Growth Kinetic Parameters and Prediction of Growth and Zearalenone and Deoxynivalenol Production Boundaries by Three Fusarium asiaticum Strains Isolated from Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Experimental Design
2.2. Ecophysiological Study
2.2.1. Media Preparation and Inoculation
2.2.2. Kinect Model
- is the temperature below which growth is no longer observed.
- is the temperature above which no growth occurs.
- is the temperature at which maximum growth rate equals its optimal value µopt.
- is the aw below which growth is no longer observed.
- is the aw above which no growth occurs.
- is the aw at which maximum growth rate equals its optimal value µopt.
2.2.3. Modelling of the Growth/no Growth and Toxin/no Toxin Production Interface
2.3. Mycotoxin Analysis
2.3.1. Mycotoxin Extraction from Agar
2.3.2. Mycotoxin Analysis
2.3.3. Mycotoxin Analysis Performance
2.4. Statistical Analysis
3. Results
3.1. Ecophysiological Study Fungal Growth
3.1.1. Kinetic Primary Model
3.1.2. Secondary Model
3.1.3. Modelling the Growth Boundaries
3.2. Ecophysiological Study of Mycotoxin Production
3.2.1. Mycotoxin Production
3.2.2. Modelling the Mycotoxin Production Boundaries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 2 October 2022).
- Magan, N.; Garcia-Cela, E.; Verheecke-Vaessen, C.; Medina, A. Advances in post-harvest detection and control of fungal contamination of cereals. In Advances in Postharvest Management of Cereals and Grains; Burleigh Dodds Science Publishing: London, UK, 2020; pp. 339–362. ISBN 9781003047988. [Google Scholar]
- Al-Hazmi, N.A.; Gomaa, M.N. Alteration of fungal growth and toxigenicity due to the protective effect of cereal coats. Food Control 2012, 28, 299–303. [Google Scholar] [CrossRef]
- Vaughan, M.; Backhouse, D.; Del Ponte, E.M. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin J. 2016, 9, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Ward, T.J.; Kistler, H.C.; Odonnell, K. Systematics, Phylogeny and Trichothecene Mycotoxin Potential of Fusarium Head Blight Cereal Pathogens. JSM Mycotoxins 2012, 62, 91–102. [Google Scholar] [CrossRef] [Green Version]
- van der Lee, T.; Zhang, H.; van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2015, 32, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, P. Fusarium Mycotoxins: Chemistry, Genetics and Biology—by Anne E. Desjardins. Plant Pathol. 2007, 56, 337. [Google Scholar] [CrossRef]
- Mostrom, M. Trichothecenes and zearalenone. In Reproductive and Developmental Toxicology; Academic Press: Cambridge, MA, USA, 2011; pp. 739–751. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D.; Mylona, K.; Lambert, R.J.W. Limiting mycotoxins in stored wheat. Food Addit. Contam.-Part A 2010, 27, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Baranyi, J.; Gibson, A.M.; Pitt, J.I.; Eyles, M.J.; Roberts, T.A. Predictive models as means of measuring the relatedness of some Aspergillus species. Food Microbiol. 1997, 14, 347–351. [Google Scholar] [CrossRef]
- Marín, S.; Colom, C.; Sanchis, V.; Ramos, A.J. Modelling of growth of aflatoxigenic A. flavus isolates from red chilli powder as a function of water availability. Int. J. Food Microbiol. 2009, 128, 491–496. [Google Scholar] [CrossRef]
- Astoreca, A.; Vaamonde, G.; Dalcero, A.; Ramos, A.J.; Marín, S. Modelling the effect of temperature and water activity of Aspergillus flavus isolates from corn. Int. J. Food Microbiol. 2012, 156, 60–67. [Google Scholar] [CrossRef]
- García-Cela, E.; Crespo-Sempere, A.; Ramos, A.J.; Sanchis, V.; Marin, S. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards. Int. J. Food Microbiol. 2014, 173, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samapundo, S.; Devliehgere, F.; De Meulenaer, B.; Debevere, J. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 2005, 68, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Hope, R.; Aldred, D.; Magan, N. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett. Appl. Microbiol. 2005, 40, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Verheecke-Vaessen, C.; Garcia-Cela, E.; Lopez-Prieto, A.; Osk Jonsdottir, I.; Medina, A.; Magan, N. Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices. Int. J. Food Microbiol. 2021, 348, 109203. [Google Scholar] [CrossRef]
- Pei, P.; Xiong, K.; Wang, X.; Sun, B.; Zhao, Z.; Zhang, X.; Yu, J. Predictive growth kinetic parameters and modelled probabilities of deoxynivalenol production by Fusarium graminearum on wheat during simulated storing conditions. J. Appl. Microbiol. 2022, 133, 349–361. [Google Scholar] [CrossRef]
- Yang, L.; Van Der Lee, T.; Yang, X.; Yu, D.; Waalwijk, C. Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 2008, 98, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Z.; Van Der Lee, T.; Chen, W.Q.; Xu, J.; Xu, J.S.; Yang, L.; Yu, D.; Waalwijk, C.; Feng, J. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 2010, 100, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Del Ponte, E.M.; Spolti, P.; Ward, T.J.; Gomes, L.B.; Nicolli, C.P.; Kuhnem, P.R.; Silva, C.N.; Tessmann, D.J. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 2015, 105, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, A.E.; Proctor, R.H. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol. 2011, 115, 38–48. [Google Scholar] [CrossRef]
- Gale, L.R.; Harrison, S.A.; Ward, T.J.; O’Donnell, K.; Milus, E.A.; Gale, S.W.; Kistler, H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 2011, 101, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.B.; Ward, T.J.; Badiale-Furlong, E.; Del Ponte, E.M. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathol. 2015, 64, 980–987. [Google Scholar] [CrossRef]
- Suga, H.; Karugia, G.W.; Ward, T.; Gale, L.R.; Tomimura, K.; Nakajima, T.; Miyasaka, A.; Koizumi, S.; Kageyama, K.; Hyakumachi, M. Molecular Characterization of the Fusarium graminearum Species Complex in Japan. Am. Phytopath. Soc. 2008, 98, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backhouse, D. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 2014, 139, 161–173. [Google Scholar] [CrossRef]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Modelling the effect of temperature and water activity in the growth boundaries of Aspergillus ochraceus and Aspergillus parasiticus. Food Microbiol. 2011, 28, 406–417. [Google Scholar] [CrossRef]
- Zwietering, M.H.; De Wit, J.C.; Notermans, S. Application-of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption. Int. J. Food Microbiol. 1996, 30, 55–70. [Google Scholar] [CrossRef]
- Rosso, L.; Lobry, J.R.; Bajard, S.; Flandrois, J.P. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 1995, 61, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Sautour, M.; Dantigny, P.; Divies, C.; Bensoussan, M. A temperature-type model for describing the relationship between fungal growth and water activity. Int. J. Food Microbiol. 2001, 67, 63–69. [Google Scholar] [CrossRef]
- Isidro-Sánchez, J.; D’Arcy Cusack, K.; Verheecke-Vaessen, C.; Kahla, A.; Bekele, W.; Doohan, F.; Magan, N.; Medina, A. Genome-wide association mapping of Fusarium langsethiae infection and mycotoxin accumulation in oat (Avena sativa L.). Plant Genome 2020, 13, e20023. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef]
- Ramirez, M.L.; Chulze, S.; Magan, N. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int. J. Food Microbiol. 2006, 106, 291–296. [Google Scholar] [CrossRef]
- Belizán, M.M.; Gomez, A.D.L.A.; Baptista, Z.P.T.; Jimenez, C.M.; Matías, M.D.H.S.; Catalán, C.A.; Sampietro, D.A. Influence of water activity and temperature on growth and production of trichothecenes by Fusarium graminearum sensu stricto and related species in maize grains. Int. J. Food Microbiol. 2019, 305, 108242. [Google Scholar] [CrossRef] [PubMed]
- Brennan, J.M.; Fagan, B.; Van Maanen, A.; Cooke, B.M.; Doohan, F.M. Studies on in vitro growth and pathogenicity of European Fusarium fungi. Eur. J. Plant Pathol. 2003, 109, 577–587. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; Ross, T. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J. Theor. Biol. 2005, 233, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Predicting mycotoxins in foods: A review. Food Microbiol. 2009, 26, 757–769. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Kiaitsi, E.; Medina, A.; Sulyok, M.; Krska, R.; Magan, N. Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins 2018, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Llorens, A.; Mateo, R.; Hinojo, M.J.; Valle-Algarra, F.M.; Jiménez, M. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. Int. J. Food Microbiol. 2004, 94, 43–54. [Google Scholar] [CrossRef]
- Nazari, L.; Pattori, E.; Manstretta, V.; Terzi, V.; Morcia, C.; Somma, S.; Moretti, A.; Ritieni, A.; Rossi, V. Effect of temperature on growth, wheat head infection, and nivalenol production by Fusarium poae. Food Microbiol. 2018, 76, 83–90. [Google Scholar] [CrossRef]
- Ramírez Albuquerque, D.; Patriarca, A.; Fernández Pinto, V. Water activity influence on the simultaneous production of DON, 3-ADON and 15-ADON by a strain of Fusarium graminearum ss of 15-ADON genotype. Int. J. Food Microbiol. 2022, 373, 109721. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Medina, A.; Magan, N. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions. Toxins 2018, 10, 86. [Google Scholar] [CrossRef]
- Lahouar, A.; Marin, S.; Crespo-Sempere, A.; Saïd, S.; Sanchis, V. Influence of temperature, water activity and incubation time on fungal growth and production of ochratoxin A and zearalenone by toxigenic Aspergillus tubingensis and Fusarium incarnatum isolates in sorghum seeds. Int. J. Food Microbiol. 2017, 242, 53–60. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EC). No 1881/2006 of 19 December 2006 setting maximumlevels for certain contaminants in foodstuffs. Off. J. Eur. Commun. 2006, L364, 5–24. [Google Scholar]
- China Food and Drug Administration (CFDA). GB 2761-2017 National Standard for Food Safety—Limits of Mycotoxins in Food; National Health and Family Planning Commmission of People´s Republic of China: Beijing, China, 2017. [Google Scholar]
- Marín, S.; Hodžić, I.; Ramos, A.J.; Sanchis, V. Predicting the growth/no-growth boundary and ochratoxin A production by Aspergillus carbonarius in pistachio nuts. Food Microbiol. 2008, 25, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.A.; Gorbatova, A.S.; Sidorova, A.A.; Tiunov, A.V.; Bocharov, G.A. Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.). Ecol. Modell. 2022, 465, 109856. [Google Scholar] [CrossRef]
Species | Isolate Code | Year | Region | Host | Latitude |
---|---|---|---|---|---|
F. asiaticum | CH024b | 2002 | Wuhan | Wheat | N/A |
F. asiaticum | bfb0082_1 | 2005 | Wuchang | Barley | 114°07′ |
F. asiaticum | bfb0982_1 | 2005 | Xingsheng, Sichuan | Barley | 105°02′ |
F. asiaticum -982 | F. asiaticum -082 | F. asiaticum -Ch024b | |||||
---|---|---|---|---|---|---|---|
T (°C) | aw | λ (day) ± SD | μmax (mm/day) ± SD | λ (day) ± SD | μmax (mm/day) ± SD | λ (day) ± SD | μmax (mm/day) ± SD |
10 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | >10 | NG | >10 | NG | >10 | NG | |
0.95 | 2.89 ± 0.08 a | 2.40 ± 0.24 b | 2.70 ± 0.16 a | 2.34 ± 0.13 a | 2.87 ± 0.14 a | 2.49 ± 0.09 b | |
0.98 | >10 | 5.65 ± 0.19 a | 1.49 ± 0.05 b | 6.03 ± 0.27 b | 1.47 ± 0.05 b | 6.32 ± 0.04 a | |
15 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | <0.1 b | 1.69 ± 0.20 c | <0.1 c | 1.66 ± 0.21 c | <0.1 b | 1.82 ± 0.12 c | |
0.95 | 0.68 ± 0.31 a | 4.12 ± 0.13 b | 0.26 ± 0.03 b | 3.85 ± 0.09 b | 0.37 ± 0.14 a | 4.51 ± 0.07 b | |
0.98 | 0.96 ± 0.27 a | 10.56 ± 0.78 a | 0.66 ± 0.07 a | 10.04 ± 0.20 a | 0.46 ± 0.10 a | 10.11 ± 0.25 a | |
20 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | 1.29 ± 0.82 a | 3.12 ± 0.65 c | 0.74 ± 0.28 b | 2.98 ± 0.39 c | 0.32 ± 0.03 b | 3.51 ± 0.07 c | |
0.95 | 1.15 ± 0.25 a | 7.63 ± 0.28 b | 1.36 ± 0.40 a | 7.88 ± 0.44 b | 0.77 ± 0.09 a | 7.74 ± 0.26 b | |
0.98 | 0.63 ± 0.09 a | 14.14 ± 0.80 a | 0.58 ± 0.07 b | 13.61 ± 0.45 a | 0.25 ± 0.01 b | 12.94 ± 0.24 a | |
25 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | <0.1 a | 2.62 ± 0.44 c | 0.45 ± 0.57 a | 3.71 ± 0.40 c | <0.1 c | 3.80 ± 0.42 c | |
0.95 | 0.81 ± 0.29 a | 8.31 ± 0.50 b | 0.64 ± 0.16 a | 8.12 ± 0.74 b | 0.69 ± 0.05 a | 9.45 ± 0.58 b | |
0.98 | 0.53 ± 0.10 a | 18.98 ± 0.80 a | 0.49 ± 0.07 a | 18.51 ± 0.31 a | 0.35 ± 0.16 b | 18.38 ± 0.56 a | |
30 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | <0.1 b | 1.27 ± 0.20 c | <0.1 b | 2.22 ± 0.18 c | <0.1 b | 2.20 ± 0.58 c | |
0.95 | 0.76 ± 0.12 a | 6.79 ± 0.15 b | 0.31 ± 0.16 a | 6.72 ± 0.23 b | 0.87 ± 0.09 a | 7.18 ± 0.26 b | |
0.98 | 0.42 ± 0.21 a | 12.92 ± 0.25 a | 0.35 ± 0.03 a | 16.99 ± 0.20 a | 0.21 ± 0.14 a | 16.16 ± 0.41 a | |
35 | 0.87 | >10 | NG | >10 | NG | >10 | NG |
0.90 | >10 | NG | >10 | NG | >10 | NG | |
0.93 | >10 | NG | >10 | NG | >10 | NG | |
0.95 | >10 | NG | >10 | NG | >10 | NG | |
0.98 | >10 | NG | >10 | NG | >10 | NG |
Parameters | Strains 982 | 82 | Ch024b | Pooled Data |
---|---|---|---|---|
μopt | 19.9 ± 0.97 | 21.38 ± 6.30 | 20.24 ± 0.94 | 20.00 ± 1.439 |
aw min | 0.94 ± 0.00 | 0.90 ± 0.00 | 0.94 ± 0.00 | 0.90 ± 0.002 |
Aw opt | 0.97 ± 0.00 | 0.99 ± 0.01 | 0.97 ± 0.00 | 0.98 ± 0.003 |
tmax | 31.79 ± 1.21 | 32.15 ± 1.27 | 31.4 ± 1.28 | 31.32 ± 0.634 |
tmin | −3.78 ± 3.48 | −6.23 ± 2.12 | −9.43 ± 2.57 | −6.96 ± 1.444 |
topt | 26.01 ± 0.88 | 27.29 ± 0.41 | 27.56 ± 0.59 | 27.22 ± 0.387 |
R2 | 0.93 | 0.99 | 0.98 | 0.98 |
MSE | 2.12 | 0.48 | 0.48 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Cela, E.; Verheecke-Vaessen, C.; Ósk-Jónsdóttir, I.; Lawson, R.; Magan, N. Growth Kinetic Parameters and Prediction of Growth and Zearalenone and Deoxynivalenol Production Boundaries by Three Fusarium asiaticum Strains Isolated from Wheat. Fermentation 2022, 8, 577. https://doi.org/10.3390/fermentation8110577
Garcia-Cela E, Verheecke-Vaessen C, Ósk-Jónsdóttir I, Lawson R, Magan N. Growth Kinetic Parameters and Prediction of Growth and Zearalenone and Deoxynivalenol Production Boundaries by Three Fusarium asiaticum Strains Isolated from Wheat. Fermentation. 2022; 8(11):577. https://doi.org/10.3390/fermentation8110577
Chicago/Turabian StyleGarcia-Cela, Esther, Carol Verheecke-Vaessen, Inga Ósk-Jónsdóttir, Rita Lawson, and Naresh Magan. 2022. "Growth Kinetic Parameters and Prediction of Growth and Zearalenone and Deoxynivalenol Production Boundaries by Three Fusarium asiaticum Strains Isolated from Wheat" Fermentation 8, no. 11: 577. https://doi.org/10.3390/fermentation8110577
APA StyleGarcia-Cela, E., Verheecke-Vaessen, C., Ósk-Jónsdóttir, I., Lawson, R., & Magan, N. (2022). Growth Kinetic Parameters and Prediction of Growth and Zearalenone and Deoxynivalenol Production Boundaries by Three Fusarium asiaticum Strains Isolated from Wheat. Fermentation, 8(11), 577. https://doi.org/10.3390/fermentation8110577