and Biofertiliser in a Circular Economy System. Renew. Sustain. Energy Rev. 2022, 169, 112946. [Google Scholar] [CrossRef]
- Morais, E.G.D.; Amaro Marques, J.C.; Cerqueira, P.R.; Dimas, C.; Sousa, V.S.; Gomes, N.; Ribau Teixeira, M.; Nunes, L.M.; Varela, J.; Barreira, L. Tertiary Urban Wastewater Treatment with Microalgae Natural Consortia in Novel Pilot Photobioreactors. J. Clean. Prod. 2022, 378, 134521. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Acién-Fernández, F.G.; Gómez-Serrano, C.; González-López, C.V. Annual Production of Microalgae in Wastewater Using Pilot-Scale Thin-Layer Cascade Photobioreactors. J. Appl. Phycol. 2021, 33, 3861–3871. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Koutra, E.; Kornaros, M.; Farhadian, O.; Bhatnagar, A. Sequential Cultivation of Microalgae in Raw and Recycled Dairy Wastewater: Microalgal Growth, Wastewater Treatment and Biochemical Composition. Bioresour. Technol. 2019, 273, 556–564. [Google Scholar] [CrossRef]
- Malibari, R.; Sayegh, F.; Elazzazy, A.M.; Baeshen, M.N.; Dourou, M.; Aggelis, G. Reuse of Shrimp Farm Wastewater as Growth Medium for Marine Microalgae Isolated from Red Sea—Jeddah. J. Clean. Prod. 2018, 198, 160–169. [Google Scholar] [CrossRef]
- Morais, M.G.; Santos, T.D.; Moraes, L.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Exopolysaccharides from Microalgae: Production in a Biorefinery Framework and Potential Applications. Bioresour. Technol. Rep. 2022, 18, 101006. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Swaminathan, M.K.; Boelen, P.; Buma, A.G.J. Sulfated Exopolysaccharide Production and Nutrient Removal by the Marine Diatom Phaeodactylum tricornutum Growing on Palm Oil Mill Effluent. J. Appl. Phycol. 2019, 31, 2335–2348. [Google Scholar] [CrossRef]
- Jung, S.-H.; Zell, N.; Boßle, F.; Teipel, U.; Rauh, C.; McHardy, C.; Lindenberger, C. Influence of Process Operation on the Production of Exopolysaccharides in Arthrospira platensis and Chlamydomonas asymmetrica. Front. Sustain. Food Syst. 2022, 6, 883069. [Google Scholar] [CrossRef]
- ONU United Nations Organization. The Millennium Development Goals Report; ONU United Nations Organization: New York, NY, USA, 2015. [Google Scholar]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current Advances in Microalgae-Based Bioremediation and Other Technologies for Emerging Contaminants Treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef]
- Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae Water Bioremediation: Trends and Hot Topics. Appl. Sci. 2020, 10, 1886. [Google Scholar] [CrossRef]
- Xiong, J.; Kurade, M.B.; Jeon, B. Can Microalgae Remove Pharmaceutical Contaminants from Water ? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ying, G.; Yang, B.; Liu, S.; Lai, H.; Liu, Y.; Chen, Z.; Zhou, G. Biotransformation of Progesterone and Norgestrel by Two Freshwater Microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation Kinetics and Products Identification. Chemosphere 2014, 95, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Kurade, M.B.; Abou-shanab, R.A.I.; Ji, M.; Choi, J.; Oh, J.; Jeon, B. Biodegradation of Carbamazepine Using Freshwater Microalgae Chlamydomonas Mexicana and Scenedesmus Obliquus and the Determination of Its Metabolic Fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Sforza, E.; Pastore, M.; Santeufemia Sanchez, S.; Bertucco, A. Bioaugmentation as a Strategy to Enhance Nutrient Removal: Symbiosis between Chlorella protothecoides and Brevundimonas diminuta. Bioresour. Technol. Rep. 2018, 4, 153–158. [Google Scholar] [CrossRef]
- Mehariya, S.; Kumar, R.; Parthiba, O.; Verma, P. Chemosphere Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef]
- Mendonça, H.V.D.; Assemany, P.; Abreu, M.; Couto, E.; Maciel, A.M.; Duarte, R.L.; Santos, M.G.B.D.; Reis, A. Microalgae in a Global World: New Solutions for Old Problems? Renew. Energy 2021, 165, 842–862. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.H. Microalgae as a Solution of Third World Energy Crisis for Biofuels Production from Wastewater toward Carbon Neutrality: An Updated Review. Chemosphere 2022, 291, 132863. [Google Scholar] [CrossRef]
- Costa, S.S.; Miranda, A.L.; de Morais, M.G.; Costa, J.A.V.; Druzian, J.I. Microalgae as Source of Polyhydroxyalkanoates (PHAs)—A Review. Int. J. Biol. Macromol. 2019, 131, 536–547. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.D.S.; Oliveira, P.Z.D.; Bittencourt, G.A.; Mello, A.F.M.D.; Sarmiento, Z.; Vásquez; Karp, S.G.; Soccol, C.R. The 2G and 3G Bioplastics: An Overview. Biotechnol. Res. Innov. 2021, 5, e2021004. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent Advances in the Sustainable Design and Applications of Biodegradable Polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef]
- Zeller, M.A.; Hunt, R.; Jones, A.; Sharma, S. Bioplastics and Their Thermoplastic Blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci. 2013, 130, 3263–3275. [Google Scholar] [CrossRef]
- Kartik, A.; Akhil, D.; Lakshmi, D.; Panchamoorthy Gopinath, K.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A Critical Review on Production of Biopolymers from Algae Biomass and Their Applications. Bioresour. Technol. 2021, 329, 124868. [Google Scholar] [CrossRef] [PubMed]
- Noreen, A.; Zia, K.M.; Zuber, M.; Ali, M.; Mujahid, M. A Critical Review of Algal Biomass: A Versatile Platform of Bio-Based Polyesters from Renewable Resources. Int. J. Biol. Macromol. 2016, 86, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Kaparapu, J. Polyhydroxyalkanoate (PHA) Production by Genetically Engineered Microalgae: A Review. J. New Biol. Rep. 2018, 7, 68–73. [Google Scholar]
- Pérez, J.P.; Munoz, A.A.; Figuero, C.P.; Agurto-Munoz, C. Current Analytical Techniques for the Characterization of Lipophilic Bioactive Compounds from Microalgae Extracts. Biomass Bioenergy 2021, 149, 106078. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I. Progress in Physicochemical Parameters of Microalgae Cultivation for Biofuel Production. Crit. Rev. Biotechnol. 2019, 39, 835–859. [Google Scholar] [CrossRef]
- Milano, J.; Ong, H.C.; Masjuki, H.H.; Chong, W.T.; Lam, M.K.; Loh, P.K.; Vellayan, V. Microalgaebiofuelsasanalternativetofossilfuelforpowergeneration. Renew. Sustain. Energy Rev. 2016, 58, 180–197. [Google Scholar] [CrossRef]
- Nethravathy, M.U.; Mehar, J.G.; Mudliar, S.N.; Shekh, A.Y. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar] [CrossRef]
- Gong, M.; Bassi, A. Carotenoids from Microalgae: A Review of Recent Developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef]
- Di Chen, Y.; Liu, F.; Ren, N.Q.; Ho, S.H. Revolutions in Algal Biochar for Different Applications: State-of-the-Art Techniques and Future Scenarios. Chin. Chem. Lett. 2020, 31, 2591–2602. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological Remediation of Acid Mine Drainage: Review of Past Trends and Current Outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Donepudi, J.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Kuppam, C. Production of Biofuels from Microalgae—A Review on Cultivation, Harvesting, Lipid Extraction, and Numerous Applications of Microalgae. Renew. Sustain. Energy Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from Microalgae: Technologies, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Narindri Rara Winayu, B.; Tung Lai, K.; Ta Hsueh, H.; Chu, H. Production of Phycobiliprotein and Carotenoid by Efficient Extraction from Thermosynechococcus sp. CL-1 Cultivation in Swine Wastewater. Bioresour. Technol. 2021, 319, 124125. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae Biotechnology for Industrial Wastewater Treatment, Bioenergy Production, and High-Value Bioproducts. Sci. Total Environ. 2022, 806, 150585. [Google Scholar] [CrossRef]
- Thangam, K.R.; Santhiya, A.; Sri, S.R.A.; MubarakAli, D.; Karthikumar, S.; Kumar, R.S.; Thajuddin, N.; Soosai, M.R.; Varalakshmi, P.; Moorthy, I.G.; et al. Bio-Refinery Approaches Based Concomitant Microalgal Biofuel Production and Wastewater Treatment. Sci. Total Environ. 2021, 785, 147267. [Google Scholar] [CrossRef]
- Baldev, E.; Mubarak, D.; Pugazhendhi, A.; Thajuddin, N. Wastewater as an Economical and Ecofriendly Green Medium for Microalgal Biofuel Production. Fuel 2021, 294, 120484. [Google Scholar] [CrossRef]
- Vieira, H.; Mendonça, D.; Henrique, M.; Marchão, L.; Lomeu, A.; Salvador, D.; Souza, D.; Reis, A. Science of the Total Environment Biofuel Recovery from Microalgae Biomass Grown in Dairy Wastewater Treated with Activated Sludge: The next Step in Sustainable Production. Sci. Total Environ. 2022, 824, 153838. [Google Scholar]
- Cardoso, L.G.; Duarte, J.H.; Andrade, B.B.; Lemos, P.V.F.; Costa, J.A.V.; Druzian, J.I.; Chinalia, F.A. Spirulina sp. LEB 18 Cultivation in Outdoor Pilot Scale Using Aquaculture Wastewater: High Biomass, Carotenoid, Lipid and Carbohydrate Production. Aquaculture 2020, 525, 735272. [Google Scholar] [CrossRef]
- Bhuyar, P.; Sundararaju, S.; Rahim, M.H.A.; Ramaraj, R.; Maniam, G.P.; Govindan, N. Microalgae Cultivation Using Palm Oil Mill Effluent as Growth Medium for Lipid Production with the Effect of CO2 Supply and Light Intensity. Biomass Convers. Biorefin. 2021, 11, 1555–1563. [Google Scholar] [CrossRef]
- Kavitha, G.; Kurinjimalar, C.; Sivakumar, K.; Kaarthik, M.; Aravind, R.; Palani, P.; Rengasamy, R. Optimization of Polyhydroxybutyrate Production Utilizing Waste Water as Nutrient Source by Botryococcus braunii Kütz Using Response Surface Methodology. Int. J. Biol. Macromol. 2016, 93, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Fernández, F.G.A.; Reis, A.; Wijffels, R.H.; Barbosa, M.; Verdelho, V.; Llamas, B. The Role of Microalgae in the Bioeconomy. New Biotechnol. 2021, 61, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Banu, R.J.; Preethi; Kavitha, S.; Gunasekaran, M.; Kumar, G. Microalgae Based Biorefinery Promoting Circular Bioeconomy-Techno Economic and Life-Cycle Analysis. Bioresour. Technol. 2020, 302, 122822. [Google Scholar] [CrossRef]
- Monari, C.; Righi, S.; Olsen, S.I. Greenhouse Gas Emissions and Energy Balance of Biodiesel Production from Microalgae Cultivated in Photobioreactors in Denmark: A Life-Cycle Modeling. J. Clean. Prod. 2016, 112, 4084–4092. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-Economic Analysis of Autotrophic Microalgae for Fuel Production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Thomassen, G.; Egiguren Vila, U.; Van Dael, M.; Lemmens, B.; Van Passel, S. A Techno-Economic Assessment of an Algal-Based Biorefinery. Clean Technol. Environ. Policy 2016, 18, 1849–1862. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Based Livestock Wastewater Treatment (MbWT) as a Circular Bioeconomy Approach: Enhancement of Biomass Productivity, Pollutant Removal and High-Value Compound Production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Silva-Núñez, A.; García-Perez, J.S.; Carrillo-Nieves, D.; Salinas-Salazar, C.; Castillo-Zacarías, C.; Afewerki, S.; Barceló, D.; Iqbal, H.N.M.; Parra-Saldívar, R. Phyco-Remediation of Swine Wastewater as a Sustainable Model Based on Circular Economy. J. Environ. Manag. 2021, 278, 111534. [Google Scholar] [CrossRef]
- Ciardi, M.; Gómez-Serrano, C.; Lafarga, T.; González-Céspedes, A.; Acién, G.; López-Segura, J.G.; Fernández-Sevilla, J.M. Pilot-Scale Annual Production of Scenedesmus almeriensis Using Diluted Pig Slurry as the Nutrient Source: Reduction of Water Losses in Thin-Layer Cascade Reactors. J. Clean. Prod. 2022, 359, 132076. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Gutiérrez, R.; Uggetti, E.; Matamoros, V.; García, J.; Ferrer, I. Use of Full-Scale Hybrid Horizontal Tubular Photobioreactors to Process Agricultural Runoff. Biosyst. Eng. 2018, 166, 138–149. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-Based Biorefineries for Sustainable Resource Recovery from Wastewater. J. Water Process Eng. 2021, 40, 101747. [Google Scholar] [CrossRef]


| Parameter | SV | POME | CPW | AW | DW |
|---|---|---|---|---|---|
| pH | 4.3–7.9 | 7.64–7.8 | 7.5 | 6.9 | 6.8–7.5 |
| COD (gO2 L−1) | 4.9–33.16 | 2.57–6.4 | 0.235 | 0.303 ± 0.114 | 0.4–0.98 |
| Total suspended solids (g L−1) | 1.62–3.45 | 2.5 | 0.1–0.13 | ||
| Total solid (g L−1) | 3.4 | - | |||
| Total nitrogen (g L−1) | 0.49–3.56 | 0.25–0.34 | - | 0.022–0.051 | |
| Total phosphorus (mg L−1) | - | 0.11–0.24 | - | 8.6 | |
| NO3− (mg L−1) | 298 | - | 0.6 | 140 | |
| PO43− (mg L−1) | 34 | - | 90 ± 8 | ||
| NH4+ (mg L−1) | 0.126 | 222 ±12 | |||
| References | [162,163] | [149,164] | [57] | [20] |
| Biological Treatment | Biogas Content | CO2 Removal (%) | H2S Removal (%) | Reference | |||
|---|---|---|---|---|---|---|---|
| Inflow (%) | Outflow (%) | ||||||
| CH4 | CO2 | H2S | CH4 | ||||
| Microalgae and bacteria consortium | 69.5 | 30 | 0.5 | 71 | 88 | 100 | [200] |
| Microalgae and bacteria consortium | 69.2 | 32.7 | 0.12 | 87 | 71 | 99 | [202] |
| Microalgae consortium (predominantly Scenedesmus sp.) | 68.7 | 21.6 | 0.012 | 50.4 | 95 | 99.8 | [204] |
| Microalgae and bacteria consortium | 70.5 | 31.5 | 0.0005 | 97.3 | 93 | 100 | [205] |
| Microalgae consortium (predominantly Acutodesmus deserticola) | 60 | 39.5 | 0.5 | 68.8 | 20 | 100 | [206] |
| Microalgae consortium (predominantly Pseudoanabaena sp. and Chlorella vulgaris) | 60 | 38.7 | n.d. | 93.9 | 90 | n.a. | [208] |
| Product | Type of Effluent | Microorganism | Production/Yield | Reference |
|---|---|---|---|---|
| Allophycocyanin | Swine wastewater | Thermosynechococcus sp. CL-1 | 12,07 ± 0,3% dwc | [259] |
| Algal biomass | Dairy effluent | Chlorella vulgaris | 0.175 mg L−1 day−1 | [260] |
| Biomass for bioethanol production | Domestic wastewater | Scenedesmus sp. | Maximum biomass productivity: 62 mg L−1 day−1 | [261] |
| Biomass for bioethanol production | Domestic wastewaters | Scenedesmus sp. | Biomass 0.84 g L−1; lipid productivity 8.6 mg L−1 day−1 | [262] |
| Biomass for bioethanol production | Dairy wastewater | Scenedesmus obliquus and Chlorella vulgaris | Dry biomass produced was in the range of 2.30 to 3.10 g L−1; yields for lipids 0.068 g L−1 day−1 and carbohydrates 0.114 g L−1 day−1 | [263] |
| Biomass for biodiesel production | Cheese whey wastewater | Chlorella pyrenoidosa | Maximum algal biomass yield: 2.44 g L−1; Lipid productivity: 77.41 mg L−1 day−1, | [143] |
| Carotenoids | Aquaculture effluent | Spirulina sp. LEB 18 | 9.68 μg mL−1 | [264] |
| Lipid | Aquaculture wastewater | Microalgal consortium of Euglena gracilis and Selena strum | 84.9 mg L−1 | [260] |
| Lipid | Dairy effluent | Arthrospira platensis | 158 mg L−1 day−1 | [260] |
| Lipid | Dairy effluent | Scenedesmus sp. ASK22 | 30.7% content | [260] |
| Lipid | Molasses wastewater | 92.33% content | [260] | |
| Lipids | POME wastewater | Chlorella sp. | 66% | [265] |
| PHB | Sewage wastewater | Botryococcus braunii | 247 mg L−1 of PHB | [266] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, J.C.; Molina-Aulestia, D.T.; Martinez-Burgos, W.J.; Karp, S.G.; Manzoki, M.C.; Medeiros, A.B.P.; Rodrigues, C.; Scapini, T.; Vandenberghe, L.P.d.S.; Vieira, S.; et al. Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation 2022, 8, 728. https://doi.org/10.3390/fermentation8120728
de Carvalho JC, Molina-Aulestia DT, Martinez-Burgos WJ, Karp SG, Manzoki MC, Medeiros ABP, Rodrigues C, Scapini T, Vandenberghe LPdS, Vieira S, et al. Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation. 2022; 8(12):728. https://doi.org/10.3390/fermentation8120728
Chicago/Turabian Stylede Carvalho, Júlio Cesar, Denisse Tatiana Molina-Aulestia, Walter José Martinez-Burgos, Susan Grace Karp, Maria Clara Manzoki, Adriane Bianchi Pedroni Medeiros, Cristine Rodrigues, Thamarys Scapini, Luciana Porto de Souza Vandenberghe, Sabrina Vieira, and et al. 2022. "Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy" Fermentation 8, no. 12: 728. https://doi.org/10.3390/fermentation8120728
APA Stylede Carvalho, J. C., Molina-Aulestia, D. T., Martinez-Burgos, W. J., Karp, S. G., Manzoki, M. C., Medeiros, A. B. P., Rodrigues, C., Scapini, T., Vandenberghe, L. P. d. S., Vieira, S., Woiciechowski, A. L., Soccol, V. T., & Soccol, C. R. (2022). Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation, 8(12), 728. https://doi.org/10.3390/fermentation8120728

