Effect of Pre-Fermentative Bentonite Addition on Pinot Noir Wine Colour, Tannin, and Aroma Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapes and Wine Samples
2.2. Oenological Parameters
2.3. Methylcellulose Precipitable Tannins
2.4. Analysis of Pathogenesis-Related Proteins by HPLC
2.5. Colour Parameters in Resultant Wines
2.6. Aroma Profiling by SPME GC-MS
2.7. Statistical Analysis
3. Results
3.1. Fermentation Kinetics and Oenological Parameters
3.2. Pathogenesis-Related Proteins in Juice
3.3. Wine Colour and Phenolics
3.4. Wine Aroma Composition Affected by Bentonite Addition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, R. Practical interventions that influence the sensory attributes of red wines related to the phenolic composition of grapes: A review. Int. J. Food Sci. Technol. 2018, 53, 3–18. [Google Scholar] [CrossRef]
- González-Muñoz, B.; Garrido-Vargas, F.; Pavez, C.; Osorio, F.; Chen, J.; Bordeu, E.; O’Brien, J.A.; Brossard, N. Wine astringency: More than just tannin–protein interactions. J. Sci. Food Agric. 2022, 102, 1771–1781. [Google Scholar] [CrossRef]
- Brandão, E.; Silva, M.S.; García-Estévez, I.; Williams, P.; Mateus, N.; Doco, T.; de Freitas, V.; Soares, S. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr. Polym. 2017, 177, 77–85. [Google Scholar] [CrossRef]
- McRae, J.M.; Kennedy, J.A. Wine and grape tannin interactions with salivary proteins and their impact on astringency: A review of current research. Molecules 2011, 16, 2348–2364. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. 1985, 2, 1429–1438. [Google Scholar] [CrossRef]
- Le Bourse, D.; Conreux, A.; Villaume, S.; Lameiras, P.; Nuzillard, J.M.; Jeandet, P. Quantification of chitinase and thaumatin-like proteins in grape juices and wines. Anal. Bioanal. Chem. 2011, 401, 1541–1549. [Google Scholar] [CrossRef]
- Sauvage, F.X.; Bach, B.; Moutounet, M.; Vernhet, A. Proteins in white wines: Thermo-sensitivity and differential adsorbtion by bentonite. Food Chem. 2010, 118, 26–34. [Google Scholar] [CrossRef]
- Marangon, M.; Van Sluyter, S.C.; Haynes, P.A.; Waters, E.J. Grape and wine proteins: Their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. J. Agric. Food Chem. 2009, 57, 4415–4425. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.; Deb-Choudhury, S. Proteomic analysis of Sauvignon blanc grape skin, pulp and seed and relative quantification of pathogenesis-related proteins. PLoS ONE 2015, 10, e0130132. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Changes in pathogenesis-related proteins and phenolics in Vitis vinifera L. cv. ‘Sauvignon Blanc’ grape skin and pulp during ripening. Sci. Hortic. 2019, 243, 78–83. [Google Scholar] [CrossRef]
- Monteiro, S.; Piçarra-Pereira, M.A.; Loureiro, V.B.; Teixeira, A.R.; Ferreira, R.B. The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry 2007, 68, 416–425. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Jaspers, M.; Morton, J. Influence of ultraviolet exclusion and of powdery mildew infection on Sauvignon Blanc grape composition and on extraction of pathogenesis-related proteins into juice. Aust. J. Grape Wine Res. 2015, 21, 417–424. [Google Scholar] [CrossRef]
- Batista, L.; Monteiro, S.; Loureiro, V.B.; Teixeira, A.R.; Ferreira, R.B. The complexity of protein haze formation in wines. Food Chem. 2009, 112, 169–177. [Google Scholar] [CrossRef]
- Dordoni, R.; Galasi, R.; Colangelo, D.; De Faveri, D.M.; Lambri, M. Effects of fining with different bentonite labels and doses on colloidal stability and colour of a Valpolicella red wine. Int. J. Food Sci. Technol. 2015, 50, 2246–2254. [Google Scholar] [CrossRef]
- Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Comparing the impact of bentonite addition for both must clarification and wine fining on the chemical profile of wine from Chambave Muscat grapes. Int. J. Food Sci. Technol. 2012, 47, 1–12. [Google Scholar] [CrossRef]
- Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Effect of bentonite fining on odor-active compounds in two different white wine styles. Am. J. Enol. Vitic. 2010, 61, 225–233. [Google Scholar]
- Au, P.-I.; Leong, Y.-K. Rheological and zeta potential behaviour of kaolin and bentonite composite slurries. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Gougeon, R.D.; Soulard, M.; Miehé-Brendlé, J.; Chézeau, J.-M.; Le Dred, R.; Jeandet, P.; Marchal, R. Analysis of two bentonites of enological interest before and after commercial activation by solid Na2CO3. J. Agric. Food Chem. 2003, 51, 4096–4100. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine-Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 281–530. [Google Scholar]
- Stankovic, S.; Jovic, S.; Zivkovic, J.; Pavlovic, R. Influence of age on red wine colour during fining with bentonite and gelatin. Int. J. Food Prop. 2012, 15, 326–335. [Google Scholar] [CrossRef]
- Mainente, F.; Zoccatelli, G.; Lorenzini, M.; Cecconi, D.; Vincenzi, S.; Rizzi, C.; Simonato, B. Red wine proteins: Two dimensional (2-D) electrophoresis and mass spectrometry analysis. Food Chem. 2014, 164, 413–417. [Google Scholar] [CrossRef]
- Springer, L.F.; Sherwood, R.W.; Sacks, G.L. Pathogenesis-related proteins limit the retention of condensed tannin additions to red wines. J. Agric. Food Chem. 2016, 64, 1309–1317. [Google Scholar] [CrossRef]
- Iland, P.; Bruer, N.; Edwards, G.; Weeks, S.; Wilkes, E. Chemical Analysis of Grapes and Wine: Techniques and Concepts; Patrick Iland Wine Promotions: Campbelltown, SA, Australia, 2004. [Google Scholar]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Influence of skin contact and different extractants on extraction of proteins and phenolic substances in Sauvignon Blanc grape skin. Aust. J. Grape Wine Res. 2020, 26, 180–186. [Google Scholar] [CrossRef]
- Wimalasiri, P.M.; Olejar, K.J.; Harrison, R.; Hider, R.; Tian, B. Whole bunch fermentation and the use of grape stems: Effect on phenolic and volatile aroma composition of Vitis vinifera cv. Pinot Noir wine. Aust. J. Grape Wine Res. 2022, 28, 395–406. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Picarra-Pereira, M.A.; Monteiro, S.; Loureiro, V.B.; Teixeira, A.R. The wine proteins. Trends Food Sci. Technol. 2002, 12, 230–239. [Google Scholar] [CrossRef]
- Wijeyesekera, D.; Loh, E.; Diman, S.; John, A.; Zainorabidin, A.; Ciupala, M. Sustainability study of the application of geosynthetic clay liners in hostile and aggressive environments. Int. J. Sustain. Dev. 2012, 5, 81–96. [Google Scholar]
- González-Neves, G.; Favre, G.; Gil, G. Effect of fining on the colour and pigment composition of young red wines. Food Chem. 2014, 157, 385–392. [Google Scholar] [CrossRef]
- Donovan, J.L.; McCauley, J.C.; Nieto, N.T.; Waterhouse, A.L. Effects of Small-Scale Fining on the Phenolic Composition and Antioxidant Activity of Merlot Wine; ACS Publications: Washington, DC, USA, 1998. [Google Scholar]
- Gómez-Plaza, E.; Gil-Muñoz, R.; López-Roca, J.; De La Hera-Orts, M.; Martínez-Cultíllas, A. Effect of the addition of bentonite and polyvinylpolypyrrolidone on the colour and long-term stability of red wines. J. Wine Res. 2000, 11, 223–231. [Google Scholar] [CrossRef]
- Basalekou, M.; Pappas, C.; Kotseridis, Y.; Tarantilis, P.A.; Kontaxakis, E.; Kallithraka, S. Red Wine Age Estimation by the Alteration of Its Color Parameters: Fourier Transform Infrared Spectroscopy as a Tool to Monitor Wine Maturation Time. J. Anal. Methods Chem. 2017, 2017, 5767613–5767619. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, C.; Taillandier, P.; Rizk, M.; Rizk, Z.; Nehme, N.; Souchard, J.-P.; El Rayess, Y. Analysis of the impact of fining agents types, oenological tannins and mannoproteins and their concentrations on the phenolic composition of red wine. LWT-Food Sci. Technol. 2017, 83, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Benkwitz, F.; Tominaga, T.; Kilmartin, P.A.; Lund, C.; Wohlers, M.; Nicolau, L. Identifying the chemical composition related to the distinct aroma characteristics of New Zealand Sauvignon blanc wines. Am. J. Enol. Vitic. 2012, 63, 62–72. [Google Scholar] [CrossRef]
- Herbst-Johnstone, M.; Araujo, L.; Allen, T.; Logan, G.; Nicolau, L.; Kilmartin, P. Effects of mechanical harvesting on ‘Sauvignon blanc’ aroma. In Proceedings of the I International Workshop on Vineyard Mechanization and Grape and Wine Quality 978, Piacenza, Italy, 27–29 June 2012; pp. 179–186. [Google Scholar]
- Parr, W.V.; Grose, C.; Hedderley, D.; Maraboli, M.M.; Masters, O.; Araujo, L.D.; Valentin, D. Perception of quality and complexity in wine and their links to varietal typicality: An investigation involving Pinot noir wine and professional tasters. Food Res. Int. 2020, 137, 109423. [Google Scholar] [CrossRef]
Control | Na | Ca | NaCa | |
---|---|---|---|---|
pH | 3.65 ± 0.11 a | 3.63 ± 0.03 a | 3.62 ± 0.02 a | 3.67 ± 0.01 a |
TA (g/L) | 6.88 ± 0.08 a | 6.73 ± 0.15 a | 6.88 ± 0.04 a | 6.71 ± 0.04 a |
Ethanol (%) | 12.11 ± 0.22 a | 12.14 ± 0.26 a | 12.09 ± 0.32 a | 12.31 ± 0.22 a |
Tannin (mg/L) | 890 ± 98 a | 929 ± 61 a | 929 ± 95 a | 918 ± 17 a |
PR Proteins (mg/L) | Juice at Crushing | Juice after Cold Soaking | |||
---|---|---|---|---|---|
Control | Na | Ca | NaCa | ||
TLPs | 70.4 ± 0.6 a | 37.5 ± 4.0 b | 16.3 ± 6.1 c | 25.5 ± 4.5 bc | 28.2 ± 5.9 bc |
Chitinases | 58.7 ± 2.7 a | 38.7 ± 4.8 b | 28.1 ± 10.0 b | 33.1 ± 5.6 b | 33.9 ± 6.8 b |
Parameters | Control | Na | Ca | NaCa |
---|---|---|---|---|
Chemical age I | 0.44 ± 0.02 a | 0.47 ± 0.01 a | 0.47 ± 0.02 a | 0.45 ± 0.01 a |
Chemical age II | 0.13 ± 0.01 a | 0.16 ± 0.01 b | 0.17 ± 0.01 b | 0.15 ± 0.01 ab |
Degree of ionization of anthocyanins (%) | 21.11 ± 1.38 a | 25.56 ± 1.92 b | 26.83 ± 1.90 b | 23.18 ± 0.97 ab |
Total anthocyanin (mg/L) | 170.89 ± 8.06 a | 150.89 ± 7.82 b | 139.44 ± 7.00 b | 153.89 ± 2.84 ab |
Colour density | 6.37 ± 0.21 a | 7.32 ± 0.28 b | 7.02 ± 0.50 ab | 6.48 ± 0.35 ab |
SO2 corrected colour density | 6.45 ± 0.17 a | 7.26 ± 0.30 b | 6.99 ± 0.36 ab | 6.52 ± 0.34 ab |
Hue | 0.96 ± 0.03 a | 1.04 ± 0.03 a | 1.01 ± 0.06 a | 0.98 ± 0.03 a |
SO2 resistant pigments | 1.45 ± 0.05 a | 1.67 ± 0.09 b | 1.62 ± 0.10 ab | 1.48 ± 0.10 ab |
Total phenolics | 32.88 ± 0.68 a | 33.50 ± 0.75 a | 30.00 ± 3.00 a | 31.42 ± 0.40 a |
Aroma Compounds * | Control | Na | Ca | NaCa |
---|---|---|---|---|
Esters | ||||
Ethyl 2-Methyl Butyrate | 5.75 ± 0.41 a | 5.41 ± 0.57 a | 5.07 ± 0.49 a | 5.46 ± 0.58 a |
Ethyl Hydrocinnamate | 0.78 ± 0.17 a | 0.59 ± 0.03 a | 0.57 ± 0.05 a | 0.60 ± 0.06 a |
Ethyl Cinnamate | 1.15 ± 0.30 a | 0.61 ± 0.06 b | 0.55 ± 0.08 b | 0.71 ± 0.03 b |
Ethyl Acetate (mg/L) | 58.03 ± 5.80 a | 53.46 ± 7.39 a | 50.59 ± 2.88 a | 57.39 ± 4.93 a |
Ethyl Isobutyrate | 29.86 ± 2.60 a | 26.62 ± 0.74 a | 26.08 ± 1.87 a | 26.78 ± 2.25 a |
Ethyl Butanoate | 292.78 ± 18.94 a | 285.52 ± 28.12 a | 255.54 ± 13.50 a | 290.97 ± 29.70 a |
Ethyl Isovalerate | 5.92 ± 1.27 a | 5.48 ± 0.18 a | 5.29 ± 0.70 a | 6.12 ± 0.79 a |
Ethyl Pentanoate | 1.77 ± 0.14 a | 1.67 ± 0.10 a | 1.64 ± 0.10 a | 1.76 ± 0.13 a |
Ethyl Hexanoate | 1020.45 ± 16.90 a | 1057.21 ± 66.13 a | 1004.36 ± 51.83 a | 998.97 ± 60.26 a |
Ethyl Lactate | 3413.55 ± 161.66 a | 3304.15 ± 233.72 a | 3258.34 ± 44.85 a | 3432.74 ± 123.63 a |
Ethyl Heptanoate | 8.18 ± 0.29 a | 7.66 ± 1.11 a | 8.19 ± 0.35 a | 7.70 ± 0.86 a |
Ethyl Octanoate | 2369.14 ± 34.52 a | 2659.39 ± 285.58 a | 2446.15 ± 131.14 a | 2298.64 ± 175.76 a |
Isoamyl Acetate | 188.70 ± 7.77 a | 167.30 ± 7.93 a | 156.20 ± 22.90 a | 172.45 ± 3.08 a |
Isobutyl Acetate | 49.99 ± 2.58 a | 45.93 ± 2.52 a | 37.65 ± 9.11 a | 46.00 ± 2.77 a |
Octyl Acetate | 10.00 ± 0.56 a | 10.73 ± 0.45 a | 9.15 ± 2.31 a | 9.35 ± 0.91 a |
2-Phenylethyl Acetate | 17.88 ± 1.03 a | 16.63 ± 1.50 a | 15.21 ± 1.84 a | 16.12 ± 0.71 a |
Hexyl Acetate | 4.30 ± 0.23 a | 3.48 ± 0.07 b | 4.31 ± 0.49 a | 3.54 ± 0.20 b |
Higher alcohols | ||||
Trans-2-Hexenol | 4.19 ± 0.47 a | 4.63 ± 0.48 a | 4.07 ± 0.24 a | 3.94 ± 0.79 a |
1-Octanol | 42.49 ± 3.03 a | 38.87 ± 5.98 a | 34.35 ± 8.90 a | 40.42 ± 6.70 a |
Isoamyl Alcohol (mg/L) | 201.74 ± 6.79 a | 199.58 ± 6.91 a | 194.38 ± 10.16 a | 201.97 ± 2.98 a |
Hexanol | 2670.13 ± 124.75 a | 2445.67 ± 124.61 a | 2440.31 ± 77.77 a | 2429.43 ± 121.52 a |
Trans-3-Hexenol | 51.54 ± 3.63 a | 49.32 ± 0.71 a | 47.94 ± 2.59 a | 49.45 ± 2.46 a |
Cis-3-Hexenol | 51.08 ± 6.76 a | 39.56 ± 6.15 ab | 36.54 ± 1.98 b | 38.33 ± 2.48 b |
1-Heptanol | 80.03 ± 4.61 a | 72.40 ± 4.13 a | 72.21 ± 3.32 a | 76.55 ± 3.01 a |
Phenyethyl Alcohol (mg/L) | 59.41 ± 3.70 a | 57.66 ± 4.00 a | 57.28 ± 1.07 a | 58.40 ± 1.65 a |
Terpenes | ||||
Linalool | 36.65 ± 2.31 a | 36.21 ± 1.21 a | 35.20 ± 3.22 a | 37.91 ± 0.97 a |
Citronellol | 24.72 ± 0.83 a | 24.06 ± 0.18 a | 23.89 ± 0.96 a | 24.93 ± 0.94 a |
Nerol | 8.58 ± 0.54 a | 8.61 ± 0.60 a | 8.13 ± 0.69 a | 9.11 ± 0.39 a |
β-Damascenone | 12.44 ± 0.45 a | 11.82 ± 0.46 a | 12.30 ± 1.12 a | 12.50 ± 0.25 a |
Geraniol | 9.75 ± 0.39 a | 9.73 ± 0.20 a | 9.38 ± 0.40 a | 10.06 ± 0.47 a |
α-Ionone | ND | ND | ND | ND |
β-Ionone | 0.63 ± 0.06 a | 0.64 ± 0.02 a | 0.65 ± 0.03 a | 0.61 ± 0.00 a |
Volatile phenols | ||||
Guaiacol | 5.45 ± 0.61 a | 4.02 ± 0.68 a | 3.81 ± 1.27 a | 5.40 ± 1.18 a |
Phenol | 3.80 ± 0.27 a | 3.65 ± 0.12 a | 3.98 ± 0.26 a | 4.21 ± 0.37 a |
4-Ethyl Guaiacol | 0.10 ± 0.02 a | 0.09 ± 0.01 a | 0.10 ± 0.02 a | 0.10 ± 0.00 a |
Eugenol | 3.79 ± 0.16 a | 4.06 ± 0.49 a | 4.49 ± 0.23 a | 4.34 ± 0.22 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimalasiri, P.M.; Rutan, T.; Tian, B. Effect of Pre-Fermentative Bentonite Addition on Pinot Noir Wine Colour, Tannin, and Aroma Profile. Fermentation 2022, 8, 639. https://doi.org/10.3390/fermentation8110639
Wimalasiri PM, Rutan T, Tian B. Effect of Pre-Fermentative Bentonite Addition on Pinot Noir Wine Colour, Tannin, and Aroma Profile. Fermentation. 2022; 8(11):639. https://doi.org/10.3390/fermentation8110639
Chicago/Turabian StyleWimalasiri, Pradeep M., Tanya Rutan, and Bin Tian. 2022. "Effect of Pre-Fermentative Bentonite Addition on Pinot Noir Wine Colour, Tannin, and Aroma Profile" Fermentation 8, no. 11: 639. https://doi.org/10.3390/fermentation8110639
APA StyleWimalasiri, P. M., Rutan, T., & Tian, B. (2022). Effect of Pre-Fermentative Bentonite Addition on Pinot Noir Wine Colour, Tannin, and Aroma Profile. Fermentation, 8(11), 639. https://doi.org/10.3390/fermentation8110639