Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy
Abstract
:1. Introduction
2. Agro-Industrial Wastewaters Overview
Parameter | SV, Sugarcane Vinasse | POME, Palm Oil Mixed Effluent | CPW, Cassava Processing Wastewater | AW, Abattoir Wastewater | DW, Dairy Wastewater | AqW, Aquaculture Wastewater | |
---|---|---|---|---|---|---|---|
Main effluent characteristics | COD (gO2 L−1) | 27.7–299.5 | 22.65–85.71 | 1.4–141.3 | 190–12800 | 91.6–4000 | 6.1–165 |
BOD5 (gO2 L−1) | 5.04–47.63 | 34.71–52.67 | 1.96–44.6 | 53–2250 | 90–1814 | 8.5 | |
pH | 4.04–6.5 | 4.3–5.2 | 3.9–7.2 | 6.4–7.7 | 4.33–7.35 | 7–8.2 | |
Total solids (g L−1) | 7.5–36.6 | 47–64.6 | 5.4–92.9 | - | 10.8–9290 | - | |
Fixed solids (g L−1) | 0.27–14.16 | - | - | 2594 | - | ||
Volatile solids (g L−1) | 4.7–26.3 | 24.84–30.92 | 3.5 | - | - | - | |
Nutrients | Ammonia (mg L−1) | 18–118.1 | 77–101 | 61.53 | 6.5–532.3 | 53–115 | ≤0.1–6.25 |
TKN (mg L−1) | 122–540 | 180–1400 | 180 | 22–2209 | |||
Nitrate (mg L−1) | 0,1–45.3 | 109–136 | 4 | 11.97–140 | 18.05 | 0.35–152.8 | |
Nitrite (mg L−1) | 0.1–0.4 | - | - | 13.7–54 | 0.398 | 0.3–24.7 | |
Sulfate(mg L−1) | 669–3070 | - | 63.77 | 12.63–500 | 17 | 420.6 | |
Phosphorus (mg L−1) | 44–232 | 109–136 | 0.4 -3000 | 7–108 | 11.6–3055 | 16.1 | |
Magnesium (mg L−1) | 343–616 | 279–296 | 17.68–43.08 | 18.64 | 18 | 39.6–49.75 | |
Calcium (mg L−1) | 344–609 | 282–290 | 18.41–86.49 | 4.9–67 | 129 | 168.9–118 | |
Potassium (mg L−1) | 1542–3652 | 1696–2043 | 15.92–435.75 | 8.1–90 | - | 195.1 | |
Sodium (mg L−1) | 27–57 | 94–113 | 16.42–17.68 | 621 | - | 246.4 | |
Fluoride(mg L−1) | 0.14–0.44 | - | - | - | |||
Chloride (mg L−1) | 209–3548 | 94–113 | 52 | 352 | 1204 | 147.3 | |
Metals | Aluminum (mg L−1) | 1.13–11.9 | - | 1.12 | - | - | - |
Barium (mg L−1) | 0.23–0.56 | - | - | - | - | - | |
Cadmium (mg L−1) | 0.08–0.027 | 0.01–0.02 | - | 0.009 | - | - | |
Arsenic (mg L−1) | 0.098–0,14 | - | - | - | - | - | |
Chrome (mg L−1) | 0.028–0.084 | 0.05–0.43 | - | - | - | - | |
Cobalt (mg L−1) | 0.011–0.035 | 0.04–0.06 | - | - | - | - | |
Copper (mg L−1) | 0.19–1.16 | 0.8–1.6 | 3.26 | - | - | - | |
Iron (mg L−1) | 5.8–18.6 | 65–164 | 72,65 | 0.9–21 | - | - | |
Lead (mg L−1) | 0.01–0.59 | 0.72 | 0.5–4 | - | - | ||
Manganese (mg L−1) | 1.04–4.62 | 2.1–4.4 | 3.3 | - | - | - | |
Mercury (mg L−1) | 0.01 | - | - | - | - | - | |
Molybdenum (mg L−1) | 0.016–0.066 | - | - | - | - | - | |
Nickel (mg L−1) | 0.038–0.12 | 0.1–3.6 | - | - | - | - | |
Selenium (mg L−1) | 0.02–0.076 | - | - | - | - | ||
Zinc (mg L−1) | 0.2–1.19 | 1.2–2.72 | 25,11 | 0.178 | - | - | |
Compounds | Lipids (g L−1) | - | 8.81–37.88 | - | - | 34.217 | - |
Glycerol (mg L−1) | 3333 | - | - | - | - | - | |
Reducing sugar (mg L−1) | - | 228–236 | 1300 | - | - | - | |
Cyanide (mg L−1) | - | - | 46,75 | - | - | - | |
References | [40,44] | [48,49,50] | [51,52,53] | [28,29,30,31,54,55,56,57] | [58,59,60,61,62] | [63,64,65,66,67] |
3. Direct Microalgae Cultivation in Residues—Description and Examples
3.1. Vinasse
3.2. POME, Palm Oil Mixed Effluent
3.3. CPW, Cassava Processing Wastewater
3.4. Abattoir Wastewaters
3.5. Dairy Processing Wastewater
3.6. Aquaculture Wastewater
Agro-Industrial Effluent | Microalgae | Medium Additives | Productivity (g L−1 day−1) | Biomass (g L−1) | COD Reduction (%) | BOD Reduction (%) | Bio-Products | Reference |
---|---|---|---|---|---|---|---|---|
Vinasse | Chlorella vulgaris | 10% saline medium is composed by (g L−1):(0.25) Mg (NO3)2·6H2O; (0.025) CaCl2·2H2O; (0.0075) MgSO4·7H2O; (0.015) KH2PO4 (0.0025) NaCl and 1 mL L−1 of trace elements. 540 mg L−1 oxytetracycline 450 mg L−1 of ampicillin | 2.1 | 10.5 | 49.1 | 70.0 | Biomass | [114] |
Vinasse | Scenedesmus bajacalifornicus | - | 0.325 | 3.9 | 51.9 | 60.3 | Biomass | [115] |
Vinasse | Desmodesmus subspicatus | - | 1.450 | 2.9 | 66 (TOC*) | - | Biomass | [116] |
Vinasse | Arthrospira maxima | 70% water | 0.150 | 2.25 | 81 | 89.2 | Peptide fractions (57% of proteins in biomass) | [117] |
Vinasse | Desmodesmus sp. | - | 2.426 | 4.0 | 36.2 | - | Biomass | [118] |
Vinasse | Chlorella vulgaris | - | 0.073 | 2.7 | 15.6 | - | Biomass(10% of lipids in biomass) | [119] |
Vinasse | Scenedesmus sp. | - | 0.055 | 1.06 | 41.5 | - | Biomass | [82] |
Slaughterhouse | Chlorella vulgaris | - | 0.575 | 1.15 | 85 | - | Biomass | [120] |
Slaughterhouse | Chlorella vulgaris | - | 0.433 | 1.3 | 19.4 | - | Chlorophyll-a (6.8 mg L−1) | [121] |
Slaughterhouse | Chlorella vulgaris | - | 0.194 | 5.4 | 94 | 99 | Biomass | [99] |
Slaughterhouse | Tetradesmus obliquus | - | 0.234 | 6.6 | 96 | 99 | Biomass | [99] |
Slaughterhouse | Chlorella vulgaris | - | 0.424 | 1.2 | 81 | - | Biomass | [97] |
Slaughterhouse | Chlorella sp. and Scenedesmus sp. (1:1) | - | 0.033 | 0.231 | 13.4 | - | Biomass | [57] |
Slaughterhouse | Chlorella sp. (Trebouxiophyceae) | 1% CO2 at a flow rate of 0.5 L min−1 | 0.030 | 0.18 | 49.4 | - | Biomass | [57] |
POME | Chlorella sorokiniana and Pseudomonas sp. (1:1) | 70% (v/v) water; 200 mg L−1 of glucose; 2.5% urea and glycerol 0.1 vvm CO2 aeration. | 0.409 | 5.74 | 93.7 | - | Lipids(14.43% of the biomass) | [122] |
POME | Scenedesmus sp. | - | 0.018 | 0.55 | 48 | - | Biomass | [86] |
POME | Chlorella pyrenoidosa | 75% (v/v) waterurea and TSP (2:1) | - | - | 90.42 | - | Lipids(36% of the biomass) | [123] |
POME | Arthrospira platensis | - | 0.032 | 0.19 | 15 | - | Biomass | [124] |
POME | Nannochloropsis sp. | 20% Walne’s medium | 0.05 | 0.7 | 47.5 | 47.2 | Lipids(45% of the biomass) | [125] |
POME | Chlorella sp. | 50% BBM | - | - | 57.6 | - | Biomass | [126] |
POME | Chlorophyceae (not identified) | 25% water | 0.047 | 0.7 | 89.6 | 99.4 | Biomass | [127] |
POME | Scenedesmus sp. | - | 0.027 | 0.8 | 60 | - | Biomass | [86] |
Cassava | Desmodesmus subspicatus LC172266 | 10% BBM 10% Trace elements solution | 0.041 | 0.63 | 89.04 | 85.85 | Lipids (21.40%) | [128] |
Cassava | Desmodesmus subspicatus LC172266 | 10% BBM 10% Trace elements solution | 0.07 | 1.04 | 51.39 | 62.22 | Lipids (24.70%) | [128] |
Cassava | Desmodesmus armatus | 10% BBM 10% Trace elements solution | 0.07 | 0.73 | 92 | 87 | Lipids | [94] |
Cassava | Chlorella sorokiniana | - | 0.021 | - | - | 90 | Biomass | [95] |
Cassava | Scenedesmus sp. | - | - | - | 72 | 74 | Lipids | [129] |
Cassava | Chlorella sorokiniana P21 | - | 0.48 | 2.11 | 88 | - | Biomass (58% lipid) | [130] |
Cassava | Chlorella sorokiniana P21 | - | 0.18 | 2.56 | 73.78 | - | Biomass | [130] |
Cassava | Chlorella sorokiniana WB1DG | - | 0.049 | 1.3 | 63.42 | - | Biomass | [130] |
Aquaculture | Tetraselmis suecica | 0.02g L−1 N 0.01g L−1 P | 0.068 | 0.9 | - | - | Biomass, carbohydrate (10.62%), lipids (25.06%) proteins (50.20%) | [63] |
Aquaculture | Chlorella vulgaris | - | - | - | 71 | 55.72 | - | [113] |
Aquaculture | Chlorella vulgaris | - | 0.465 | - | 98.10 | - | Biomass | Gao,2021 |
Aquaculture | Spirulina sp. | 25% Zarrouk medium | 0.2 | 1.1 | 90 | - | Biomass, protein (63.73%), phycocyanin (16.60 mg ml−1), polyunsaturated fatty acids (38.20%) and C18:3n6 (38.20%) | [131] |
Aquaculture | Chlorella sorokiniana | - | 0.353 | 4.02 | 71.88 | - | Biomass, Lipids, Protein, Carbohydrate | [132] |
Aquaculture | Ankistrodesmus falcatus | - | 0.16 | 2.25 | 61 | - | Biomass, Lipids, Protein, | [133] |
Aquaculture | Chlorella sorokiniana | - | 0.107 | 1.51 | 69 | - | Biomass, Lipids, Proteins | [133] |
Dairy | Chlorella sorokiniana | - | not show | 17 | 93 | - | Protein, lipids, biomass | [111] |
Dairy | Chlamydomonas polypyrenoideum | 25% water | not show | 7.7 | 55.7 | - | Lipids (42%) | [134] |
Dairy | Chlorella sp. | - | 0.000175 | 0.26 | 80.63 | - | Lipids | [109] |
Dairy | Chlorella sorokiniana SU-1 | - | 1.96 | 0.153 | 67.6 | - | Lipids | [20] |
Dairy | Chlorella sorokiniana | - | 1.667 | 0.108 | 57.17 | 56.95 | Biomass | [135] |
Dairy | Chlorella vulgaris | - | 0.42 | 0.02 | - | - | Lipids | [136] |
Dairy | Chlorella sp. T4 | 40% water | 0.0085 | 0.85 | 59.7 | - | Lipids | [137] |
Dairy | Chlorella vulgaris | 25% water | 0.225 | 2.43 | 81.48 | - | Lipids | [138] |
4. Anaerobic Digestion as Pretreatment and Energy Recovery Strategy
4.1. Anaerobic Digestion as a Pretreatment Step
4.2. Secondary Effluents Composition
5. CO2 Fixation and Biogas Upgrading
5.1. Microalgae Potential for Flue Gases Fixation
Microalgae | Wastewater | Flue Gases | CO2 Biofixation | Considerations | Reference | ||
---|---|---|---|---|---|---|---|
Origin | Composition | CO2 Content Injected | |||||
Chlorella sp. GD | Aquaculture | Natural gas | 8% CO2 57% NO | 8% CO2 | 2333 mg L−1 d−1 | Growth is higher when aerated with flue gas compared to equivalent pure CO2 | [179] |
Chlorella sp. L166 | Soybean processing | Simulated | n.a. | 5% CO2 | 25% | Diluted effluent (5x) and pure CO2 injection | [196] |
Chlorella vulgaris | Industrial wastewater (textile and food) | Coal-fired | 10% CO2 0.554% CO 61 ppm NO2 30 ppm SOx 9 ppm HC | 5% CO2 | 187.65 mg L−1 d−1 | Increased lipid and carbohydrate accumulation | [183] |
Phormidium valderianum BDU 20041 | Ossein effluent (Gelatin industry) | Coal-fired | 15% CO2 | 15% CO2 | 56.4 mg L−1 d−1 | High cell density to overcome metabolic stress | [197] |
Scenedesmus sp. UKM9 Chlorella sp. UKM2 | Palm oil mill effluent (POME) | Simulated | n.a. | 10% CO2 | 829 mg L−1 d−1 | Process conducted in two steps: effluent treatment and CO2 fixation | [184] |
5.2. Biogas Upgrading
6. Tertiary Liquid Residues Destination and Water Reuse
7. Fate of Xenobiotics and Heavy Metals
8. Microalgae Products
9. Circular Bioeconomy in Microalgal Production from Agro-Industrial Wastes
10. Process Development and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Show, P.L. Global Market and Economic Analysis of Microalgae Technology: Status and Perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef] [PubMed]
- Yellapu, S.K.; Klai, N.; Kaur, R.; Tyagi, R.D.; Surampalli, R.Y. Oleaginous Yeast Biomass Flocculation Using Bioflocculant Produced in Wastewater Sludge and Transesterification Using Petroleum Diesel as a Co-Solvent. Renew Energy 2019, 131, 217–228. [Google Scholar] [CrossRef]
- Carvalho, J.C.D.; Goyzueta-Mamani, L.D.; Molina-Aulestia, D.T.; Júnior, A.I.M.; Iwamoto, H.; Ambati, R.; Ravishankar, G.A.; Soccol, C.R. Microbial Astaxanthin Production from Agro-Industrial Wastes—Raw Materials, Processes, and Quality. Fermentation 2022, 8, 484. [Google Scholar] [CrossRef]
- Melo, J.M.; Ribeiro, M.R.; Telles, T.S.; Amaral, H.F.; Andrade, D.S. Microalgae Cultivation in Wastewater from Agricultural Industries to Benefit next Generation of Bioremediation: A Bibliometric Analysis. Environ. Sci. Pollut. Res. 2021, 29, 22708–22720. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Sydney, E.B.; Assú Tessari, L.F.; Soccol, C.R. Culture Media for Mass Production of Microalgae. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-Industrial Wastewater Reuse for Irrigation of a Vegetable Crop Succession under Mediterranean Conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Bittencourt Sydney, E.; Bianchi Pedroni Medeiros, A.; Magalhães, A.I.; de Carvalho, J.C.; Karp, S.G.; Porto de Souza Vandenberghe, L.; Junior Letti, L.A.; Thomaz Soccol, V.; de Melo Pereira, G.V.; et al. Agro-Industrial Wastewater in a Circular Economy: Characteristics, Impacts and Applications for Bioenergy and Biochemicals. Bioresour. Technol. 2021, 341, 125795. [Google Scholar] [CrossRef]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A Review on Agro-Industrial Waste (AIW) Derived Adsorbents for Water and Wastewater Treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef]
- Vieira, G.E.G.; Cardoso, A.D.S.; Marques, A.K.; Pickler, A. Assessment of the Potential of Residuary Microalgae from Stabilization Ponds for the Production of Biofuel. WIT Trans. State Art Sci. Eng. 2014, 83, 25–35. [Google Scholar] [CrossRef]
- Florentino, A.P.; Costa, M.C.; Nascimento, J.G.S.; Abdala-Neto, E.F.; Mota, C.R.; dos Santos, A.B. Identification of Microalgae from Waste Stabilization Ponds and Evaluation of Electroflotation by Alternate Current for Simultaneous Biomass Separation and Cell Disruption. Eng. Sanit. E Ambient. 2019, 24, 177–186. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT-Database; FAO: Rome, Italy. Available online: https://www.fao.org/faostat/ (accessed on 28 October 2022).
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, F.; Kuang, Y.; He, H.; Qin, A. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: A Review. Appl. Biochem. Biotechnol. 2016, 178, 1220–1238. [Google Scholar] [CrossRef]
- de Faria Ferreira Carraro, C.; Loures, C.C.A.; de Castro, J.A. Microalgae Technique for Bioremediation Treatment of Cassava Wastewater. Water Air Soil Pollut. 2021, 232, 281. [Google Scholar] [CrossRef]
- Sorgatto, V.G.; Soccol, C.R.; Molina-Aulestia, D.T.; de Carvalho, M.A.; de Melo Pereira, G.V.; de Carvalho, J.C. Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass. Fuels 2021, 2, 521–532. [Google Scholar] [CrossRef]
- de Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [Google Scholar] [CrossRef]
- Molina, D.; de Carvalho, J.C.; Júnior, A.I.M.; Faulds, C.; Bertrand, E.; Soccol, C.R. Biological Contamination and Its Chemical Control in Microalgal Mass Cultures. Appl. Microbiol. Biotechnol. 2019, 103, 9345–9358. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Lu, P.H.; Huang, C.Y.; Leong, Y.K.; Yen, H.W.; Chang, J.S. Integrating Anaerobic Digestion and Microalgae Cultivation for Dairy Wastewater Treatment and Potential Biochemicals Production from the Harvested Microalgal Biomass. Chemosphere 2022, 291, 133057. [Google Scholar] [CrossRef]
- Dourou, M.; Dritsas, P.; Baeshen, M.N.; Elazzazy, A.; Al-Farga, A.; Aggelis, G. High-Added Value Products from Microalgae and Prospects of Aquaculture Wastewaters as Microalgae Growth Media. FEMS Microbiol. Lett. 2021, 367, fnaa081. [Google Scholar] [CrossRef]
- Dixit, R.; Singh, S.; Enamala, M.K.; Patel, A. Effect of Various Growth Medium on the Physiology and De Novo Lipogenesis of a Freshwater Microalga Scenedesmus Rotundus-MG910488 under Autotrophic Condition. Clean Technol. 2022, 4, 733–751. [Google Scholar] [CrossRef]
- Sydney, E.B.; Carvalho, J.C.D.; Letti, L.A.J.; Magalhães, A.I.; Karp, S.G.; Martinez-Burgos, W.J.; Candeo, E. de S.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Neto, C.J.D.; et al. Current Developments and Challenges of Green Technologies for the Valorization of Liquid, Solid, and Gaseous Wastes from Sugarcane Ethanol Production. J. Hazard. Mater. 2021, 404, 124059. [Google Scholar] [CrossRef] [PubMed]
- Statista Fuel Ethanol Production Worldwide in 2021, by Country. 2022. Volume 2022. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 15 October 2022).
- World-In-Data Cassava Production. 2022. pp. 2003–2005. Available online: Https://Ourworldindata.Org/Grapher/Cassava-Production?Tab=table&time=1961..2018 (accessed on 15 October 2022).
- Statista Palm Oil Industry Worldwide-Statistics & Facts. 2022. Available online: Https://Www.Statista.Com/Topics/6079/Global-Palm-Oil-Industry/#dossierKeyfigures (accessed on 15 October 2022).
- FAO. Meat Market Review: Emerging Trends and Outlook. 2021. Available online: https://www.fao.org/3/cb7886en/cb7886en.pdf(accessed on 15 October 2022).
- Bustillo-Lecompte, C.; Mehrvar, M.; Quiñones-Bolaños, E. Slaughterhouse Wastewater Characterization and Treatment: An Economic and Public Health Necessity of the Meat Processing Industry in Ontario, Canada. Int. Conf. Environ. Pollut. Public Health EPPH 2016, 4, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A. Assessment of Laboratory Scale Cylindrical Sequencing Batch Reactor for the Treatment of Abattoir Effluent. Innov. Infrastruct. Solut. 2022, 7, 100. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Nwabanne, J.T.; Aniagor, C.O.; Okey-Onyesolu, C.F.; Ohale, N.J. A Comparative Optimization and Modeling of Ammonia–Nitrogen Adsorption from Abattoir Wastewater Using a Novel Iron-Functionalized Crab Shell. Appl. Water Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
- Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic Digestion of Dairy Wastewater: Effect of Different Parameters and Co-Digestion Options—A Review. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Kaur, N. Different Treatment Techniques of Dairy Wastewater. Groundw. Sustain. Dev. 2021, 14, 100640. [Google Scholar] [CrossRef]
- Bentahar, J.; Doyen, A.; Beaulieu, L.; Deschênes, J.S. Acid Whey Permeate: An Alternative Growth Medium for Microalgae Tetradesmus Obliquus and Production of β-Galactosidase. Algal Res. 2019, 41, 101559. [Google Scholar] [CrossRef]
- OECD. Agricultural Outlook 2021–2030. In OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France, 2021; ISBN 978-92-5-134608-2. [Google Scholar]
- Tom, A.P.; Jayakumar, J.S.; Biju, M.; Somarajan, J.; Ibrahim, M.A. Aquaculture Wastewater Treatment Technologies and Their Sustainability: A Review. Energy Nexus 2021, 4, 100022. [Google Scholar] [CrossRef]
- Sun, C.; Wang, S.; Wang, H.; Hu, X.; Yang, F.; Tang, M.; Zhang, M.; Zhong, J. Internal Nitrogen and Phosphorus Loading in a Seasonally Stratified Reservoir: Implications for Eutrophication Management of Deep-Water Ecosystems. J. Environ. Manag. 2022, 319, 115681. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and Phosphorus Losses and Eutrophication Potential Associated with Fertilizer Application to Cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Junios, J.R.; Medeiros, A.B.P.; Herrmann, L.W.; Sydney, E.B.; Soccol, C.R. Biohydrogen Production from Agro-Industrial Wastes Using Clostridium Beijerinckii and Isolated Bacteria as Inoculum. Bioenergy Res. 2021, 15, 987–997. [Google Scholar] [CrossRef]
- Parsaee, M.; Kiani Deh Kiani, M.; Karimi, K. A Review of Biogas Production from Sugarcane Vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Gozan, M.; Aulawy, N.; Rahman, S.F.; Budiarto, R. Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent). Int. J. Appl. Eng. Res. 2018, 13, 6151–6157. [Google Scholar]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Molina, D.; Soccol, C.R. Hydrogen Production by Dark Fermentation Using a New Low-Cost Culture Medium Composed of Corn Steep Liquor and Cassava Processing Water: Process Optimization and Scale-Up. Bioresour. Technol. 2021, 320, 124370. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L.; Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with Sugarcane Vinasse: Foreseeing Potential Impacts on Soil and Water Resources through Vinasse Characterization. J. Environ. Sci. Health 2017, 52, 1063–1072. [Google Scholar] [CrossRef]
- de Godoi, L.A.G.; Camiloti, P.R.; Bernardes, A.N.; Sanchez, B.L.S.; Torres, A.P.R.; da Conceição Gomes, A.; Botta, L.S. Seasonal Variation of the Organic and Inorganic Composition of Sugarcane Vinasse: Main Implications for Its Environmental Uses. Environ. Sci. Pollut. Res. 2019, 26, 29267–29282. [Google Scholar] [CrossRef]
- Olaoye, R.A.; Afolayan, O.D.; Adeyemi, K.A.; Ajisope, L.O.; Adekunle, O.S. Adsorption of Selected Metals from Cassava Processing Wastewater Using Cow-Bone Ash. Sci. Afr. 2020, 10, e00653. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Chong, C.C.; Lam, M.K.; Leong, W.H.; Chuah, L.F.; Yusup, S.; Setiabudi, H.D.; Tang, Y.; Lim, J.W. Identification of Microbial Inhibitions and Mitigation Strategies towards Cleaner Bioconversions of Palm Oil Mill Effluent (POME): A Review. J. Clean. Prod. 2021, 280, 124346. [Google Scholar] [CrossRef]
- Malik, S.; Shahid, A.; Betenbaugh, M.J.; Liu, C.; Mehmood, A. A Novel Wastewater-Derived Cascading Algal Biorefinery Route for Complete Valorization of the Biomass to Biodiesel and Value-Added Bioproducts. Energy Convers. Manag. 2022, 256, 115360. [Google Scholar] [CrossRef]
- Mahmod, S.S.; Arisht, S.N.; Jahim, J.M.; Takriff, M.S.; Tan, J.P.; Luthfi, A.A.I.; Abdul, P.M. Enhancement of Biohydrogen Production from Palm Oil Mill Effluent (POME): A Review. Int. J. Hydrog. Energy 2021, 47, 40637–40655. [Google Scholar] [CrossRef]
- Loh, S.K.; Nasrin, A.B.; Mohamad Azri, S.; Nurul Adela, B.; Muzzammil, N.; Daryl Jay, T.; Stasha Eleanor, R.A.; Lim, W.S.; Choo, Y.M.; Kaltschmitt, M. First Report on Malaysia’s Experiences and Development in Biogas Capture and Utilization from Palm Oil Mill Effluent under the Economic Transformation Programme: Current and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 74, 1257–1274. [Google Scholar] [CrossRef]
- Rosa, D.; Medeiros, A.B.P.; Martinez-Burgos, W.J.; Do Nascimento, J.R.; De Carvalho, J.C.; Sydney, E.B.; Soccol, C.R. Biological Hydrogen Production from Palm Oil Mill Effluent (POME) by Anaerobic Consortia and Clostridium beijerinckii. J. Biotechnol. 2020, 323, 17–23. [Google Scholar] [CrossRef] [PubMed]
- HO, O.; Eruteyan, O. A Study on the Effects of Cassava Processing Wastes on the Soil Environment of a Local Cassava Mill. J. Pollut. Eff. Control 2016, 4, 4–7. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Sydney, E.B.; de Paula, D.R.; Medeiros, A.B.P.; de Carvalho, J.C.; Soccol, V.T.; de Souza Vandenberghe, L.P.; Woiciechowski, A.L.; Soccol, C.R. Biohydrogen Production in Cassava Processing Wastewater Using Microbial Consortia: Process Optimization and Kinetic Analysis of the Microbial Community. Bioresour. Technol. 2020, 309, 123331. [Google Scholar] [CrossRef]
- Costa, R.C.; Ramos, M.D.N.; Fleck, L.; Gomes, S.D.; Aguiar, A. Critical Analysis and Predictive Models Using the Physicochemical Characteristics of Cassava Processing Wastewater Generated in Brazil. J. Water Process Eng. 2022, 47, 102629. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Hazzwan Bohari, M.; Sicilia, A.; Avignone-Rossa, C.; Bussemaker, M.; Saroj, D.; Lee, J. Tertiary Treatment of Real Abattoir Wastewater Using Combined Acoustic Cavitation and Ozonation. Ultrason. Sonochem. 2020, 64, 104986. [Google Scholar] [CrossRef]
- Oyeniran, D.O.; Sogbanmu, T.O.; Adesalu, T.A. Antibiotics, Algal Evaluations and Subacute Effects of Abattoir Wastewater on Liver Function Enzymes, Genetic and Haematologic Biomarkers in the Freshwater Fish, Clarias gariepinus. Ecotoxicol. Environ. Saf. 2021, 212, 111982. [Google Scholar] [CrossRef]
- Okey-Onyesolu, C.F.; Onukwuli, O.D.; Ejimofor, M.I.; Okoye, C.C. Kinetics and Mechanistic Analysis of Particles Decontamination from Abattoir Wastewater (ABW) Using Novel Fish Bone Chito-Protein (FBC). Heliyon 2020, 6, e04468. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Foster, L.; Kwambai, C.; Bahri, P.A.; Moheimani, N.R. Microalgae Cultivation for the Treatment of Anaerobically Digested Municipal Centrate (ADMC) and Anaerobically Digested Abattoir Effluent (ADAE). Sci. Total Environ. 2021, 775, 145853. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Guerreiro, R.C.S.; Jerónimo, E.; Luz, S.; Pinheiro, H.M.; Prazeres, A.R. Cheese Manufacturing Wastewater Treatment by Combined Physicochemical Processes for Reuse and Fertilizer Production. J. Environ. Manag. 2020, 264, 110470. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.D.C.S.D.; Maranduba, H.L.; Hafner, M.B.; Rodrigues, L.B.; de Almeida Neto, J.A. Life Cycle Thinking Applied to Phytoremediation of Dairy Wastewater Using Aquatic Macrophytes for Treatment and Biomass Production. J. Clean. Prod. 2020, 267, 122006. [Google Scholar] [CrossRef]
- Ekka, B.; Mieriņa, I.; Juhna, T.; Turks, M.; Kokina, K. Quantification of Different Fatty Acids in Raw Dairy Wastewater. Clean. Eng. Technol. 2022, 7, 100430. [Google Scholar] [CrossRef]
- Cruz-Salomón, A.; Ríos-Valdovinos, E.; Pola-Albores, F.; Lagunas-Rivera, S.; Cruz-Rodríguez, R.I.; Cruz-Salomón, K.D.C.; Hernández-Méndez, J.M.E.; Domínguez-Espinosa, M.E. Treatment of Cheese Whey Wastewater Using an Expanded Granular Sludge Bed (EGSB) Bioreactor with Biomethane Production. Processes 2020, 8, 931. [Google Scholar] [CrossRef]
- Andreotti, V.; Solimeno, A.; Rossi, S.; Ficara, E.; Marazzi, F.; Mezzanotte, V.; García, J. Bioremediation of Aquaculture Wastewater with the Microalgae Tetraselmis suecica: Semi-Continuous Experiments, Simulation and Photo-Respirometric Tests. Sci. Total Environ. 2020, 738, 139859. [Google Scholar] [CrossRef]
- Tejido-Nuñez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of Aquaculture Effluent with Chlorella vulgaris and Tetradesmus Obliquus: The Effect of Pretreatment on Microalgae Growth and Nutrient Removal Efficiency. Ecol. Eng. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Meril, D.; Piliyan, R.; Perumal, S.; Sundarraj, D.K.; Binesh, A. Efficacy of Alginate Immobilized Microalgae in the Bioremediation of Shrimp Aquaculture Wastewater. Process Biochem. 2022, 122, 196–202. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of Real Aquaculture Wastewater from a Fishery Utilizing Phytoremediation with Microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910. [Google Scholar] [CrossRef]
- Akmukhanova, N.R.; Sadvakasova, A.K.; Torekhanova, M.M.; Bauenova, M.O. Feasibility of Waste—Free Use of Microalgae in Aquaculture. J. Appl. Phycol. 2022, 34, 2297–2313. [Google Scholar] [CrossRef]
- Nunes, N.S.P.; de Almeida, J.M.O.; Fonseca, G.G.; de Carvalho, E.M. Clarification of Sugarcane (Saccharum Officinarum) Vinasse for Microalgae Cultivation. Bioresour. Technol. Rep. 2022, 19, 101125. [Google Scholar] [CrossRef]
- Cea Barcia, G.E.; Imperial Cervantes, R.A.; Torres Zuniga, I.; van den Hende, S. Converting Tequila Vinasse Diluted with Tequila Process Water into Microalgae-Yeast Flocs and Dischargeable Effluent. Bioresour. Technol. 2020, 300, 122644. [Google Scholar] [CrossRef]
- Megawati, M.; Damayanti, A.; Bahlawan, Z.A.S.; Nurunia, E.; Agustina, F.J.E.; Fidyawati, F.; Hanifah, H. Growth rate and biochemical characterization of Chlorella pyrenoidosa cultivated in sugarcane vinasse medium. ASEAN Eng. J. 2022, 12, 127–134. [Google Scholar] [CrossRef]
- Candido, C.; Lombardi, A.T. Mixotrophy in Green Microalgae Grown on an Organic and Nutrient Rich Waste. World J. Microbiol. Biotechnol. 2020, 36, 20. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.C.; Bonomi, A.; Filho, R.M. Integration of Microalgae Production with Industrial Biofuel Facilities: A Critical Review. Renew. Sustain. Energy Rev. 2018, 82, 1376–1392. [Google Scholar] [CrossRef]
- Santana, H.; Cereijo, C.R.; Teles, V.C.; Nascimento, R.C.; Fernandes, M.S.; Brunale, P.; Campanha, R.C.; Soares, I.P.; Silva, F.C.P.; Sabaini, P.S.; et al. Microalgae Cultivation in Sugarcane Vinasse: Selection, Growth and Biochemical Characterization. Bioresour. Technol. 2017, 228, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Candido, C.; Bernardo, A.; Lombardi, A.T. Optimization and Qualitative Comparison of Two Vinasse Pre-Treatments Aiming at Microalgae Cultivation. Eng. Sanit. Ambient. 2021, 26, 359–367. [Google Scholar] [CrossRef]
- Siqueira, J.C.; Braga, M.Q.; Ázara, M.S.; Garcia, K.J.; Alencar, S.N.M.; Ramos, T.S.; Siniscalchi, L.A.B.; Assemany, P.P.; Ensinas, A.V. Recovery of Vinasse with Combined Microalgae Cultivation in a Conceptual Energy-Efficient Industrial Plant: Analysis of Related Process Considerations. Renew. Sustain. Energy Rev. 2022, 155, 111904. [Google Scholar] [CrossRef]
- Fu, S.F.; Xu, X.H.; Dai, M.; Yuan, X.Z.; Guo, R.B. Hydrogen and Methane Production from Vinasse Using Two-Stage Anaerobic Digestion. Process Saf. Environ. Prot. 2017, 107, 81–86. [Google Scholar] [CrossRef]
- Marques, S.S.I.; Nascimento, I.A.; de Almeida, P.F.; Chinalia, F.A. Growth of Chlorella vulgaris on Sugarcane Vinasse: The Effect of Anaerobic Digestion Pretreatment. Appl. Biochem. Biotechnol. 2013, 171, 1933–1943. [Google Scholar] [CrossRef]
- Trevisan, E.; Godoy, R.F.B.; Radomski, F.A.D.; Crisigiovanni, E.L.; Branco, K.B.Z.F.; Arroyo, P.A. Chlorella vulgaris Growth in Different Biodigested Vinasse Concentrations: Biomass, Pigments and Final Composition. Water Sci. Technol. 2020, 82, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [Google Scholar] [CrossRef] [Green Version]
- Perera, I.A.; Abinandan, S.; Panneerselvan, L.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Co-Culturing of Microalgae and Bacteria in Real Wastewaters Alters Indigenous Bacterial Communities Enhancing Effluent Bioremediation. Algal Res. 2022, 64, 102705. [Google Scholar] [CrossRef]
- Sydney, E.B.; Neto, C.J.D.; de Carvalho, J.C.; Vandenberghe, L.P.D.S.; Sydney, A.C.N.; Letti, L.A.J.; Karp, S.G.; Soccol, V.T.; Woiciechowski, A.L.; Medeiros, A.B.P.; et al. Microalgal Biorefineries: Integrated Use of Liquid and Gaseous Effluents from Bioethanol Industry for Efficient Biomass Production. Bioresour. Technol. 2019, 292, 121955. [Google Scholar] [CrossRef] [PubMed]
- Shayesteh, H.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Long Term Outdoor Microalgal Phycoremediation of Anaerobically Digested Abattoir Effluent. J. Environ. Manag. 2022, 323, 116322. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.A.; Wan Maznah, W.O.; Morad, N.; Lalung, J.; Ismail, N.; Talebi, A.; Oyekanmi, A.A. Advances in POME Treatment Methods: Potentials of Phycoremediation, with a Focus on South East Asia. Int. J. Environ. Sci. Technol. 2022, 19, 8113–8130. [Google Scholar] [CrossRef]
- Khalid, A.A.H.; Yaakob, Z.; Abdullah, S.R.S.; Takriff, M.S. Assessing the Feasibility of Microalgae Cultivation in Agricultural Wastewater: The Nutrient Characteristics. Environ. Technol. Innov. 2019, 15, 100402. [Google Scholar] [CrossRef]
- Jasni, J.; Arisht, S.N.; Mohd Yasin, N.H.; Abdul, P.M.; Lin, S.K.; Liu, C.M.; Wu, S.Y.; Jahim, J.M.; Takriff, M.S. Comparative Toxicity Effect of Organic and Inorganic Substances in Palm Oil Mill Effluent (POME) Using Native Microalgae Species. J. Water Process Eng. 2020, 34, 101165. [Google Scholar] [CrossRef]
- Mohd Udaiyappan, A.F.; Hasan, H.A.; Takriff, M.S.; Abdullah, S.R.S.; Maeda, T.; Mustapha, N.A.; Mohd Yasin, N.H.; Nazashida Mohd Hakimi, N.I. Microalgae-Bacteria Interaction in Palm Oil Mill Effluent Treatment. J. Water Process Eng. 2020, 35, 101203. [Google Scholar] [CrossRef]
- Takriff, M.S.; Zakaria, M.Z.; Sajab, M.S.; Teow, Y.H. Pre-Treatments Anaerobic Palm Oil Mill Effluent (POME) for Microalgae Treatment. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Low, S.S.; Bong, K.X.; Mubashir, M.; Cheng, C.K.; Lam, M.K.; Lim, J.W.; Ho, Y.C.; Lee, K.T.; Munawaroh, H.S.H.; Show, P.L. Microalgae Cultivation in Palm Oil Mill Effluent (Pome) Treatment and Biofuel Production. Sustainability 2021, 13, 3247. [Google Scholar] [CrossRef]
- Phang, Y.K.; Tey, L.H.; Aminuzzaman, M.; Akhtaruzzaman, M.; Watanabe, A. Investigation of the Growth of Chlorella vulgaris and Chlamydomonas Reinhardtii Cultivated in Pre-Treated Palm Oil Mill Effluent (POME) as the Culture Medium. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 945. [Google Scholar]
- Minturo, G.J.; Noorain, R.; Hitam, S.M.S.; Shoiful, A.; Azni, M.E.; Ernawati, L.; Abdullah, R.; Mohamad, R. Immobilized Nannochloropsis Oculata in a Down-Flow Hanging Sponge (DHS) Reactor for the Treatment of Palm Oil Mill Effluent (POME). In IOP Conference Series: Earth and Environmental Science; Institute of Physics: London, UK, 2022; Volume 1017. [Google Scholar]
- Tan, K.A.; Lalung, J.; Morad, N.; Ismail, N.; Omar, W.M.W.; Khan, M.A.; Sillanpää, M.; Rafatullah, M. Post-Treatment of Palm Oil Mill Effluent Using Immobilised Green Microalgae Chlorococcum Oleofaciens. Sustainability 2021, 13, 1562. [Google Scholar] [CrossRef]
- Colusse, G.A.; Santos, A.O.; Rodrigues, J.M.; Barga, M.C.; Duarte, M.E.R.; de Carvalho, J.C.; Noseda, M.D. Rice Vinasse Treatment by Immobilized Synechococcus Pevalekii and Its Effect on Dunaliella Salina Cultivation. Bioprocess Biosyst. Eng. 2021, 44, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti Pessôa, L.; Pinheiro Cruz, E.; Mosquera Deamici, K.; Bomfim Andrade, B.; Santana Carvalho, N.; Rocha Vieira, S.; Alves Da Silva, J.B.; Magalhães Pontes, L.A.; Oliveira De Souza, C.; Druzian, J.I.; et al. A Review of Microalgae-Based Biorefineries Approach for Produced Water Treatment: Barriers, Pretreatments, Supplementation, and Perspectives. J. Environ. Chem. Eng. 2022, 10, 108096. [Google Scholar] [CrossRef]
- Okpozu, O.O.; Ogbonna, I.O.; Ikwebe, J.; Ogbonna, J.C. Phycoremediation of Cassava Wastewater by Desmodesmus Armatus and the Concomitant Accumulation of Lipids for Biodiesel Production. Bioresour. Technol. Rep. 2019, 7, 100255. [Google Scholar] [CrossRef]
- Melo, J.M.; Telles, T.S.; Ribeiro, M.R.; de Carvalho Junior, O.; Andrade, D.S. Chlorella sorokiniana as Bioremediator of Wastewater: Nutrient Removal, Biomass Production, and Potential Profit. Bioresour. Technol. Rep. 2022, 17, 100933. [Google Scholar] [CrossRef]
- Coutinho Rodrigues, O.H.; Itokazu, A.G.; Rörig, L.; Maraschin, M.; Corrêa, R.G.; Pimentel-Almeida, W.; Moresco, R. Evaluation of Astaxanthin Biosynthesis by Haematococcus Pluvialis Grown in Culture Medium Added of Cassava Wastewater. Int. Biodeterior. Biodegrad. 2021, 163, 105269. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Garcia Bustos, K.A.; Sanchez Vera, F.P.; Colina Andrade, G.J.; Pacheco Tanaka, D.A. Acid Precipitation Followed by Microalgae (Chlorella vulgaris) Cultivation as a New Approach for Poultry Slaughterhouse Wastewater Treatment. Bioresour. Technol. 2021, 335, 125284. [Google Scholar] [CrossRef]
- Katırcıoğlu Sınmaz, G.; Erden, B.; Şengil, I.A. Cultivation of Chlorella vulgaris in Alkaline Condition for Biodiesel Feedstock after Biological Treatment of Poultry Slaughterhouse Wastewater. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Viegas, C.; Gouveia, L.; Gonçalves, M. Evaluation of Microalgae as Bioremediation Agent for Poultry Effluent and Biostimulant for Germination. Environ. Technol. Innov. 2021, 24, 102048. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Matos, A.P.; Chaudry, S.; Bahri, P.A.; Moheimani, N.R. Effect of CO2 addition on Treating Anaerobically Digested Abattoir Effluent (ADAE) Using Chlorella sp. (Trebouxiophyceae). J. CO2 Util. 2020, 38, 273–281. [Google Scholar] [CrossRef]
- Shayesteh, H.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Can CO2 Addition Improve the Tertiary Treatment of Anaerobically Digested Abattoir Effluent (ADAE) by Scenedesmus sp. (Chlorophyta)? Algal Res. 2021, 58, 102379. [Google Scholar] [CrossRef]
- Maza-Márquez, P.; González-Martínez, A.; Rodelas, B.; González-López, J. Full-Scale Photobioreactor for Biotreatment of Olive Washing Water: Structure and Diversity of the Microalgae-Bacteria Consortium. Bioresour. Technol. 2017, 238, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.O.; et al. Wastewater Based Microalgal Biorefinery for Bioenergy Production: Progress and Challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, N.; Zamani, H. Potential of Chlorella sorokiniana Cultivated in Dairy Wastewater for Bioenergy and Biodiesel Production. Bioenergy Res. 2022, 15, 334–345. [Google Scholar] [CrossRef]
- Rahman, D.Y.; Hidhayati, N.; Apriastini, M. Taufikurahman Utilization of Anaerobically Digested Dairy Manure Wastewater for Spirulina maxima Cultivation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012022. [Google Scholar] [CrossRef]
- Pandey, A.; Srivastava, S.; Kumar, S. Isolation, Screening and Comprehensive Characterization of Candidate Microalgae for Biofuel Feedstock Production and Dairy Effluent Treatment: A Sustainable Approach. Bioresour. Technol. 2019, 293, 121998. [Google Scholar] [CrossRef]
- Ghobrini, D.; Brányik, T.; Yakoub-Bougdal, S.; Aïboud, K.; Kebbab, L.; Daoud, D.; Lahouel, N.; Bouarab, R.; Oumsalem, M.; Zanoun, L. Production of Biodiesel from the Locally Isolated Yellow Strain of Chlorella sp. Using Dairy Wastewater as a Growth Medium. AIP Conf. Proc. 2019, 2190, 020097. [Google Scholar] [CrossRef]
- Zapata, D.; Arroyave, C.; Cardona, L.; Aristizábal, A.; Poschenrieder, C.; Llugany, M. Phytohormone Production and Morphology of Spirulina platensis Grown in Dairy Wastewaters. Algal Res. 2021, 59, 102469. [Google Scholar] [CrossRef]
- Choi, Y.K.; Jang, H.M.; Kan, E. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater. Biotechnol. Bioprocess Eng. 2018, 23, 333–340. [Google Scholar] [CrossRef]
- Pang, N.; Bergeron, A.D.; Gu, X.; Fu, X.; Dong, T.; Yao, Y.; Chen, S. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. Environ. Sci. Technol. 2020, 54, 15366–15375. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulou, A.; Zkeri, E.; Panara, A.; Dasenaki, M.; Fountoulakis, M.S.; Thomaidis, N.S.; Stasinakis, A.S. Treatment of Different Dairy Wastewater with Chlorella sorokiniana: Removal of Pollutants and Biomass Characterization. J. Chem. Technol. Biotechnol. 2022, 97, 3193–3201. [Google Scholar] [CrossRef]
- Marella, T.K.; López-Pacheco, I.Y.; Parra-Saldívar, R.; Dixit, S.; Tiwari, A. Wealth from Waste: Diatoms as Tools for Phycoremediation of Wastewater and for Obtaining Value from the Biomass. Sci. Total Environ. 2020, 724, 137960. [Google Scholar] [CrossRef] [PubMed]
- Hesni, M.A.; Hedayati, A.; Qadermarzi, A.; Pouladi, M.; Zangiabadi, S.; Naqshbandi, N. Using Chlorella vulgaris and Iron Oxide Nanoparticles in a Designed Bioreactor for Aquaculture Effluents Purification. Aquac. Eng. 2020, 90, 102069. [Google Scholar] [CrossRef]
- Soto, M.F.; Diaz, C.A.; Zapata, A.M.; Higuita, J.C. BOD and COD Removal in Vinasses from Sugarcane Alcoholic Distillation by Chlorella vulgaris: Environmental Evaluation. Biochem. Eng. J. 2021, 176, 108191. [Google Scholar] [CrossRef]
- Heredia Falconí, J.H.; Soares, J.; Rocha, D.N.; Gomes Marçal Vieira Vaz, M.; Martins, M.A. Strain Screening and Ozone Pretreatment for Algae Farming in Wastewaters from Sugarcane Ethanol Biorefinery. J. Clean. Prod. 2021, 282, 124522. [Google Scholar] [CrossRef]
- Montaño Saavedra, M.D.; Paschino Bissoto, F.; de Souza, R.A.; Cárdenas Concha, V.O.; Gaspar Bastos, R. Growth of Desmodesmus subspicatus Green Microalgae and Nutrient Removal from Sugarcane Vinasse Clarified by Electrocoagulation Using Aluminum or Iron Electrodes. Dyna 2019, 86, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, G.E.B.; Thomaz-Soccol, V.; Vandenberghe, L.P.S.; Carvalho, J.C.; Faulds, C.B.; Bertrand, E.; Prado, M.R.M.; Bonatto, S.J.R.; Soccol, C.R. Arthrospira Maxima OF15 Biomass Cultivation at Laboratory and Pilot Scale from Sugarcane Vinasse for Potential Biological New Peptides Production. Bioresour. Technol. 2019, 273, 103–113. [Google Scholar] [CrossRef] [Green Version]
- de Mattos, L.F.A.; Bastos, R.G. COD and Nitrogen Removal from Sugarcane Vinasse by Heterotrophic Green Algae Desmodesmus sp. Desalination Water Treat. 2016, 57, 9465–9473. [Google Scholar] [CrossRef]
- Serejo, M.L.; Ruas, G.; Braga, G.B.; Paulo, P.L.; Boncz, M. Chlorella vulgaris Growth on Anaerobically Digested Sugarcane Vinasse: Influenceofturbidity. An. Acad. Bras. Cienc. 2021, 93, 1–10. [Google Scholar] [CrossRef]
- Hilares, R.T.; Vera, F.P.S.; Andrade, G.J.C.; Meza, K.T.; García, J.C.; Tanaka, D.A.P. Continuous Cultivation of Microalgae in Cattle Slaughterhouse Wastewater Treated with Hydrodynamic Cavitation. Water 2022, 14, 1288. [Google Scholar] [CrossRef]
- Chawla, P.; Gola, D.; Dalvi, V.; Sreekrishnan, T.R.; Ariyadasa, T.U.; Malik, A. Design and Development of Mini-Photobioreactor System for Strategic High Throughput Selection of Optimum Microalgae-Wastewater Combination. Bioresour. Technol. Rep. 2022, 17, 100967. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Yap, Y.J.; Mohd Zaid, H.F.; Lam, M.K.; Lim, J.W.; Ho, Y.C.; Tao, Y. Enhancing Microalga Chlorella sorokiniana CY-1 Biomass and Lipid Production in Palm Oil Mill Effluent (POME) Using Novel-Designed Photobioreactor. Bioengineered 2020, 11, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elystia, S.; Muria, S.R.; Erlangga, H.F. Cultivation of Chlorella pyrenoidosa as a Raw Material for the Production of Biofuels in Palm Oil Mill Effluent Medium with the Addition of Urea and Triple Super Phosphate. Environ. Health Eng. Manag. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Garcia, G.M.; Boelen, P.; Buma, A.G.J. Influence of Photodegradation on the Removal of Color and Phenolic Compounds from Palm Oil Mill Effluent by Arthrospira platensis. J. Appl. Phycol. 2021, 33, 901–915. [Google Scholar] [CrossRef]
- Resdi, R.; Lim, J.S.; Idris, A. Batch Kinetics of Nutrients Removal for Palm Oil Mill Effluent and Recovery of Lipid by Nannochloropsis sp. J. Water Process Eng. 2021, 40, 101767. [Google Scholar] [CrossRef]
- Ng, F.L.; Phang, S.M.; Thong, C.H.; Periasamy, V.; Pindah, J.; Yunus, K.; Fisher, A.C. Integration of Bioelectricity Generation from Algal Biophotovoltaic (BPV) Devices with Remediation of Palm Oil Mill Effluent (POME) as Substrate for Algal Growth. Environ. Technol. Innov. 2021, 21, 101280. [Google Scholar] [CrossRef]
- Elvitriana, E.; Munir, E.; Delvian, D.; Wahyuningsih, H. Organic Substances Reduction in Palm Oil Mill Effluent (POME) After Cultivation with Locally Isolated Microalgae. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80, 98–105. [Google Scholar] [CrossRef]
- Ogbonna, I.O.; Okpozu, O.O.; Ikwebe, J.; Ogbonna, J.C. Utilisation of Desmodesmus subspicatus LC172266 for Simultaneous Remediation of Cassava Wastewater and Accumulation of Lipids for Biodiesel Production. Biofuels 2019, 10, 657–664. [Google Scholar] [CrossRef]
- Romaidi; Hasanudin, M.; Kholifah, K.; Maulidiyah, A.; Putro, S.P.; Kikuchi, A.; Sakaguchi, T. Lipid Production from Tapioca Wastewater by Culture of Scenedesmus sp. with Simultaneous BOD, COD and Nitrogen Removal. J. Phys. Conf. Ser. 2018, 1025, 012075. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Teaumroong, N.; Piromyou, P.; Piasai, C. Co-Culture of Microalga Chlorella sorokiniana with Syntrophic Streptomyces Thermocarboxydus in Cassava Wastewater for Wastewater Treatment and Biodiesel Production. Bioresour. Technol. 2022, 347, 126732. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.G.; Duarte, J.H.; Costa, J.A.V.; de Jesus Assis, D.; Lemos, P.V.F.; Druzian, J.I.; de Souza, C.O.; Nunes, I.L.; Chinalia, F.A. Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. Bioenergy Res. 2021, 14, 254–264. [Google Scholar] [CrossRef]
- Guldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic Cultivation of Microalgae Using Aquaculture Wastewater: A Biorefinery Concept for Biomass Production and Nutrient Remediation. Ecol. Eng. 2017, 99, 47–53. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal Cultivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Kothari, R.; Prasad, R.; Kumar, V.; Singh, D.P. Production of Biodiesel from Microalgae Chlamydomonas polypyrenoideum Grown on Dairy Industry Wastewater. Bioresour. Technol. 2013, 144, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, N.; Zamani, H. Biomass Production and Nutritional Properties of Chlorella sorokiniana Grown on Dairy Wastewater. J. Water Process Eng. 2022, 47, 102760. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S.; Chand, N.; Mutiyar, P.K. Phycoremediation of Milk Processing Wastewater and Lipid-Rich Biomass Production Using Chlorella vulgaris under Continuous Batch System. Sci. Total Environ. 2022, 833, 155110. [Google Scholar] [CrossRef]
- Gumbi, S.T.; Mutanda, T.; Olaniran, A.O. Nutrient Removal from Dairy and Poultry Wastewater with Simultaneous Biomass and Biodiesel Production by Chlorella sp. T4 Isolated from a Freshwater Stream in South Africa. Waste Biomass Valorization 2021, 12, 6931–6943. [Google Scholar] [CrossRef]
- Sudhanthiran, M.C.; Perumalsamy, M. Bioremediation of Dairy Industry Wastewater and Assessment of Nutrient Removal Potential of Chlorella vulgaris. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Campos, J.L.; Crutchik, D.; Franchi, Ó.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; Mosquera-Corral, A.; Val del Río, Á. Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst. 2019, 2, 91. [Google Scholar] [CrossRef]
- Nunes Ferraz Junior, A.D.; Etchebehere, C.; Perecin, D.; Teixeira, S.; Woods, J. Advancing Anaerobic Digestion of Sugarcane Vinasse: Current Development, Struggles and Future Trends on Production and End-Uses of Biogas in Brazil. Renew. Sustain. Energy Rev. 2022, 157, 112045. [Google Scholar] [CrossRef]
- Chen, K.T.; Bai, M.D.; Yang, H.Y.; Chen, Y.C.; Lu, W.J.; Huang, C. Removal of Ammonia from Leachate by Using Thermophilic Microbial Fuel Cells Equipped with Membrane Electrode. Sustain. Environ. Res. 2020, 30, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shen, S.; Xu, Y.; Guo, T.; Dai, H.; Lu, X. Application of Membrane Separation Processes in Phosphorus Recovery: A Review. Sci. Total Environ. 2021, 767, 144346. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Srivastava, S.; Kumar, S. Development and Cost-Benefit Analysis of a Novel Process for Biofuel Production from Microalgae Using Pre-Treated High-Strength Fresh Cheese Whey Wastewater. Environ. Sci. Pollut. Res. 2020, 27, 23963–23980. [Google Scholar] [CrossRef]
- Debowski, M.; Zielinski, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Swica, I.; Rudnicka, A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Al-Mallahi, J.; Ishii, K. Attempts to Alleviate Inhibitory Factors of Anaerobic Digestate for Enhanced Microalgae Cultivation and Nutrients Removal: A Review. J. Environ. Manag. 2022, 304, 114266. [Google Scholar] [CrossRef]
- Yasir, S.; Siddiki, A.; Mofijur, M.; Kumar, P.S.; Forruque, S.; Chyuan, H.; Mahlia, T.M.I. Microalgae Biomass as a Sustainable Source for Biofuel, Biochemical and Biobased Value-Added Products: An Integrated Biorefinery Concept. Fuel 2022, 307, 121782. [Google Scholar]
- Chen, Y.D.; Ho, S.H.; Nagarajan, D.; Ren, N.Q.; Chang, J.S. Waste Biorefineries—Integrating Anaerobic Digestion and Microalgae Cultivation for Bioenergy Production. Curr. Opin. Biotechnol. 2018, 50, 101–110. [Google Scholar] [CrossRef]
- Álvarez, X.; Arévalo, O.; Salvador, M.; Mercado, I.; Velázquez-Martí, B. Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production. Processes 2020, 8, 1290. [Google Scholar] [CrossRef]
- Zafisah, N.S.; Ang, W.L.; Mohammad, A.W. Cake Filtration for Suspended Solids Removal in Digestate from Anaerobic Digested Palm Oil Mill Effluent (POME). Water Conserv. Manag. 2018, 2, 5–9. [Google Scholar] [CrossRef]
- Poh, P.E.; Chong, M.F. Development of Anaerobic Digestion Methods for Palm Oil Mill Effluent (POME) Treatment. Bioresour. Technol. 2009, 100, 1–9. [Google Scholar] [CrossRef]
- Vieira, S.; Schneider, J.; Martinez-Burgos, W.J.; Magalhães, A.; Medeiros, A.B.P.; Carvalho, J.C.; Vandenberghe, L.P.D.S.; Soccol, C.R.; Soccol, C.R. Pretreatments of Solid Wastes for Anaerobic Digestion and Its Importance for the Circular Economy. In Handbook of Solid Waste Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–27. ISBN 9789811575259. [Google Scholar]
- Letti, L.A.; Woiciechowski, A.L.; Medeiros, A.B.P.; Rodrigues, C.; Carvalho, J.C.D.; Vandenberghe, L.P.; Karp, S.G.; Torres, L.A.Z.; Guarnizo, A.F.C.; Soccol, C.R. Valorization of Solid and Liquid Wastes from Palm Oil Industry. In Waste Biorefinery Value Addition Through Resource Utilization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–265. ISBN 9780128218792. [Google Scholar]
- Silva, A.F.R.; Brasil, Y.L.; Koch, K.; Amaral, M.C.S. Resource Recovery from Sugarcane Vinasse by Anaerobic Digestion—A Review. J. Environ. Manag. 2021, 295, 113137. [Google Scholar] [CrossRef]
- Charalambous, P.; Shin, J.; Shin, S.G.; Vyrides, I. Anaerobic Digestion of Industrial Dairy Wastewater and Cheese Whey: Performance of Internal Circulation Bioreactor and Laboratory Batch Test at PH 5–6. Renew. Energy 2020, 147, 1–10. [Google Scholar] [CrossRef]
- Sousa, S.P.; Lovato, G.; Albanez, R.; Ratusznei, S.M.; Rodrigues, J.A.D. Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as Its Co-Substrate: Achieving High Methane Productivity and Yield. Appl. Biochem. Biotechnol. 2019, 189, 987–1006. [Google Scholar] [CrossRef] [PubMed]
- Weiser Meier, T.R.; Cremonez, P.A.; Maniglia, T.C.; Sampaio, S.C.; Teleken, J.G.; da Silva, E.A. Production of Biohydrogen by an Anaerobic Digestion Process Using the Residual Glycerol from Biodiesel Production as Additive to Cassava Wastewater. J. Clean. Prod. 2020, 258, 120833. [Google Scholar] [CrossRef]
- Agabo-García, C.; Solera, R.; Perez, M. Anaerobic Sequential Batch Reactor for CO-DIGESTION of Slaughterhouse Residues: Wastewater and Activated Sludge. Energy 2022, 255, 124575. [Google Scholar] [CrossRef]
- Brooms, T.; Apollo, S.; Otieno, B.; Onyango, M.S.; Kabuba, J.; Ochieng, A. Integrated Anaerobic Digestion and Photodegradation of Slaughterhouse Wastewater: Energy Analysis and Degradation of Aromatic Compounds. J. Mater. Cycles Waste Manag. 2020, 22, 1227–1236. [Google Scholar] [CrossRef]
- Venugopal, V.; Sasidharan, A. Seafood Industry Effluents: Environmental Hazards, Treatment and Resource Recovery. J. Environ. Chem. Eng. 2021, 9, 104758. [Google Scholar] [CrossRef]
- Choudhury, A.; Lepine, C.; Witarsa, F.; Good, C. Anaerobic Digestion Challenges and Resource Recovery Opportunities from Land-Based Aquaculture Waste and Seafood Processing Byproducts: A Review. Bioresour. Technol. 2022, 354, 127144. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.L.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.C.P.; et al. Nutrient Mineralization and Organic Matter Reduction Performance of RAS-Based Sludge in Sequential UASB-EGSB Reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Reis, C.E.R.; Bento, H.B.S.; Alves, T.M.; Carvalho, A.; Castro, H. Vinasse Treatment within the Sugarcane-Ethanol Industry Using Ozone Combined with Anaerobic and Aerobic Microbial Processes. Environments 2019, 6, 5. [Google Scholar] [CrossRef]
- Moraes, B.S.; Petersen, S.O.; Zaiat, M.; Sommer, S.G.; Triolo, J.M. Reduction in Greenhouse Gas Emissions from Vinasse through Anaerobic Digestion. Appl. Energy 2020, 189, 21–30. [Google Scholar] [CrossRef]
- Zafisah, N.S.; Ang, W.L.; Johnson, D.J.; Mohammad, A.W.; Hilal, N. Effect of Different Filter Aids Used in Cake Filtration Process on the Removal of Suspended Solids in Anaerobically Digested Palm Oil Mill Effluent (POME). Desalination Water Treat. 2018, 110, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Beigbeder, J.-B.; Sanglier, M.; de Medeiros Dantas, J.M.; Lavoie, J.-M. CO2 Capture and Inorganic Carbon Assimilation of Gaseous Fermentation Effluents Using Parachlorella kessleri Microalgae. J. CO2 Util. 2021, 50, 101581. [Google Scholar] [CrossRef]
- Iamtham, S.; Sornchai, P. Biofixation of CO2 from a Power Plant through Large-Scale Cultivation of Spirulina maxima. S. Afr. J. Bot. 2022, 147, 840–851. [Google Scholar] [CrossRef]
- Aslam, A.; Thomas-Hall, S.R.; Mughal, T.A.; Schenk, P.M. Selection and Adaptation of Microalgae to Growth in 100% Unfiltered Coal-Fired Flue Gas. Bioresour. Technol. 2017, 233, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Praveenkumar, R.; Choi, E.; Lee, K.; Jeon, S.; Oh, Y.-K. Prospecting for Oleaginous and Robust Chlorella Spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production. Energies 2018, 11, 2026. [Google Scholar] [CrossRef] [Green Version]
- Moheimani, N.R. Tetraselmis suecica Culture for CO2 Bioremediation of Untreated Flue Gas from a Coal-Fired Power Station. J. Appl. Phycol. 2016, 28, 2139–2146. [Google Scholar] [CrossRef]
- Praveenkumar, R.; Kim, B.; Choi, E.; Lee, K.; Park, J.-Y.; Lee, J.-S.; Lee, Y.-C.; Oh, Y.-K. Improved Biomass and Lipid Production in a Mixotrophic Culture of Chlorella sp. KR-1 with Addition of Coal-Fired Flue-Gas. Bioresour. Technol. 2014, 171, 500–505. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Xie, T.; Seib, M.; Tale, V.P.; Zitomer, D. Anaerobic Digester Biogas Upgrading Using Microalgae. In Integrated Wastewater Management and Valorization Using Algal Cultures; Elsevier: Amsterdam, The Netherlands, 2022; pp. 183–214. [Google Scholar]
- Yadav, G.; Mathimani, T.; Sekar, M.; Sindhu, R.; Pugazhendhi, A. Strategic Evaluation of Limiting Factors Affecting Algal Growth—An Approach to Waste Mitigation and Carbon Dioxide Sequestration. Sci. Total Environ. 2021, 796, 149049. [Google Scholar] [CrossRef]
- de Godos, I.; Mendoza, J.L.; Acién, F.G.; Molina, E.; Banks, C.J.; Heaven, S.; Rogalla, F. Evaluation of Carbon Dioxide Mass Transfer in Raceway Reactors for Microalgae Culture Using Flue Gases. Bioresour. Technol. 2014, 153, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Li, D.; Yu, Y.; Li, D.; Yadav, R.S.; Feng, Y. Application of a Microalga, Scenedesmus Obliquus PF3, for the Biological Removal of Nitric Oxide (NO) and Carbon Dioxide. Environ. Pollut. 2019, 252, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, P.; Desi, S.; Vurimindi, H. Mixotrophic Cultivation of Microalgae Using Industrial Flue Gases for Biodiesel Production. Environ. Sci. Pollut. Res. 2016, 23, 9345–9354. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.K.; Krishna, S.V.; Verma, K.; Pooja, K.; Bhagawan, D.; Himabindu, V. Phycoremediation of Sewage Wastewater and Industrial Flue Gases for Biomass Generation from Microalgae. S. Afr. J. Chem. Eng. 2018, 25, 133–146. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Z.; Zhou, J.; Cen, K. Improving the CO2 Fixation Rate by Increasing Flow Rate of the Flue Gas from Microalgae in a Raceway Pond. Korean J. Chem. Eng. 2018, 35, 498–502. [Google Scholar] [CrossRef]
- Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Carbohydrate Biosynthesis in Plants and Bacteria. In Principles of Biochemistry; Lehninger, A.L., Nelson, D.L., Cox, M.M., Eds.; McGraw-Hill Book: New York, NY, USA, 2004; pp. 751–786. [Google Scholar]
- Kuo, C.-M.; Jian, J.-F.; Lin, T.-H.; Chang, Y.-B.; Wan, X.-H.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Simultaneous Microalgal Biomass Production and CO2 Fixation by Cultivating Chlorella sp. GD with Aquaculture Wastewater and Boiler Flue Gas. Bioresour. Technol. 2016, 221, 241–250. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Sahoo, L.; Mohanty, K. Maximize Microalgal Carbon Dioxide Utilization and Lipid Productivity by Using Toxic Flue Gas Compounds as Nutrient Source. Bioresour. Technol. 2022, 348, 126784. [Google Scholar] [CrossRef]
- Duarte, J.H.; de Morais, E.G.; Radmann, E.M.; Costa, J.A.V. Biological CO2 Mitigation from Coal Power Plant by Chlorella fusca and Spirulina sp. Bioresour. Technol. 2017, 234, 472–475. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Chiu, T.-W.; Lin, H.-Y.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Utilization of Carbon Dioxide in Industrial Flue Gases for the Cultivation of Microalga chlorella sp. Bioresour. Technol. 2014, 166, 485–493. [Google Scholar] [CrossRef]
- Yadav, G.; Dash, S.K.; Sen, R. A Biorefinery for Valorization of Industrial Waste-Water and Flue Gas by Microalgae for Waste Mitigation, Carbon-Dioxide Sequestration and Algal Biomass Production. Sci. Total Environ. 2019, 688, 129–135. [Google Scholar] [CrossRef]
- Hariz, H.B.; Takriff, M.S.; Mohd Yasin, N.H.; Ba-Abbad, M.M.; Mohd Hakimi, N.I.N. Potential of the Microalgae-Based Integrated Wastewater Treatment and CO2 Fixation System to Treat Palm Oil Mill Effluent (POME) by Indigenous Microalgae; Scenedesmus sp. and Chlorella sp. J. Water Process Eng. 2019, 32, 100907. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.-H.; Zhang, J.-T.; Chi, Z.-Y.; Kong, F.-T.; Zhang, Q. The Long Overlooked Microalgal Nitrous Oxide Emission: Characteristics, Mechanisms, and Influencing Factors in Microalgae-Based Wastewater Treatment Scenarios. Sci. Total Environ. 2023, 856, 159153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, J.; Zhang, X.; Chen, L.; Liu, J. Metabolic Pathways of Chlorella sp. Cells Induced by Exogenous Spermidine against Nitric Oxide Damage from Coal-Fired Flue Gas. Bioresour. Technol. 2021, 328, 124827. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Banerjee, D.; Das, D. Carbon Dioxide Sequestration from Industrial Flue Gas by Chlorella sorokiniana. Bioresour. Technol. 2014, 152, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cheng, J.; Miao, Y.; Guo, W.; Zhou, J. SO2 Impurity in Simulated Flue Gas with 15% CO2 Affects Dynamic Bubble Dissolution and Arthrospira Photosynthetic Growth. ACS Sustain. Chem. Eng. 2021, 9, 5580–5589. [Google Scholar] [CrossRef]
- Matito-Martos, I.; Sepúlveda, C.; Gómez, C.; Acién, G.; Perez-Carbajo, J.; Delgado, J.A.; Águeda, V.I.; Ania, C.; Parra, J.B.; Calero, S.; et al. Potential of CO2 Capture from Flue Gases by Physicochemical and Biological Methods: A Comparative Study. Chem. Eng. J. 2021, 417, 128020. [Google Scholar] [CrossRef]
- Hong, M.E.; Chang, W.S.; Patel, A.K.; Oh, M.S.; Lee, J.J.; Sim, S.J. Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO2 into Red Gold Astaxanthin: The Potential Applicability. Energies 2019, 12, 1718. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.A.; Ravindran, B.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Techno-Economic Estimation of Wastewater Phycoremediation and Environmental Benefits Using Scenedesmus Obliquus Microalgae. J. Environ. Manag. 2019, 240, 293–302. [Google Scholar] [CrossRef]
- Yadav, G.; Panda, S.P.; Sen, R. Strategies for the Effective Solid, Liquid and Gaseous Waste Valorization by Microalgae: A Circular Bioeconomy Perspective. J. Environ. Chem. Eng. 2020, 8, 104518. [Google Scholar] [CrossRef]
- Llamas, B.; Suárez-Rodríguez, M.C.; González-López, C.V.; Mora, P.; Acién, F.G. Techno-Economic Analysis of Microalgae Related Processes for CO2 Bio-Fixation. Algal Res. 2021, 57, 102339. [Google Scholar] [CrossRef]
- Song, C.; Hu, X.; Liu, Z.; Li, S.; Kitamura, Y. Combination of Brewery Wastewater Purification and CO2 Fixation with Potential Value-Added Ingredients Production via Different Microalgae Strains Cultivation. J. Clean. Prod. 2020, 268, 122332. [Google Scholar] [CrossRef]
- Rezvani, S.; Moheimani, N.R.; Bahri, P.A. Techno-Economic Assessment of CO2 Bio-Fixation Using Microalgae in Connection with Three Different State-of-the-Art Power Plants. Comput. Chem. Eng. 2016, 84, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Song, C.; Mu, H.; Liu, Z.; Kitamura, Y. Optimization of Simultaneous Soybean Processing Wastewater Treatment and Flue Gas CO2 Fixation via Chlorella sp. L166 Cultivation. J. Environ. Chem. Eng. 2020, 8, 103960. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Uma, V.S.; Mathimani, T.; Deviram, G.; Arul Ananth, D.; Prabaharan, D.; Uma, L. On-Site Concurrent Carbon Dioxide Sequestration from Flue Gas and Calcite Formation in Ossein Effluent by a Marine Cyanobacterium Phormidium valderianum BDU 20041. Energy Convers. Manag. 2017, 141, 315–324. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. Optimisation and Performance Prediction of Photosynthetic Biogas Upgrading Using a Bubble Column. Chem. Eng. J. 2022, 437, 134988. [Google Scholar] [CrossRef]
- Wu, K.-K.; Zhao, L.; Sun, Z.-F.; Wang, Z.-H.; Chen, C.; Ren, H.-Y.; Yang, S.-S.; Ren, N.-Q. Synergistic Effect of Hydrogen and Nanoscale Zero-Valent Iron on Ex-Situ Biogas Upgrading and Acetate Recovery. Sci. Total Environ. 2023, 856, 159100. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Tabaco-Angoa, T.; Ramírez-García, M.A.; González-Sánchez, A. Strategies for Decreasing the O2 Content in the Upgraded Biogas Purified via Microalgae-Based Technology. J. Environ. Manag. 2021, 279, 111813. [Google Scholar] [CrossRef] [PubMed]
- Meier, L.; Stará, D.; Bartacek, J.; Jeison, D. Removal of H2S by a Continuous Microalgae-Based Photosynthetic Biogas Upgrading Process. Process Saf. Environ. Prot. 2018, 119, 65–68. [Google Scholar] [CrossRef]
- Rodero, M.D.R.; Lebrero, R.; Serrano, E.; Lara, E.; Arbib, Z.; García-Encina, P.A.; Muñoz, R. Technology Validation of Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Algal-Bacterial Photobioreactor. Bioresour. Technol. 2019, 279, 43–49. [Google Scholar] [CrossRef]
- Bose, A.; Lin, R.; Rajendran, K.; O’Shea, R.; Xia, A.; Murphy, J.D. How to Optimise Photosynthetic Biogas Upgrading: A Perspective on System Design and Microalgae Selection. Biotechnol. Adv. 2019, 37, 107444. [Google Scholar] [CrossRef]
- Prandini, J.M.; da Silva, M.L.B.; Mezzari, M.P.; Pirolli, M.; Michelon, W.; Soares, H.M. Enhancement of Nutrient Removal from Swine Wastewater Digestate Coupled to Biogas Purification by Microalgae scenedesmus Spp. Bioresour. Technol. 2016, 202, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Rodero, M.D.R.; Carvajal, A.; Arbib, Z.; Lara, E.; de Prada, C.; Lebrero, R.; Muñoz, R. Performance Evaluation of a Control Strategy for Photosynthetic Biogas Upgrading in a Semi-Industrial Scale Photobioreactor. Bioresour. Technol. 2020, 307, 123207. [Google Scholar] [CrossRef] [PubMed]
- Rocher-Rivas, R.; González-Sánchez, A.; Ulloa-Mercado, G.; Muñoz, R.; Quijano, G. Biogas Desulfurization and Calorific Value Enhancement in Compact H2S/CO2 Absorption Units Coupled to a Photobioreactor. J. Environ. Chem. Eng. 2022, 10, 108336. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Integration of Anaerobic Digestion and Microalgal Cultivation for Digestate Bioremediation and Biogas Upgrading. Bioresour. Technol. 2019, 290, 121804. [Google Scholar] [CrossRef] [PubMed]
- Marín, D.; Méndez, L.; Suero, I.; Díaz, I.; Blanco, S.; Fdz-Polanco, M.; Muñoz, R. Anaerobic Digestion of Food Waste Coupled with Biogas Upgrading in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. Fuel 2022, 324, 124554. [Google Scholar] [CrossRef]
- Méndez, L.; García, D.; Perez, E.; Blanco, S.; Muñoz, R. Photosynthetic Upgrading of Biogas from Anaerobic Digestion of Mixed Sludge in an Outdoors Algal-Bacterial Photobioreactor at Pilot Scale. J. Water Process Eng. 2022, 48, 102891. [Google Scholar] [CrossRef]
- Ángeles, R.; Vega-Quiel, M.J.; Batista, A.; Fernández-Ramos, O.; Lebrero, R.; Muñoz, R. Influence of Biogas Supply Regime on Photosynthetic Biogas Upgrading Performance in an Enclosed Algal-Bacterial Photobioreactor. Algal Res. 2021, 57, 102350. [Google Scholar] [CrossRef]
- González-Sánchez, A.; Posten, C. Fate of H2S during the Cultivation of Chlorella sp. Deployed for Biogas Upgrading. J. Environ. Manag. 2017, 191, 252–257. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Serejo, M.L.; Blanco, S.; Pérez, R.; Lebrero, R.; Muñoz, R. Photosynthetic Biogas Upgrading to Bio-Methane: Boosting Nutrient Recovery via Biomass Productivity Control. Algal Res. 2016, 17, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Xue, Z.; Sun, S.; Zhao, C.; Liu, J.; Liu, J.; Zhao, Y. Co-Culturing Microalgae with Endophytic Bacteria Increases Nutrient Removal Efficiency for Biogas Purification. Bioresour. Technol. 2020, 314, 123766. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, B.; Zhao, C.; Liu, J.; Zhao, Y.; Sun, S.; Wei, J. Simultaneous Biogas Upgrading and Biogas Slurry Treatment by Different Microalgae-Based Technologies under Various Strigolactone Analog (GR24) Concentrations. Bioresour. Technol. 2022, 351, 127033. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; O’Shea, R.; Lin, R.; Murphy, J.D. Design, Commissioning, and Performance Assessment of a Lab-Scale Bubble Column Reactor for Photosynthetic Biogas Upgrading with Spirulina platensis. Ind Eng Chem Res 2021, 60, 5688–5704. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.; Ishika, T.; Nwoba, E.G.; Tait, S.; Ward, A.; Moheimani, N.R. Biomass Production of Marine Microalga Tetraselmis suecica Using Biogas and Wastewater as Nutrients. Biomass Bioenergy 2021, 145, 105945. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Alcántara, C.; Noyola, A.; Muñoz, R.; González-Sánchez, A. A Study of Photosynthetic Biogas Upgrading Based on a High Rate Algal Pond under Alkaline Conditions: Influence of the Illumination Regime. Sci. Total Environ. 2017, 592, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, K.; Browne, J.D.; Murphy, J.D. What Is the Level of Incentivisation Required for Biomethane Upgrading Technologies with Carbon Capture and Reuse? Renew. Energy 2019, 133, 951–963. [Google Scholar] [CrossRef]
- Franco-Morgado, M.; Toledo-Cervantes, A.; González-Sánchez, A.; Lebrero, R.; Muñoz, R. Integral (VOCs, CO2, Mercaptans and H2S) Photosynthetic Biogas Upgrading Using Innovative Biogas and Digestate Supply Strategies. Chem. Eng. J. 2018, 354, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, X.; Liu, J.; Zhao, C.; Sun, S.; Zhao, Y. Biogas Slurry Nutrient Removal and Biogas Upgrade in Co-Cultivated Microalgae and Fungi by Induction with Strigolactone. Algal Res. 2021, 59, 102467. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, C.; Liu, J.; Sun, S.; Zhao, Y.; Wei, J. Effects of Exogenous GR24 on Biogas Upgrading and Nutrient Removal by Co-Culturing Microalgae with Fungi under Mixed LED Light Wavelengths. Chemosphere 2021, 281, 130791. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, G.; Sun, S.; Hu, C.; Liu, J. Co-Pelletization of Microalgae and Fungi for Efficient Nutrient Purification and Biogas Upgrading. Bioresour. Technol. 2019, 289, 121656. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Toledo-Cervantes, A.; de Godos, I.; Gouveia, L.; Munõz, R. Life Cycle Assessment of Pilot and Real Scale Photosynthetic Biogas Upgrading Units. Algal Res. 2019, 44, 101668. [Google Scholar] [CrossRef]
- Bose, A.; O’Shea, R.; Lin, R.; Long, A.; Rajendran, K.; Wall, D.; De, S.; Murphy, J.D. The Marginal Abatement Cost of Co-Producing Biomethane, Food and Biofertiliser in a Circular Economy System. Renew. Sustain. Energy Rev. 2022, 169, 112946. [Google Scholar] [CrossRef]
- Morais, E.G.D.; Amaro Marques, J.C.; Cerqueira, P.R.; Dimas, C.; Sousa, V.S.; Gomes, N.; Ribau Teixeira, M.; Nunes, L.M.; Varela, J.; Barreira, L. Tertiary Urban Wastewater Treatment with Microalgae Natural Consortia in Novel Pilot Photobioreactors. J. Clean. Prod. 2022, 378, 134521. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Acién-Fernández, F.G.; Gómez-Serrano, C.; González-López, C.V. Annual Production of Microalgae in Wastewater Using Pilot-Scale Thin-Layer Cascade Photobioreactors. J. Appl. Phycol. 2021, 33, 3861–3871. [Google Scholar] [CrossRef]
- Daneshvar, E.; Zarrinmehr, M.J.; Koutra, E.; Kornaros, M.; Farhadian, O.; Bhatnagar, A. Sequential Cultivation of Microalgae in Raw and Recycled Dairy Wastewater: Microalgal Growth, Wastewater Treatment and Biochemical Composition. Bioresour. Technol. 2019, 273, 556–564. [Google Scholar] [CrossRef]
- Malibari, R.; Sayegh, F.; Elazzazy, A.M.; Baeshen, M.N.; Dourou, M.; Aggelis, G. Reuse of Shrimp Farm Wastewater as Growth Medium for Marine Microalgae Isolated from Red Sea—Jeddah. J. Clean. Prod. 2018, 198, 160–169. [Google Scholar] [CrossRef]
- Morais, M.G.; Santos, T.D.; Moraes, L.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Exopolysaccharides from Microalgae: Production in a Biorefinery Framework and Potential Applications. Bioresour. Technol. Rep. 2022, 18, 101006. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Swaminathan, M.K.; Boelen, P.; Buma, A.G.J. Sulfated Exopolysaccharide Production and Nutrient Removal by the Marine Diatom Phaeodactylum tricornutum Growing on Palm Oil Mill Effluent. J. Appl. Phycol. 2019, 31, 2335–2348. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-H.; Zell, N.; Boßle, F.; Teipel, U.; Rauh, C.; McHardy, C.; Lindenberger, C. Influence of Process Operation on the Production of Exopolysaccharides in Arthrospira platensis and Chlamydomonas asymmetrica. Front. Sustain. Food Syst. 2022, 6, 883069. [Google Scholar] [CrossRef]
- ONU United Nations Organization. The Millennium Development Goals Report; ONU United Nations Organization: New York, NY, USA, 2015. [Google Scholar]
- Rempel, A.; Gutkoski, J.P.; Nazari, M.T.; Biolchi, G.N.; Cavanhi, V.A.F.; Treichel, H.; Colla, L.M. Current Advances in Microalgae-Based Bioremediation and Other Technologies for Emerging Contaminants Treatment. Sci. Total Environ. 2021, 772, 144918. [Google Scholar] [CrossRef]
- Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae Water Bioremediation: Trends and Hot Topics. Appl. Sci. 2020, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Kurade, M.B.; Jeon, B. Can Microalgae Remove Pharmaceutical Contaminants from Water ? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ying, G.; Yang, B.; Liu, S.; Lai, H.; Liu, Y.; Chen, Z.; Zhou, G. Biotransformation of Progesterone and Norgestrel by Two Freshwater Microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation Kinetics and Products Identification. Chemosphere 2014, 95, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Kurade, M.B.; Abou-shanab, R.A.I.; Ji, M.; Choi, J.; Oh, J.; Jeon, B. Biodegradation of Carbamazepine Using Freshwater Microalgae Chlamydomonas Mexicana and Scenedesmus Obliquus and the Determination of Its Metabolic Fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Sforza, E.; Pastore, M.; Santeufemia Sanchez, S.; Bertucco, A. Bioaugmentation as a Strategy to Enhance Nutrient Removal: Symbiosis between Chlorella protothecoides and Brevundimonas diminuta. Bioresour. Technol. Rep. 2018, 4, 153–158. [Google Scholar] [CrossRef]
- Mehariya, S.; Kumar, R.; Parthiba, O.; Verma, P. Chemosphere Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef]
- Mendonça, H.V.D.; Assemany, P.; Abreu, M.; Couto, E.; Maciel, A.M.; Duarte, R.L.; Santos, M.G.B.D.; Reis, A. Microalgae in a Global World: New Solutions for Old Problems? Renew. Energy 2021, 165, 842–862. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.H. Microalgae as a Solution of Third World Energy Crisis for Biofuels Production from Wastewater toward Carbon Neutrality: An Updated Review. Chemosphere 2022, 291, 132863. [Google Scholar] [CrossRef]
- Costa, S.S.; Miranda, A.L.; de Morais, M.G.; Costa, J.A.V.; Druzian, J.I. Microalgae as Source of Polyhydroxyalkanoates (PHAs)—A Review. Int. J. Biol. Macromol. 2019, 131, 536–547. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.D.S.; Oliveira, P.Z.D.; Bittencourt, G.A.; Mello, A.F.M.D.; Sarmiento, Z.; Vásquez; Karp, S.G.; Soccol, C.R. The 2G and 3G Bioplastics: An Overview. Biotechnol. Res. Innov. 2021, 5, e2021004. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent Advances in the Sustainable Design and Applications of Biodegradable Polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef]
- Zeller, M.A.; Hunt, R.; Jones, A.; Sharma, S. Bioplastics and Their Thermoplastic Blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci. 2013, 130, 3263–3275. [Google Scholar] [CrossRef]
- Kartik, A.; Akhil, D.; Lakshmi, D.; Panchamoorthy Gopinath, K.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A Critical Review on Production of Biopolymers from Algae Biomass and Their Applications. Bioresour. Technol. 2021, 329, 124868. [Google Scholar] [CrossRef] [PubMed]
- Noreen, A.; Zia, K.M.; Zuber, M.; Ali, M.; Mujahid, M. A Critical Review of Algal Biomass: A Versatile Platform of Bio-Based Polyesters from Renewable Resources. Int. J. Biol. Macromol. 2016, 86, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Kaparapu, J. Polyhydroxyalkanoate (PHA) Production by Genetically Engineered Microalgae: A Review. J. New Biol. Rep. 2018, 7, 68–73. [Google Scholar]
- Pérez, J.P.; Munoz, A.A.; Figuero, C.P.; Agurto-Munoz, C. Current Analytical Techniques for the Characterization of Lipophilic Bioactive Compounds from Microalgae Extracts. Biomass Bioenergy 2021, 149, 106078. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I. Progress in Physicochemical Parameters of Microalgae Cultivation for Biofuel Production. Crit. Rev. Biotechnol. 2019, 39, 835–859. [Google Scholar] [CrossRef]
- Milano, J.; Ong, H.C.; Masjuki, H.H.; Chong, W.T.; Lam, M.K.; Loh, P.K.; Vellayan, V. Microalgaebiofuelsasanalternativetofossilfuelforpowergeneration. Renew. Sustain. Energy Rev. 2016, 58, 180–197. [Google Scholar] [CrossRef]
- Nethravathy, M.U.; Mehar, J.G.; Mudliar, S.N.; Shekh, A.Y. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Bassi, A. Carotenoids from Microalgae: A Review of Recent Developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef]
- Di Chen, Y.; Liu, F.; Ren, N.Q.; Ho, S.H. Revolutions in Algal Biochar for Different Applications: State-of-the-Art Techniques and Future Scenarios. Chin. Chem. Lett. 2020, 31, 2591–2602. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological Remediation of Acid Mine Drainage: Review of Past Trends and Current Outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Donepudi, J.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Kuppam, C. Production of Biofuels from Microalgae—A Review on Cultivation, Harvesting, Lipid Extraction, and Numerous Applications of Microalgae. Renew. Sustain. Energy Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from Microalgae: Technologies, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Narindri Rara Winayu, B.; Tung Lai, K.; Ta Hsueh, H.; Chu, H. Production of Phycobiliprotein and Carotenoid by Efficient Extraction from Thermosynechococcus sp. CL-1 Cultivation in Swine Wastewater. Bioresour. Technol. 2021, 319, 124125. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae Biotechnology for Industrial Wastewater Treatment, Bioenergy Production, and High-Value Bioproducts. Sci. Total Environ. 2022, 806, 150585. [Google Scholar] [CrossRef]
- Thangam, K.R.; Santhiya, A.; Sri, S.R.A.; MubarakAli, D.; Karthikumar, S.; Kumar, R.S.; Thajuddin, N.; Soosai, M.R.; Varalakshmi, P.; Moorthy, I.G.; et al. Bio-Refinery Approaches Based Concomitant Microalgal Biofuel Production and Wastewater Treatment. Sci. Total Environ. 2021, 785, 147267. [Google Scholar] [CrossRef]
- Baldev, E.; Mubarak, D.; Pugazhendhi, A.; Thajuddin, N. Wastewater as an Economical and Ecofriendly Green Medium for Microalgal Biofuel Production. Fuel 2021, 294, 120484. [Google Scholar] [CrossRef]
- Vieira, H.; Mendonça, D.; Henrique, M.; Marchão, L.; Lomeu, A.; Salvador, D.; Souza, D.; Reis, A. Science of the Total Environment Biofuel Recovery from Microalgae Biomass Grown in Dairy Wastewater Treated with Activated Sludge: The next Step in Sustainable Production. Sci. Total Environ. 2022, 824, 153838. [Google Scholar]
- Cardoso, L.G.; Duarte, J.H.; Andrade, B.B.; Lemos, P.V.F.; Costa, J.A.V.; Druzian, J.I.; Chinalia, F.A. Spirulina sp. LEB 18 Cultivation in Outdoor Pilot Scale Using Aquaculture Wastewater: High Biomass, Carotenoid, Lipid and Carbohydrate Production. Aquaculture 2020, 525, 735272. [Google Scholar] [CrossRef]
- Bhuyar, P.; Sundararaju, S.; Rahim, M.H.A.; Ramaraj, R.; Maniam, G.P.; Govindan, N. Microalgae Cultivation Using Palm Oil Mill Effluent as Growth Medium for Lipid Production with the Effect of CO2 Supply and Light Intensity. Biomass Convers. Biorefin. 2021, 11, 1555–1563. [Google Scholar] [CrossRef]
- Kavitha, G.; Kurinjimalar, C.; Sivakumar, K.; Kaarthik, M.; Aravind, R.; Palani, P.; Rengasamy, R. Optimization of Polyhydroxybutyrate Production Utilizing Waste Water as Nutrient Source by Botryococcus braunii Kütz Using Response Surface Methodology. Int. J. Biol. Macromol. 2016, 93, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Fernández, F.G.A.; Reis, A.; Wijffels, R.H.; Barbosa, M.; Verdelho, V.; Llamas, B. The Role of Microalgae in the Bioeconomy. New Biotechnol. 2021, 61, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Banu, R.J.; Preethi; Kavitha, S.; Gunasekaran, M.; Kumar, G. Microalgae Based Biorefinery Promoting Circular Bioeconomy-Techno Economic and Life-Cycle Analysis. Bioresour. Technol. 2020, 302, 122822. [Google Scholar] [CrossRef]
- Monari, C.; Righi, S.; Olsen, S.I. Greenhouse Gas Emissions and Energy Balance of Biodiesel Production from Microalgae Cultivated in Photobioreactors in Denmark: A Life-Cycle Modeling. J. Clean. Prod. 2016, 112, 4084–4092. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-Economic Analysis of Autotrophic Microalgae for Fuel Production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Thomassen, G.; Egiguren Vila, U.; Van Dael, M.; Lemmens, B.; Van Passel, S. A Techno-Economic Assessment of an Algal-Based Biorefinery. Clean Technol. Environ. Policy 2016, 18, 1849–1862. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Based Livestock Wastewater Treatment (MbWT) as a Circular Bioeconomy Approach: Enhancement of Biomass Productivity, Pollutant Removal and High-Value Compound Production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Silva-Núñez, A.; García-Perez, J.S.; Carrillo-Nieves, D.; Salinas-Salazar, C.; Castillo-Zacarías, C.; Afewerki, S.; Barceló, D.; Iqbal, H.N.M.; Parra-Saldívar, R. Phyco-Remediation of Swine Wastewater as a Sustainable Model Based on Circular Economy. J. Environ. Manag. 2021, 278, 111534. [Google Scholar] [CrossRef]
- Ciardi, M.; Gómez-Serrano, C.; Lafarga, T.; González-Céspedes, A.; Acién, G.; López-Segura, J.G.; Fernández-Sevilla, J.M. Pilot-Scale Annual Production of Scenedesmus almeriensis Using Diluted Pig Slurry as the Nutrient Source: Reduction of Water Losses in Thin-Layer Cascade Reactors. J. Clean. Prod. 2022, 359, 132076. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Gutiérrez, R.; Uggetti, E.; Matamoros, V.; García, J.; Ferrer, I. Use of Full-Scale Hybrid Horizontal Tubular Photobioreactors to Process Agricultural Runoff. Biosyst. Eng. 2018, 166, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-Based Biorefineries for Sustainable Resource Recovery from Wastewater. J. Water Process Eng. 2021, 40, 101747. [Google Scholar] [CrossRef]
Parameter | SV | POME | CPW | AW | DW |
---|---|---|---|---|---|
pH | 4.3–7.9 | 7.64–7.8 | 7.5 | 6.9 | 6.8–7.5 |
COD (gO2 L−1) | 4.9–33.16 | 2.57–6.4 | 0.235 | 0.303 ± 0.114 | 0.4–0.98 |
Total suspended solids (g L−1) | 1.62–3.45 | 2.5 | 0.1–0.13 | ||
Total solid (g L−1) | 3.4 | - | |||
Total nitrogen (g L−1) | 0.49–3.56 | 0.25–0.34 | - | 0.022–0.051 | |
Total phosphorus (mg L−1) | - | 0.11–0.24 | - | 8.6 | |
NO3− (mg L−1) | 298 | - | 0.6 | 140 | |
PO43− (mg L−1) | 34 | - | 90 ± 8 | ||
NH4+ (mg L−1) | 0.126 | 222 ±12 | |||
References | [162,163] | [149,164] | [57] | [20] |
Biological Treatment | Biogas Content | CO2 Removal (%) | H2S Removal (%) | Reference | |||
---|---|---|---|---|---|---|---|
Inflow (%) | Outflow (%) | ||||||
CH4 | CO2 | H2S | CH4 | ||||
Microalgae and bacteria consortium | 69.5 | 30 | 0.5 | 71 | 88 | 100 | [200] |
Microalgae and bacteria consortium | 69.2 | 32.7 | 0.12 | 87 | 71 | 99 | [202] |
Microalgae consortium (predominantly Scenedesmus sp.) | 68.7 | 21.6 | 0.012 | 50.4 | 95 | 99.8 | [204] |
Microalgae and bacteria consortium | 70.5 | 31.5 | 0.0005 | 97.3 | 93 | 100 | [205] |
Microalgae consortium (predominantly Acutodesmus deserticola) | 60 | 39.5 | 0.5 | 68.8 | 20 | 100 | [206] |
Microalgae consortium (predominantly Pseudoanabaena sp. and Chlorella vulgaris) | 60 | 38.7 | n.d. | 93.9 | 90 | n.a. | [208] |
Product | Type of Effluent | Microorganism | Production/Yield | Reference |
---|---|---|---|---|
Allophycocyanin | Swine wastewater | Thermosynechococcus sp. CL-1 | 12,07 ± 0,3% dwc | [259] |
Algal biomass | Dairy effluent | Chlorella vulgaris | 0.175 mg L−1 day−1 | [260] |
Biomass for bioethanol production | Domestic wastewater | Scenedesmus sp. | Maximum biomass productivity: 62 mg L−1 day−1 | [261] |
Biomass for bioethanol production | Domestic wastewaters | Scenedesmus sp. | Biomass 0.84 g L−1; lipid productivity 8.6 mg L−1 day−1 | [262] |
Biomass for bioethanol production | Dairy wastewater | Scenedesmus obliquus and Chlorella vulgaris | Dry biomass produced was in the range of 2.30 to 3.10 g L−1; yields for lipids 0.068 g L−1 day−1 and carbohydrates 0.114 g L−1 day−1 | [263] |
Biomass for biodiesel production | Cheese whey wastewater | Chlorella pyrenoidosa | Maximum algal biomass yield: 2.44 g L−1; Lipid productivity: 77.41 mg L−1 day−1, | [143] |
Carotenoids | Aquaculture effluent | Spirulina sp. LEB 18 | 9.68 μg mL−1 | [264] |
Lipid | Aquaculture wastewater | Microalgal consortium of Euglena gracilis and Selena strum | 84.9 mg L−1 | [260] |
Lipid | Dairy effluent | Arthrospira platensis | 158 mg L−1 day−1 | [260] |
Lipid | Dairy effluent | Scenedesmus sp. ASK22 | 30.7% content | [260] |
Lipid | Molasses wastewater | 92.33% content | [260] | |
Lipids | POME wastewater | Chlorella sp. | 66% | [265] |
PHB | Sewage wastewater | Botryococcus braunii | 247 mg L−1 of PHB | [266] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, J.C.; Molina-Aulestia, D.T.; Martinez-Burgos, W.J.; Karp, S.G.; Manzoki, M.C.; Medeiros, A.B.P.; Rodrigues, C.; Scapini, T.; Vandenberghe, L.P.d.S.; Vieira, S.; et al. Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation 2022, 8, 728. https://doi.org/10.3390/fermentation8120728
de Carvalho JC, Molina-Aulestia DT, Martinez-Burgos WJ, Karp SG, Manzoki MC, Medeiros ABP, Rodrigues C, Scapini T, Vandenberghe LPdS, Vieira S, et al. Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation. 2022; 8(12):728. https://doi.org/10.3390/fermentation8120728
Chicago/Turabian Stylede Carvalho, Júlio Cesar, Denisse Tatiana Molina-Aulestia, Walter José Martinez-Burgos, Susan Grace Karp, Maria Clara Manzoki, Adriane Bianchi Pedroni Medeiros, Cristine Rodrigues, Thamarys Scapini, Luciana Porto de Souza Vandenberghe, Sabrina Vieira, and et al. 2022. "Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy" Fermentation 8, no. 12: 728. https://doi.org/10.3390/fermentation8120728
APA Stylede Carvalho, J. C., Molina-Aulestia, D. T., Martinez-Burgos, W. J., Karp, S. G., Manzoki, M. C., Medeiros, A. B. P., Rodrigues, C., Scapini, T., Vandenberghe, L. P. d. S., Vieira, S., Woiciechowski, A. L., Soccol, V. T., & Soccol, C. R. (2022). Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation, 8(12), 728. https://doi.org/10.3390/fermentation8120728