Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking
Abstract
:1. Introduction
2. Important Aroma Compounds in Sauvignon Blanc
2.1. Methoxypyrazines
2.2. Volatile Thiols
Compounds | Sensory Description | Concentrations in Wine | Sensory Threshold | |
---|---|---|---|---|
Terpenes | Linalool | floral, citrus | 7.2–24.3 μg/L [43,44] | 100 μg/L 1 [45] |
Geraniol | freshly cut grass | 1.0–2.8 μg/L [46] | 130 μg/L 1 [45] | |
Higher alcohols | 2-phenylethanol (2-PE) | Rose, honey, spice | 43.4–436 μg/L 3 [43,47] | 200 mg/L 2 [48] |
Isoamyl alcohol | Solvent, whiskey, malt, burnt | 80–300 mg/L [10,46] | 60 mg/L 2 [48] | |
Esters | Isoamyl acetate | Banana, pear | 2080–2880 μg/L 3 [43] | 50 μg/L 2 [48] |
Ethyl hexanoate | Apple, banana, violets | 999–2892 μg/L [46] | 45 μg/L 2 [46] | |
2-phenylethyl acetate (2-PEA) | Rose, fruity, honey | 0.21 mg/L [49] | 1.8 mg/L 2 [48] | |
Volatile fatty acids | Acetic acid | Vinegar | 150–900 mg/L 3 [50] | 1130 mg/L 3 [51] |
Others | Acetaldehyde | Bruised apple, grass, nut, sherry | 7–240 mg/L 3 [52] | 100 mg/L 3 [53] |
Methionol | Asparagus, potato, tomato | 529–728 μg/L [46] | 500 μg/L 2 [54] | |
2-furanmethanethiol | Roast coffee | 0.42–0.44 ng/L [55] | 0.4 ng/L 2 [55] | |
Sotolon | Curry | n.d.–36 μg/L [56] | 8 μg/L 3 [57] |
2.3. Terpenes
2.4. Higher Alcohols
2.5. Esters
2.6. Volatile Fatty Acids
2.7. Other Volatile Compounds
3. Oxidation of Aroma Compounds in Sauvignon Blanc
3.1. Oxidation Mechanism for Volatile Thiols
3.2. Oxidation during Winemaking
3.3. Oxidation during Ageing
4. Antioxidants Used in Wine Production
4.1. Ascorbic Acid
4.2. Glutathione
4.3. Glutathione-Enriched Inactivated Dry Yeast
5. Conclusions and Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- New Zealand Winegrowers Annual Reports; New Zealand Winegrowers: Auckland, New Zealand, 2022.
- Sponholz, W.; Kliewer, M.; Rapp, A.; Versini, G. Influence of nitrogen compounds in grapes on aroma compounds of wine. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, WA, USA, 18–19 June 1991; pp. 156–164. [Google Scholar]
- Coetzee, C.; du Toit, W.J. A comprehensive review on Sauvignon blanc aroma with a focus on certain positive volatile thiols. Food Res. Int. 2012, 45, 287–298. [Google Scholar] [CrossRef]
- Louw, L.; Roux, K.; Tredoux, A.; Tomic, O.; Naes, T.; Nieuwoudt, H.H.; Van Rensburg, P. Characterization of selected South African young cultivar wines using FTMIR spectroscopy, gas chromatography, and multivariate data analysis. J. Agric. Food Chem. 2009, 57, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Alberts, P.; Stander, M.A.; Paul, S.O.; de Villiers, A. Survey of 3-Alkyl-2-methoxypyrazine content of South African Sauvignon blanc wines using a novel LC−APCI-MS/MS method. J. Agric. Food Chem. 2009, 57, 9347–9355. [Google Scholar] [CrossRef]
- Lacey, M.J.; Allen, M.S.; Harris, R.L.; Brown, W.V. Methoxypyrazines in Sauvignon blanc grapes and wines. Am. J. Enol. Vitic. 1991, 42, 103–108. [Google Scholar]
- Seifert, R.M.; Buttery, R.G.; Guadagni, D.G.; Black, D.R.; Harris, J. Synthesis of some 2-methoxy-3-alkylpyrazines with strong bell pepper-like odors. J. Agric. Food Chem. 1970, 18, 246–249. [Google Scholar] [CrossRef]
- Lund, C.M.; Thompson, M.K.; Benkwitz, F.; Wohler, M.W.; Triggs, C.M.; Gardner, R.; Heymann, H.; Nicolau, L. New Zealand Sauvignon blanc distinct flavor characteristics: Sensory, chemical, and consumer aspects. Am. J. Enol. Vitic. 2009, 60, 1–12. [Google Scholar] [CrossRef]
- Sala, C.; Busto, O.; Guasch, J.; Zamora, F. Contents of 3-alkyl-2-methoxypyrazines in musts and wines from Vitis vinifera variety Cabernet Sauvignon: Influence of irrigation and plantation density. J. Sci. Food Agric. 2005, 85, 1131–1136. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine and Stabilization and Treatments; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 205–221. [Google Scholar]
- Tominaga, T.; Furrer, A.; Henry, R.; Dubourdieu, D. Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour Fragr. J. 1998, 13, 159–162. [Google Scholar] [CrossRef]
- Tominaga, T.; Guimbertau, G.; Dubourdieu, D. Contribution of benzenemethanethiol to smoky aroma of certain Vitis vinifera L. wines. J. Agric. Food Chem. 2003, 51, 1373–1376. [Google Scholar] [CrossRef]
- Marais, J. Sauvignon blanc cultivar aroma—A review. S. Afr. J. Enol. Vitic. 1994, 15, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Maga, J. Sensory and stability properties of added methoxypyrazines to model and authentic wines. Dev. Food Sci. 1990, 28, 61–70. [Google Scholar]
- Kotseridis, Y.; Spink, M.; Brindle, I.D.; Blake, A.; Sears, M.; Chen, X.; Soleas, G.; Inglis, D.; Pickering, G. Quantitative analysis of 3-alkyl-2-methoxypyrazines in juice and wine using stable isotope labelled internal standard assay. J. Chromatogr. A 2008, 1190, 294–301. [Google Scholar] [CrossRef]
- Van Wyngaard, E. Volatiles Playing an Important Role in South African Sauvignon Blanc Wines. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. [Google Scholar]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- De Boubée, D.R.; Cumsille, A.M.; Pons, M.; Dubourdieu, D. Location of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon grape bunches and its extractability during vinification. Am. J. Enol. Vitic. 2002, 53, 1–5. [Google Scholar] [CrossRef]
- Hashizume, K.; Samuta, T. Grape maturity and light exposure affect berry methoxypyrazine concentration. Am. J. Enol. Vitic. 1999, 50, 194–198. [Google Scholar]
- Ryona, I.; Pan, B.S.; Intrigliolo, D.S.; Lakso, A.N.; Sacks, G.L. Effects of cluster light exposure on 3-isobutyl-2-methoxypyrazine accumulation and degradation patterns in red wine grapes (Vitis vinifera L. cv. Cabernet Franc). J. Agric. Food Chem. 2008, 56, 10838–10846. [Google Scholar] [CrossRef]
- Scheiner, J.J.; Sacks, G.L.; Pan, B.; Ennahli, S.; Tarlton, L.; Wise, A.; Lerch, S.D.; Heuvel, J.E.V. Impact of severity and timing of basal leaf removal on 3-isobutyl-2-methoxypyrazine concentrations in red winegrapes. Am. J. Enol. Vitic. 2010, 61, 358–364. [Google Scholar] [CrossRef]
- Koch, A.; Ebeler, S.E.; Williams, L.E.; Matthews, M.A. Fruit ripening in Vitis vinifera: Light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries. Physiol. Plant. 2012, 145, 275–285. [Google Scholar] [CrossRef]
- Tschiersch, C.; Nikfardjam, M.P.; Schmidt, O.; Schwack, W. Degree of hydrolysis of some vegetable proteins used as fining agents and its influence on polyphenol removal from red wine. Eur. Food Res. Technol. 2010, 231, 65–74. [Google Scholar] [CrossRef]
- Henschke, P. Yeast-metabolism of nitrogen compounds. Wine Microbiol. Biotechnol. 1993, 4, 77–163. [Google Scholar]
- Rauhut, D. Yeasts-production of sulfur compounds. Wine Microbiol. Biotechnol. 1993, 6, 183–223. [Google Scholar]
- Lyu, X.; Del Prado, D.; Araujo, L.; Quek, S.Y.; Kilmartin, P. Effect of glutathione addition at harvest on Sauvignon Blanc wines. Aust. J. Grape Wine Res. 2021, 27, 431–441. [Google Scholar] [CrossRef]
- Roland, A.; Schneider, R.; Razungles, A.; Cavelier, F. Varietal thiols in wine: Discovery, analysis and applications. Chem. Rev. 2011, 111, 7355–7376. [Google Scholar] [CrossRef] [PubMed]
- Darriet, P.; Tominaga, T.; Lavigne, V.; Boidron, J.N.; Dubourdieu, D. Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragr. J. 1995, 10, 385–392. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, Volume 1: The Microbiology of Wine and Vinifications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 1. [Google Scholar]
- Swiegers, J.; Francis, I.; Herderich, M.; Pretorius, I. Meeting consumer expectations through management in vineyard and winery. Wine Ind. J. 2006, 21, 34–43. [Google Scholar]
- Swiegers, J.H.; Capone, D.L.; Pardon, K.H.; Elsey, G.M.; Sefton, M.A.; Francis, I.L.; Pretorius, I.S. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 2007, 24, 561–574. [Google Scholar] [CrossRef]
- Swiegers, J.; Bartowsky, E.; Henschke, P.; Pretorius, I. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Dubourdieu, D.; Tominaga, T.; Masneuf, I.; des Gachons, C.P.; Murat, M.L. The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. Am. J. Enol. Vitic. 2006, 57, 81–88. [Google Scholar] [CrossRef]
- Roland, A.l.; Schneider, R.; Razungles, A.; Le Guerneve, C.; Cavelier, F. Straightforward synthesis of deuterated precursors to demonstrate the biogenesis of aromatic thiols in wine. J. Agric. Food Chem. 2010, 58, 10684–10689. [Google Scholar] [CrossRef]
- Thibon, C.; Cluzet, S.; Mérillon, J.M.; Darriet, P.; Dubourdieu, D. 3-Sulfanylhexanol precursor biogenesis in grapevine cells: The stimulating effect of Botrytis cinerea. J. Agric. Food Chem. 2011, 59, 1344–1351. [Google Scholar] [CrossRef]
- Harsch, M.J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R.C.; Salmon, J.-M. New Precursor of 3-Mercaptohexan-1-ol in Grape Juice: Thiol-Forming Potential and Kinetics during Early Stages of Must Fermentation. J. Agric. Food Chem. 2013, 61, 3703–3713. [Google Scholar] [CrossRef]
- Araujo, L.D.; Vannevel, S.; Buica, A.; Callerot, S.; Fedrizzi, B.; Kilmartin, P.A.; du Toit, W.J. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine. Food Res. Int. 2017, 98, 79–86. [Google Scholar] [CrossRef]
- Matsui, K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef]
- Capone, D.; Barker, A.; Williamson, P.; Francis, I. The role of potent thiols in Chardonnay wine aroma. Aust. J. Grape Wine Res. 2018, 24, 38–50. [Google Scholar] [CrossRef]
- Tominaga, T.; Baltenweck-Guyot, R.; Des Gachons, C.P.; Dubourdieu, D. Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. Am. J. Enol. Vitic. 2000, 51, 178–181. [Google Scholar]
- Ross, J. Minerality: Rigorous or romantic. Pract. Winery Vineyard J. 2012, 33, 50–57. [Google Scholar]
- Goode, J. Minerality in wine. Sommel. J. 2012, 24, 63–67. [Google Scholar]
- Luan, F.; Mosandl, A.; Gubesch, M.; Wüst, M. Enantioselective analysis of monoterpenes in different grape varieties during berry ripening using stir bar sorptive extraction-and solid phase extraction-enantioselective-multidimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1112, 369–374. [Google Scholar] [CrossRef]
- Mateo, J.; Jiménez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the aroma of grapes and wines: A review. S. Afr. J. Enol. Vitic. 1983, 4, 49–58. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic compounds. Handb. Enol. 2006, 2, 141–203. [Google Scholar]
- Koslitz, S.; Renaud, L.; Kohler, M.; Wüst, M. Stereoselective formation of the varietal aroma compound rose oxide during alcoholic fermentation. J. Agric. Food Chem. 2008, 56, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Wen, Y.-Q.; Zhong, G.-Y.; Gao, Y.; Lan, Y.-B.; Duan, C.-Q.; Pan, Q.-H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol. 2015, 15, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, F.; Wüst, M. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp. Phytochemistry 2002, 60, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, E.; Lin, F.Y. Terpene biosynthesis: Modularity rules. Angew. Chem. Int. Ed. 2012, 51, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- Matarese, F.; Cuzzola, A.; Scalabrelli, G.; D’Onofrio, C. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry 2014, 105, 12–24. [Google Scholar] [CrossRef]
- Kozina, B.; Karoglan, M.; Herjavec, S.; Jeromel, A.; Orlic, S. Influence of basal leaf removal on the chemical composition of Sauvignon Blanc and Riesling wines. J. Food Agric. Environ. 2008, 6, 28. [Google Scholar]
- Yue, X.; Ma, X.; Tang, Y.; Wang, Y.; Wu, B.; Jiao, X.; Zhang, Z.; Ju, Y. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines. Food Res. Int. 2020, 131, 109028. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Boidron, J.; Terrier, A. Aroma of Muscat grape varieties. J. Agric. Food Chem. 1975, 23, 1042–1047. [Google Scholar] [CrossRef]
- Benkwitz, F.; Tominaga, T.; Kilmartin, P.A.; Lund, C.; Wohlers, M.; Nicolau, L. Identifying the Chemical Composition Related to the Distinct Aroma Characteristics of New Zealand Sauvignon blanc Wines. Am. J. Enol. Vitic. 2012, 63, 62–72. [Google Scholar] [CrossRef]
- Ferreira, V.; Rapp, A.; Cacho, J.F.; Hastrich, H.; Yavas, I. Fast and quantitative determination of wine flavor compounds using microextraction with Freon 113. J. Agric. Food Chem. 1993, 41, 1413–1420. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Rodrıguez-Bencomo, J.; Conde, J.; Rodrıguez-Delgado, M.; Garcıa-Montelongo, F.; Pérez-Trujillo, J. Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography. J. Chromatogr. A 2002, 963, 213–223. [Google Scholar] [CrossRef]
- Radler, F. Yeasts-metabolism of organic acids. Wine Microbiol. Biotechnol. 1993, 5, 165–181. [Google Scholar]
- Corison, C.; Ough, C.; Berg, H.; Nelson, K. Must acetic acid and ethyl acetate as mold and rot indicators in grapes. Am. J. Enol. Vitic. 1979, 30, 130–134. [Google Scholar]
- Lopes, P.; Silva, M.A.; Pons, A.; Tominaga, T.; Lavigne, V.; Saucier, C.; Darriet, P.; Teissedre, P.-L.; Dubourdieu, D. Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon blanc wine during bottle storage. J. Agric. Food Chem. 2009, 57, 10261–10270. [Google Scholar] [CrossRef]
- Zoecklein, B.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Tominaga, T.; Blanchard, L.; Darriet, P.; Dubourdieu, D. A Powerful Aromatic Volatile Thiol, 2-Furanmethanethiol, Exhibiting Roast Coffee Aroma in Wines Made from Several Vitis vinifera Grape Varieties. J. Agric. Food Chem. 2000, 48, 1799–1802. [Google Scholar] [CrossRef]
- Gabrielli, M.; Buica, A.; Fracassetti, D.; Stander, M.; Tirelli, A.; du Toit, W.J. Determination of sotolon content in South African white wines by two novel HPLC–UV and UPLC–MS methods. Food Chem. 2015, 169, 180–186. [Google Scholar] [CrossRef]
- Lavigne, V.; Pons, A.; Darriet, P.; Dubourdieu, D. Changes in the sotolon content of dry white wines during barrel and bottle aging. J. Agric. Food Chem. 2008, 56, 2688–2693. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J. Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in NW Spain. S. Afr. J. Enol. Vitic. 2013, 34, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Nykänen, L.; Nykänen, I. Production of esters by different yeast strains in sugar fermentations. J. Inst. Brew. 1977, 83, 30–31. [Google Scholar] [CrossRef]
- Coetzee, C. Oxygen and Sulphur Dioxide Additions to Sauvignon Blanc: Effect on Must and Wine Composition. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2011. [Google Scholar]
- Ferreira, V. Volatile aroma compounds and wine sensory attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–28. [Google Scholar]
- Lambrechts, M.; Pretorius, I. Yeast and its importance to wine aroma—A review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, I.S.; Høj, P.B. Grape and wine biotechnology: Challenges, opportunities and potential benefits. Aust. J. Grape Wine Res. 2005, 11, 83–108. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M. Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA). Flavour Fragr. J. 2005, 20, 22–29. [Google Scholar] [CrossRef]
- Lilly, M.; Bauer, F.F.; Styger, G.; Lambrechts, M.G.; Pretorius, I.S. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res. 2006, 6, 726–743. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, M.; Lorenzo, C.; Pardo, F.; Salinas, M.; Travaglia, F.; Arlorio, M.; Coïsson, J.D.; Garde-Cerdán, T. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration. Food Chem. 2016, 197, 1038–1045. [Google Scholar] [CrossRef]
- Weldegergis, B.T.; de Villiers, A.; Crouch, A.M. Chemometric investigation of the volatile content of young South African wines. Food Chem. 2011, 128, 1100–1109. [Google Scholar] [CrossRef]
- Ferreira, V.; Fernandez, P.; Pena, C.; Escudero, A.; Cacho, J.F. Investigation on the Role Played by Fermentation Esters in the Aroma of Young Spanish Wines by Multivariate-Analysis. J. Sci. Food Agric. 1995, 67, 381–392. [Google Scholar] [CrossRef]
- Marais, J. Effect of grape temperature and yeast strain on Sauvignon blanc wine aroma composition and quality. S. Afr. J. Enol. Vitic. 2001, 22, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Guth, H. Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Thurston, P.; Taylor, R.; Ahvenainen, J. Effects of linoleic acid supplements on the synthesis by yeast of lipids and acetate esters. J. Inst. Brew. 1981, 87, 92–95. [Google Scholar] [CrossRef]
- Fleet, G. Yeasts-growth during fermentation. Wine Microbiol. Biotechnol. 1993, 2, 27–54. [Google Scholar]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lynen, F. The role of biotin-dependent carboxylations in biosynthetic reactions. Biochem. J. 1967, 102, 381. [Google Scholar] [CrossRef]
- Louw, L.; Tredoux, A.G.J.; Van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived Aroma Compounds in Varietal Young Wines from South Africa. South Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Miyake, T.; Shibamoto, T. Quantitative analysis of acetaldehyde in foods and beverages. J. Agric. Food Chem. 1993, 41, 1968–1970. [Google Scholar] [CrossRef]
- Berry, D.; Slaughter, J. Alcoholic beverage fermentations. In Fermented Beverage Production; Springer: Berlin/Heidelberg, Germany, 2003; pp. 25–39. [Google Scholar]
- Escudero, A.; Cacho, J.; Ferreira, V. Isolation and identification of odorants generated in wine during its oxidation: A gas chromatography–olfactometric study. Eur. Food Res. Technol. 2000, 211, 105–110. [Google Scholar] [CrossRef]
- Pripis-Nicolau, L.; De Revel, G.; Bertrand, A.; Maujean, A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef]
- Wildenradt, H.; Singleton, V. The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Vitic. 1974, 25, 119–126. [Google Scholar]
- Culleré, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some oxidation-related aldehydes in wine aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef]
- Ghidossi, R.; Poupot, C.; Thibon, C.; Pons, A.; Darriet, P.; Riquier, L.; De Revel, G.; Peuchot, M.M. The influence of packaging on wine conservation. Food Control 2012, 23, 302–311. [Google Scholar] [CrossRef]
- Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J. Agric. Food Chem. 2001, 49, 4833–4835. [Google Scholar] [CrossRef] [PubMed]
- Silva Ferreira, A.C.; Hogg, T.; Guedes de Pinho, P. Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J. Agric. Food Chem. 2003, 51, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Salgues, M.; Zaya, J.; Trousdale, E. Caftaric acid disappearance and conversion to products of enzymic oxidation in grape must and wine. Am. J. Enol. Vitic. 1985, 36, 50–56. [Google Scholar]
- Escudero, A.; Asensio, E.; Cacho, J.; Ferreira, V. Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem. 2002, 77, 325–331. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Silva Ferreira, A.C.; Guedes de Pinho, P.; Hogg, T.A. Development of a potentiometric method to measure the resistance to oxidation of white wines and the antioxidant power of their constituents. J. Agric. Food Chem. 2002, 50, 2121–2124. [Google Scholar] [CrossRef]
- Jocelyn, P.C. Biochemistry of the SH Group; Academic Press: London, UK, 1972; Volume 10. [Google Scholar]
- Kotseridis, Y.; Ray, J.-L.; Augier, C.; Baumes, R. Quantitative determination of sulfur containing wine odorants at sub-ppb levels. 1. Synthesis of the deuterated analogues. J. Agric. Food Chem. 2000, 48, 5819–5823. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Chichuc, I.; Teissedre, P.-L.; Darriet, P. Reactivity of volatile thiols with polyphenols in a wine-model medium: Impact of oxygen, iron, and sulfur dioxide. Anal. Chim. Acta 2010, 660, 102–109. [Google Scholar] [CrossRef]
- Blanchard, L.; Darriet, P.; Dubourdieu, D. Reactivity of 3-mercaptohexanol in red wine: Impact of oxygen, phenolic fractions, and sulfur dioxide. Am. J. Enol. Vitic. 2004, 55, 115–120. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. Am. J. Enol. Vitic. 1987, 38, 69–77. [Google Scholar]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Waterhouse, A.L. A method to quantify quinone reaction rates with wine relevant nucleophiles: A key to the understanding of oxidative loss of varietal thiols. J. Agric. Food Chem. 2012, 60, 8484–8491. [Google Scholar] [CrossRef]
- Cheynier, V.F.; Trousdale, E.K.; Singleton, V.L.; Salgues, M.J.; Wylde, R. Characterization of 2-S-glutathionyl caftaric acid and its hydrolysis in relation to grape wines. J. Agric. Food Chem. 1986, 34, 217–221. [Google Scholar] [CrossRef]
- Kreitman, G.Y.; Laurie, V.F.; Elias, R.J. Investigation of ethyl radical quenching by phenolics and thiols in model wine. J. Agric. Food Chem. 2013, 61, 685–692. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Jourdes, M.; Shinoda, K.; Teissedre, P.-L.; Quideau, S.; Darriet, P. Identification of adducts between an odoriferous volatile thiol and oxidized grape phenolic compounds: Kinetic study of adduct formation under chemical and enzymatic oxidation conditions. J. Agric. Food Chem. 2012, 60, 2647–2656. [Google Scholar] [CrossRef]
- Coetzee, C.; Du Toit, W. Sauvignon blanc wine: Contribution of ageing and oxygen on aromatic and non-aromatic compounds and sensory composition-A review. S. Afr. J. Enol. Vitic. 2015, 36, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, A.; Arfelli, G.; Masino, F.; Sartini, E. Comparison of traditional and reductive winemaking: Influence on some fixed components and sensorial characteristics. Eur. Food Res. Technol. 2010, 231, 85–91. [Google Scholar] [CrossRef]
- Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Glutathione preservation during winemaking with Vitis vinifera white varieties: Example of Sauvignon blanc grapes. Am. J. Enol. Vitic. 2015, 66, 187–194. [Google Scholar] [CrossRef]
- I Cortiella, M.G.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, Á. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Maggu, M.; Winz, R.; Kilmartin, P.A.; Trought, M.C.; Nicolau, L. Effect of skin contact and pressure on the composition of Sauvignon Blanc must. J. Agric. Food Chem. 2007, 55, 10281–10288. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Herbst-Johnstone, M.; Lee, S.A.; Gardner, R.C.; Weaver, R.; Nicolau, L.; Kilmartin, P.A. Influence of juice pressing conditions on polyphenols, antioxidants, and varietal aroma of Sauvignon blanc microferments. J. Agric. Food Chem. 2010, 58, 7280–7288. [Google Scholar] [CrossRef]
- Sala, C.; Busto, O.; Guasch, J.; Zamora, F. Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety Cabernet Sauvignon. J. Agric. Food Chem. 2004, 52, 3492–3497. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, C.; Lisjak, K.; Nicolau, L.; Kilmartin, P.; du Toit, W.J. Oxygen and sulfur dioxide additions to Sauvignon blanc must: Effect on must and wine composition. Flavour Fragr. J. 2013, 28, 155–167. [Google Scholar] [CrossRef]
- Coetzee, C.; Van Wyngaard, E.; Suklje, K.; Silva Ferreira, A.C.; Du Toit, W.J. Chemical and sensory study on the evolution of aromatic and nonaromatic compounds during the progressive oxidative storage of a Sauvignon blanc wine. J. Agric. Food Chem. 2016, 64, 7979–7993. [Google Scholar] [CrossRef]
- Nikolantonaki, M.; Daoud, S.; Noret, L.; Coelho, C.; Badet-Murat, M.-L.; Schmitt-Kopplin, P.; Gougeon, R.g.D. Impact of oak wood barrel tannin potential and toasting on white wine antioxidant stability. J. Agric. Food Chem. 2019, 67, 8402–8410. [Google Scholar] [CrossRef]
- Pons, A.; Lavigne, V.; Thibon, C.; Redon, P.; Loisel, C.; Dubourdieu, D.; Darriet, P. Impact of closure OTR on the volatile compound composition and oxidation aroma intensity of Sauvignon Blanc wines during and after 10 years of bottle storage. J. Agric. Food Chem. 2021, 69, 9883–9894. [Google Scholar] [CrossRef]
- Cantu, A.; Guernsey, J.; Anderson, M.; Blozis, S.; Bleibaum, R.; Cyrot, D.; Waterhouse, A.L. Wine Closure Performance of Three Common Closure Types: Chemical and Sensory Impact on a Sauvignon Blanc Wine. Molecules 2022, 27, 5881. [Google Scholar] [CrossRef]
- Blake, A.; Kotseridis, Y.; Brindle, I.D.; Inglis, D.; Sears, M.; Pickering, G.J. Effect of closure and packaging type on 3-alkyl-2-methoxypyrazines and other impact odorants of Riesling and Cabernet Franc wines. J. Agric. Food Chem. 2009, 57, 4680–4690. [Google Scholar] [CrossRef]
- Blake, A.; Kotseridis, Y.; Brindle, I.; Inglis, D.; Pickering, G. Effect of light and temperature on 3-alkyl-2-methoxypyrazine concentration and other impact odourants of Riesling and Cabernet Franc wine during bottle ageing. Food Chem. 2010, 119, 935–944. [Google Scholar] [CrossRef]
- Alberts, P.; Kidd, M.; Stander, M.; Nieuwoudt, H.; Tredoux, A.; De Villiers, A. Quantitative Survey of 3-alkyl-2-methoxypyrazines and First Confirmation of 3-ethyl-2-methoxypyrazine in South African Sauvignon blanc Wines. S. Afr. J. Enol. Vitic. 2013, 34, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Herbst-Johnstone, M.; Nicolau, L.; Kilmartin, P.A. Stability of varietal thiols in commercial Sauvignon blanc wines. Am. J. Enol. Vitic. 2011, 62, 495–502. [Google Scholar] [CrossRef]
- Ferreira, V.; Escudero, A.; Fernandez, P.; Cacho, J.F. Changes in the profile of volatile compounds in wines stored under oxygen and their relationship with the browning process. Z. Lebensm. Unters.-Forsch. A Food Res. Technol. 1997, 205, 392–396. [Google Scholar] [CrossRef]
- Lambropoulos, I.; Roussis, I.G. Inhibition of the decrease of volatile esters and terpenes during storage of a white wine and a model wine medium by caffeic acid and gallic acid. Food Res. Int. 2007, 40, 176–181. [Google Scholar] [CrossRef]
- Bordiga, M.; Rinaldi, M.; Locatelli, M.; Piana, G.; Travaglia, F.; Coïsson, J.D.; Arlorio, M. Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison. Food Chem. 2013, 140, 57–67. [Google Scholar] [CrossRef]
- Marais, J.; Pool, H. Effect of Storage Time and Temperature on the Volatile Composition and Quality of Dry White Table Wines. Oenological and Viticultural Research Institute, Stellenbosch, South Africa. Vitis 1980, 19, 151–164. [Google Scholar]
- Marais, J. The effect of pH on Esters and Quality of Colombar Wine during Maturation. Oenological and Viticultural Research Institute, Stellenbosch, South Africa. Vitis 1978, 17, 396–403. [Google Scholar]
- Roussis, I.G.; Lambropoulos, I.; Papadopoulou, D. Inhibition of the decline of volatile esters and terpenols during oxidative storage of Muscat-white and Xinomavro-red wine by caffeic acid and N-acetyl-cysteine. Food Chem. 2005, 93, 485–492. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Faria, M.; Sá, F.; Barros, F.; Araújo, I.M. C6-alcohols as varietal markers for assessment of wine origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Patrianakou, M.; Roussis, I. Decrease of wine volatile aroma esters by oxidation. S. Afr. J. Enol. Vitic. 2013, 34, 241–245. [Google Scholar] [CrossRef]
- Câmara, J.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Rankine, B.; Pocock, K. Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J. Sci. Food Agric. 1969, 20, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H. Wine Microbiology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Laurie, V.F.; Zúñiga, M.C.; Carrasco-Sánchez, V.; Santos, L.S.; Cañete, Á.; Olea-Azar, C.; Ugliano, M.; Agosin, E. Reactivity of 3-sulfanyl-1-hexanol and catechol-containing phenolics in vitro. Food Chem. 2012, 131, 1510–1516. [Google Scholar] [CrossRef]
- Makhotkina, O.; Herbst-Johnstone, M.; Logan, G.; du Toit, W.; Kilmartin, P.A. Influence of sulfur dioxide additions at harvest on polyphenols, C6-compounds, and varietal thiols in Sauvignon blanc. Am. J. Enol. Vitic. 2013, 64, 203–213. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L. Adverse reactions to the sulphite additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16–23. [Google Scholar]
- Bisson, L. Yeast and Biochemistry of Ethanol Formation in Principles and Practices of Winemaking; Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E., Eds.; Chapman & Hall: New York, NY, USA, 1996; pp. 448–473. [Google Scholar]
- Bradshaw, M.P.; Barril, C.; Clark, A.C.; Prenzler, P.D.; Scollary, G.R. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Crit. Rev. Food Sci. Nutr. 2011, 51, 479–498. [Google Scholar] [CrossRef]
- McArdle, J.V.; Hoffmann, M.R. Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH. J. Phys. Chem. 1983, 87, 5425–5429. [Google Scholar] [CrossRef]
- Peng, Z.; Duncan, B.; Pocock, K.; Sefton, M. The effect of ascorbic acid on oxidative browning of white wines and model wines. Aust. J. Grape Wine Res. 1998, 4, 127–135. [Google Scholar] [CrossRef]
- Skouroumounis, G.K.; Kwiatkowski, M.; Francis, I.; Oakey, H.; Capone, D.; Peng, Z.; Duncan, B.; Sefton, M.; Waters, E. The influence of ascorbic acid on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years’ storage. Aust. J. Grape Wine Res. 2005, 11, 355–368. [Google Scholar] [CrossRef]
- Morozova, K.; Schmidt, O.; Schwack, W. Effect of headspace volume, ascorbic acid and sulphur dioxide on oxidative status and sensory profile of Riesling wine. Eur. Food Res. Technol. 2015, 240, 205–221. [Google Scholar] [CrossRef]
- Makhotkina, O.; Araujo, L.D.; Olejar, K.; Herbst-Johnstone, M.; Fedrizzi, B.; Kilmartin, P.A. Aroma impact of ascorbic acid and glutathione additions to Sauvignon blanc at harvest to supplement sulfur dioxide. Am. J. Enol. Vitic. 2014, 65, 388–393. [Google Scholar] [CrossRef]
- Swart, E.; Marais, J.; Britz, T. Effect of ascorbic acid and yeast strain on Sauvignon blanc wine quality. S. Afr. J. Enol. Vitic. 2001, 22, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Barril, C.; Clark, A.C.; Scollary, G.R. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal. Chim. Acta 2012, 732, 186–193. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Seccombe, J.T.; Whelan, J. Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am. J. Enol. Vitic. 2008, 59, 128–136. [Google Scholar] [CrossRef]
- Barril, C.; Rutledge, D.N.; Scollary, G.R.; Clark, A.C. Ascorbic acid and white wine production: A review of beneficial versus detrimental impacts. Aust. J. Grape Wine Res. 2016, 22, 169–181. [Google Scholar] [CrossRef]
- Bradshaw, M.P.; Cheynier, V.; Scollary, G.R.; Prenzler, P.D. Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. J. Agric. Food Chem. 2003, 51, 4126–4132. [Google Scholar] [CrossRef]
- Shenton, D.; Perrone, G.; Quinn, K.A.; Dawes, I.W.; Grant, C.M. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2002, 277, 16853–16859. [Google Scholar] [CrossRef] [Green Version]
- Fahey, R.C. Novel thiols of prokaryotes. Annu. Rev. Microbiol. 2001, 55, 333–356. [Google Scholar] [CrossRef]
- Li, Y.; Wei, G.; Chen, J. Glutathione: A review on biotechnological production. Appl. Microbiol. Biotechnol. 2004, 66, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Veljovic-Jovanovic, S.; Foyer, C.H. Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2000, 355, 1465–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.O.; Liyanage, C. Glutathione increases in grape berries at the onset of ripening. Am. J. Enol. Vitic. 1993, 44, 333–338. [Google Scholar]
- Lacroux, F.; Trégoat, O.; van Leeuwen, C.; Pons, A.; Tominaga, T.; Lavigne-Cruege, V.; Dubourdieu, D. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. OENO One 2008, 42, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Araujo, L.D.; Quek, S.-Y.; Kilmartin, P.A. Effects of antioxidant and elemental sulfur additions at crushing on aroma profiles of Pinot Gris, Chardonnay and Sauvignon Blanc wines. Food Chem. 2021, 346, 128914. [Google Scholar] [CrossRef]
- OIV. Resolutions OIV-OENO 445-2015. In Proceedings of the 13th OIV General Assembly, Mainz, Germany, 15 July 2015; Available online: https://www.oiv.int/public/medias/1686/oiv-oeno-445-2015-en.pdf (accessed on 23 September 2022).
- Antoce, O. Oenology. In Chemistry and Sensory Analysis; Universitaria Printing House: Craiova, Romania, 2007. [Google Scholar]
- Singleton, V.L.; Cilliers, J.J. Phenolic Browning: A Perspective from Grape and Wine Research; ACS Publications: Washington, DC, USA, 1995. [Google Scholar]
- Sonni, F.; Clark, A.C.; Prenzler, P.D.; Riponi, C.; Scollary, G.R. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine. J. Agric. Food Chem. 2011, 59, 3940–3949. [Google Scholar] [CrossRef]
- Clark, A.C.; Deed, R.C. The chemical reaction of glutathione and trans-2-hexenal in grape juice media to form wine aroma precursors: The impact of pH, temperature, and sulfur dioxide. J. Agric. Food Chem. 2018, 66, 1214–1221. [Google Scholar] [CrossRef]
- Papadopoulou, D.; Roussis, I.G. Inhibition of the decrease of volatile esters and terpenes during storage of a white wine and a model wine medium by glutathione and N-acetylcysteine. Int. J. Food Sci. Technol. 2008, 43, 1053–1057. [Google Scholar] [CrossRef]
- Webber, V.; Dutra, S.V.; Spinelli, F.R.; Carnieli, G.J.; Cardozo, A.; Vanderlinde, R. Effect of glutathione during bottle storage of sparkling wine. Food Chem. 2017, 216, 254–259. [Google Scholar] [CrossRef]
- Lavigne-Cruège, V.; Dubourdieu, D. Role of glutathione on development of aroma defects in dry white wines. In Proceedings of the 13th International Enology Symposium, Montpellier, France, 9–12 June 2002; pp. 331–347. [Google Scholar]
- Ugliano, M.; Kwiatkowski, M.; Vidal, S.; Capone, D.; Siebert, T.; Dieval, J.-B.; Aagaard, O.; Waters, E.J. Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. J. Agric. Food Chem. 2011, 59, 2564–2572. [Google Scholar] [CrossRef]
- Andújar-Ortiz, I.; Chaya, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.; Pozo-Bayón, M. Impact of using new commercial glutathione enriched inactive dry yeast oenological preparations on the aroma and sensory properties of wines. Int. J. Food Prop. 2014, 17, 987–1001. [Google Scholar] [CrossRef]
- OIV. Resolutions OIV-OENO 532-2017. In Proceedings of the 15th OIV General Assembly, Sofia, Bulgaria, 6 June 2017; Available online: https://www.oiv.int/public/medias/5365/oiv-oeno-532-2017-en.pdf (accessed on 23 September 2022).
- Kritzinger, E.C.; Bauer, F.F.; Du Toit, W.J. Role of glutathione in winemaking: A review. J. Agric. Food Chem. 2013, 61, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrielli, M.; Aleixandre-Tudo, J.; Kilmartin, P.; Sieczkowski, N.; Du Toit, W. Additions of glutathione or specific glutathione-rich dry inactivated yeast preparation (DYP) to sauvignon blanc must: Effect on wine chemical and sensory composition. S. Afr. J. Enol. Vitic. 2017, 38, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bencomo, J.J.; Andújar-Ortiz, I.; Moreno-Arribas, M.V.; Simo, C.; Gonzalez, J.; Chana, A.; Davalos, J.; Pozo-Bayón, M.A.N. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging. J. Agric. Food Chem. 2014, 62, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Bahut, F.; Liu, Y.; Romanet, R.; Coelho, C.; Sieczkowski, N.; Alexandre, H.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study. Food Res. Int. 2019, 123, 762–770. [Google Scholar] [CrossRef]
- Bahut, F.; Romanet, R.; Sieczkowski, N.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine. Food Chem. 2020, 325, 126941. [Google Scholar] [CrossRef]
- Andujar-Ortiz, I.; Pozo-Bayón, M.Á.; Moreno-Arribas, M.; Martín-Álvarez, P.J.; Rodríguez-Bencomo, J.J. Reversed-phase high-performance liquid chromatography–fluorescence detection for the analysis of glutathione and its precursor γ-glutamyl cysteine in wines and model wines supplemented with oenological inactive dry yeast preparations. Food Anal. Methods 2012, 5, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Barrio Galán, R.d.; Úbeda Aguilera, C.; Cortiella, G.I.; Sieczkowski, N.; Peña Neira, Á. Different application dosages of a specific inactivated dry yeast (SIDY): Effect on the polysaccharides, phenolic and volatile contents and color of Sauvignon blanc wines. OENO One Int. J. Vine Wine Sci. 2018, 52, 333–346. [Google Scholar] [CrossRef]
Compound | Sensory Description | Concentrations in Wine (ng/L) | Sensory Threshold (ng/L) | |
---|---|---|---|---|
Methoxypyrazines | 2-methoxy-3-isobutylpyrazine (IBMP) | Asparagus, capsicum | 0.4–56.3 [5,6] | 2 [7] 1 |
2-methoxy-3-isopropylpyrazine (IPMP) | Earth, leaf | <0.03–13.7 [5,6,8] | 2 [7] 1 | |
2-methoxy-3-sec-butylpyrazine (SBMP) | Earth, leaf | <0.03–11.2 [5,9] | 2 [7] 1 | |
Volatile thiols | 4-mercapto-4-methylpentan-2-one (4MMP) | Box tree, passion fruit, black currant bud | 4–40 [8,10] | 0.8 [11] 2 |
3-mercaptohexan-1-ol (3MH) | Passion fruit, grapefruit, gooseberry, guava | 200–18,000 [8,10] | 60 [11] 2 | |
3-mercaptohexyl acetate (3MHA) | Passion fruit, box tree | 0–2500 [8,10] | 4.2 [11] 2 | |
Benzenemethanethiol (BMT) | Mineral, flint, smoke, burnt wood | 10–15 [12] | 0.3 [12] 2 |
Wine Matrix | Addition Timing | Key Findings | Reference |
---|---|---|---|
Sauvignon Blanc | Before fermentation | Increased thiols, higher alcohols, fatty acids, esters, and monoterpenes, leading to higher intensities of riper tropical fruity notes in wines. | [171] |
Model wine | N.A. | Decreased the loss of typical wine terpenes. | [172] |
Model wine | N.A. | Both yeast strain and glutathione accumulation process in preparation of GSH-IDY played an important role in the modulation of glutathione released into wine. | [173] |
Model wine | N.A. | Yeast derivatives enriched with glutathione were more efficient at quenching radical species than those without glutathione enrichment. | [174] |
Grenache Rosé | Before fermentation | More intense in fruity aromas (strawberry, banana) and less intense in yeast notes after 9 months ageing. | [175] |
Sauvignon Blanc | After fermentation | Increased the release of polysaccharides into wines, and positive effects on the wine colour and on the prevention of wine oxidation. | [176] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, P.-C.; Araujo, L.D.; Tian, B. Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking. Fermentation 2022, 8, 686. https://doi.org/10.3390/fermentation8120686
Tsai P-C, Araujo LD, Tian B. Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking. Fermentation. 2022; 8(12):686. https://doi.org/10.3390/fermentation8120686
Chicago/Turabian StyleTsai, Pei-Chin, Leandro Dias Araujo, and Bin Tian. 2022. "Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking" Fermentation 8, no. 12: 686. https://doi.org/10.3390/fermentation8120686
APA StyleTsai, P. -C., Araujo, L. D., & Tian, B. (2022). Varietal Aromas of Sauvignon Blanc: Impact of Oxidation and Antioxidants Used in Winemaking. Fermentation, 8(12), 686. https://doi.org/10.3390/fermentation8120686