Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Medium
2.2. Fermentation Medium with Different Adding Substrates
2.3. Fermentation Conditions
2.4. Assay of PMLA Production and Fermentation Parameters
2.5. Machine Learning Analysis
3. Results and Discussion
3.1. Overall Data Analysis
3.2. The Correlation Analysis of Different Substrates Concentration and Different Secondary Indexes on PMLA Production
3.3. Evaluation of Single Substrates Addition on PMLA
3.4. Prediction of Final PMLA Production Based on Different Substrates
3.5. Prediction of PMLA Production Based on Secondary Indexes
3.6. PMLA Fermentation Medium Image Identification Based on Convolutional Neuron Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Holler, E.; Angerer, B.; Achhammer, G.; Miller, S.; Windisch, C. Biological and biosynthetic properties of poly-L-malate. FEMS Microbiol. Rev. 1992, 9, 109–118. [Google Scholar] [CrossRef]
- Chi, Z.; Liu, G.L.; Liu, C.G.; Chi, Z.M. Poly(β-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl. Microbiol. Biotechnol. 2016, 100, 3841–3851. [Google Scholar] [CrossRef] [PubMed]
- Loyer, P.; Cammas-Marion, S. Natural and synthetic poly(malic acid)-based derivates: A family of versatile biopolymers for the design of drug nanocarriers. J. Drug Target. 2014, 22, 556–575. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Hou, Y.; Zhang, L.; Wang, J.; Qiao, Y.; Guo, S.; Fan, L.; Yang, T.; Zhu, L.; Wu, H. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity. Theranostics 2017, 7, 1806–1819. [Google Scholar] [CrossRef] [Green Version]
- Portilla-Arias, J.A.; García-Alvarez, M.; Galbis, J.A.; Muñoz-Guerra, S. Biodegradable Nanoparticles of Partially Methylated Fungal Poly(β-L-malic acid) as a Novel Protein Delivery Carrier. Macromol. Biosci. 2008, 8, 551–559. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, Y.; Yang, S.T. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol. Bioeng. 2013, 110, 2105–2113. [Google Scholar] [CrossRef]
- Zou, X.; Cheng, C.; Feng, J.; Song, X.; Lin, M.; Yang, S.T. Biosynthesis of polymalic acid in fermentation: Advances and prospects for industrial application. Crit. Rev. Biotechnol. 2019, 39, 408–421. [Google Scholar] [CrossRef]
- Vert, M. Chemical routes to poly (β-malic acid) and potential applications of this water-soluble bioresorbable poly (β-hydroxy alkanoate). Polym. Degrad. Stab. 1998, 59, 169–175. [Google Scholar] [CrossRef]
- Kajiyama, T.; Kobayashi, H.; Taguchi, T.; Saito, H.; Kamatsu, Y.; Kataoka, K.; Tanaka, J. Synthesis of activated poly(α,β-malic acid) using N-hydroxysuccinimide and its gelation with collagen as biomaterials. Mater. Sci. Eng. C 2004, 24, 815–819. [Google Scholar] [CrossRef]
- Portilla-Arias, J.A.; García-Alvarez, M.; de Ilarduya, A.M.; Holler, E.; Galbis, J.A.; Muñoz-Guerra, S. Synthesis, Degradability, and Drug Releasing Properties of Methyl Esters of Fungal Poly(β, L-malic acid). Macromol. Biosci. 2008, 8, 540–550. [Google Scholar] [CrossRef]
- Li, Y.; Chi, Z.; Wang, G.-Y.; Wang, Z.-P.; Liu, G.-L.; Lee, C.-F.; Ma, Z.-C.; Chi, Z.-M. Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit. Rev. Microbiol. 2015, 41, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yin, H.; Zhao, T.; Yang, D.; Jia, S.; Qiao, C. De novo transcriptome assembly of Aureobasidium melanogenum CGMCC18996 to analyze the β-poly (L-malic acid) biosynthesis pathway under the CaCO3 addition. Food Sci. Hum. Wellness 2023, 12, 1248–1256. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Zhang, Y.; Wang, B.; Zou, X. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb. Cell Factories 2016, 15, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Liu, B.; Luo, J.; Cao, W.; Qiao, C.; Wan, Y. Toward understanding the key enzymes involved in β-poly (L-malic acid) biosynthesis by Aureobasidium pullulans ipe-1. Eng. Life Sci. 2018, 18, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Wang, G.Y.; Liu, G.L.; Wang, Z.P.; Chi, Z.M. Overproduction of poly (β-malic acid)(PMA) from glucose by a novel Aureobasidium sp. P6 strain isolated from mangrove system. Appl. Microbiol. Biotechnol. 2013, 97, 8931–8939. [Google Scholar] [CrossRef]
- Cao, W.; Luo, J.; Zhao, J.; Qiao, C.; Ding, L.; Qi, B.; Su, Y.; Wan, Y. Intensification of β-poly(L-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J. Ind. Microbiol. Biotechnol. 2012, 39, 1073–1080. [Google Scholar] [CrossRef]
- Cao, W.; Qi, B.; Zhao, J.; Qiao, C.; Su, Y.; Wan, Y. Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing β-poly (malic acid) production by Aureobasidium pullulans ipe-1. J. Chem. Technol. Biotechnol. 2013, 88, 808–817. [Google Scholar] [CrossRef]
- Tu, G.; Wang, Y.; Ji, Y.; Zou, X. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J. Microbiol. Biotechnol. 2015, 31, 219–226. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gupta, A. Webly Supervised Learning of Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–15 December 2015; pp. 1431–1439. [Google Scholar]
- Dhruv, P.; Naskar, S. Image Classification Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review. In Machine Learning and Information Processing; Swain, D., Pattnaik, P.K., Gupta, P.K., Eds.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Feizi, A.; Zhang, Y.; Greenbaum, A.; Guziak, A.; Luong, M.; Chan, R.Y.L.; Berg, B.; Ozkan, H.; Luo, W.; Wu, M.; et al. Yeast viability and concentration analysis using lens-free computational microscopy and machine learning. In Optics and Biophotonics in Low-Resource Settings III; Levitz, D., Ozcan, A., Erickson, D., Eds.; SPIE-International Society for Optics and Photonics: Washington, DC, USA, 2017; pp. 32–38. [Google Scholar]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Cao, W.; Luo, J.; Qi, B.; Zhao, J.; Qiao, C.; Ding, L.; Su, Y.; Wan, Y. β-poly (l-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars. Eng. Life Sci. 2014, 14, 180–189. [Google Scholar] [CrossRef]
- Cao, W.; Cao, W.; Shen, F.; Luo, J.; Yin, J.; Qiao, C.; Wan, Y. Membrane-assisted β-poly (L-malic acid) production from bagasse hydrolysates by Aureobasidium pullulans ipe-1. Bioresour. Technol. 2020, 295, 122260. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Shi, B.; Zhang, P.; Zhao, T.; Yin, H.; Qiao, C. Effects of corn steep liquor on β-poly(l-malic acid) production in Aureobasidium melanogenum. AMB Express 2020, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.K.; Jeong, S.W.; Yang, J.E.; Choi, Y.J. High-Yield Production of Lycopene from Corn Steep Liquor and Glycerol Using the Metabolically Engineered Deinococcus radiodurans R1 Strain. J. Agric. Food Chem. 2020, 68, 5147–5153. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, J.; Ma, Y.; Cai, L.; Zheng, L.; Gong, W.; Liu, Q.A. Corn Steep Liquor: Green Biological Resources for Bioindustry. Appl. Biochem. Biotechnol. 2022, 194, 3280–3295. [Google Scholar] [CrossRef]
- Fujino, T.; Kondo, J.; Ishikawa, M.; Morikawa, K.; Yamamoto, T.T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 2001, 276, 11420–11426. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Khanna, D.; Rana, P.S.; Khaibullin, T.; Martynova, E.; Rizvanov, A.A.; Khaiboullina, S.F.; Baranwal, M. Computational Intelligence Technique for Prediction of Multiple Sclerosis Based on Serum Cytokines. Front. Neurol. 2019, 10, 781. [Google Scholar] [CrossRef]
Substrate | Medium [Minimal, Maximal] | Average | S-W Test |
---|---|---|---|
Potassium acetate | 4.00 [0.00, 9.00] | 4.42 | 0.941 (0.000 ***) |
Corn steep liquor (CSL) | 5.00 [0.00, 9.00] | 4.79 | 0.925 (0.000 ***) |
betaine | 4.00 [0.00, 9.00] | 4.49 | 0.929 (0.000 ***) |
MnSO4 | 5.00 [0.00, 9.00] | 4.51 | 0.938 (0.000 ***) |
MgSO4 | 5.00 [0.00, 9.00] | 4.50 | 0.939 (0.000 ***) |
Vitamin B1 | 5.00 [0.00, 9.00] | 4.47 | 0.933 (0.000 ***) |
Vitamin B6 | 5.00 [0.00, 9.00] | 4.93 | 0.933 (0.000 ***) |
Nicotinamide | 5.00 [0.00, 9.00] | 4.74 | 0.927 (0.000 ***) |
pH | 6.08 [5.13, 6.95] | 6.04 | 0.797 (0.000 ***) |
Osmotic pressure (Pa) | 0.23 [0.12, 0.57] | 0.25 | 0.506 (0.000 ***) |
Biomass (g/L) | 53.5 [20.50, 94.50] | 57.00 | 0.553 (0.000 ***) |
Viscosity (mPa·s) | 36.25 [9.00, 100.50] | 40.39 | 0.897 (0.000 ***) |
Final PMLA production (g/L) | 34.96 [6.17, 61.87] | 35.61 | 0.987 (0.055 *) |
Substrate | Final PMLA Production | Biomass | Osmotic Pressure | Viscosity |
---|---|---|---|---|
Potassium acetate | 0.045 (0.513) | −0.042 (0.543) | 0.230 (0.001 ***) | 0.006 (0.932) |
Corn steep liquor | −0.624 (0.000 ***) | 0.055 (0.425) | −0.175 (0.011 **) | −0.406 (0.000 ***) |
Glycine betaine | −0.572 (0.000 ***) | −0.036 (0.606) | −0.198 (0.004 ***) | −0.171 (0.013 **) |
MnSO4 | −0.124 (0.072 *) | 0.262 (0.000 ***) | −0.028 (0.690) | −0.089 (0.197) |
MgSO4 | −0.049 (0.477) | −0.031 (0.658) | −0.096 (0.163) | −0.112 (0.102) |
Vitamin B1 | −0.293 (0.000 ***) | −0.065 (0.343) | −0.024 (0.733) | 0.107 (0.121) |
Vitamin B6 | −0.111 (0.108) | −0.001 (0.985) | 0.062 (0.372) | −0.052 (0.454) |
Nicotinamide | −0.241 (0.000 ***) | 0.034 (0.617) | 0.067 (0.328) | −0.101 (0.142) |
Secondary Indexes | PMLA Production |
---|---|
pH | 0.370 (0.000 ***) |
Osmotic pressure | 0.102 (0.139) |
Biomass | −0.067 (0.333) |
Viscosity | 0.346 (0.000 ***) |
Decision Tree | Random Forest | Bp Neuron Network | Support Vector Machine | |
---|---|---|---|---|
Training set MAE (g/L) | 1.475 | 2.21 | 4.215 | 4.367 |
Test set MAE (g/L) | 7.369 | 5.53 | 4.164 | 4.506 |
Decision Tree | Random Forest | Bp Neuron Network | Support Vector Machine | |
---|---|---|---|---|
Training set MAE (g/L) | 2.596 | 3.517 | 8.575 | 9.416 |
Test set MAE (g/L) | 9.634 | 6.556 | 7.414 | 8.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, J.; Wang, S.; Li, Y.; Chen, S.; Zhang, L.; Zhao, T.; Yin, H.; Jia, S.; Qiao, C. Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum. Fermentation 2022, 8, 729. https://doi.org/10.3390/fermentation8120729
Wang G, Li J, Wang S, Li Y, Chen S, Zhang L, Zhao T, Yin H, Jia S, Qiao C. Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum. Fermentation. 2022; 8(12):729. https://doi.org/10.3390/fermentation8120729
Chicago/Turabian StyleWang, Genan, Jiaqian Li, Shuxian Wang, Yutong Li, Shiwei Chen, Lina Zhang, Tingbin Zhao, Haisong Yin, Shiru Jia, and Changsheng Qiao. 2022. "Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum" Fermentation 8, no. 12: 729. https://doi.org/10.3390/fermentation8120729
APA StyleWang, G., Li, J., Wang, S., Li, Y., Chen, S., Zhang, L., Zhao, T., Yin, H., Jia, S., & Qiao, C. (2022). Using Machine Learning Methods to Predict the ß-Poly (L-Malic Acid) Production by Different Substrates Addition and Secondary Indexes in Strain Aureobasidium melanogenum. Fermentation, 8(12), 729. https://doi.org/10.3390/fermentation8120729