Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Tested Microorganisms
2.2. Plant Extracts Preparation
2.3. Determination of Total Phenolic Compounds (TPC)
2.4. Determination of Radical Scavenging Activity (RSA)
2.5. Antimicrobial Assay
2.6. MIC and MBC or MFC of Methanolic Extracts Determination
2.7. Application of Ethanolic Extracts in Homemade Tomato Paste
2.8. Application of Ethanolic Extracts in Raw Cow Milk
2.8.1. Total Microbial Count
2.8.2. Count of Coliform Bacteria
2.9. Application of Ethanolic Extracts in Pasteurized Cow Milk
2.10. Statistical Analysis
3. Results and Discussion
3.1. Total Phenol Content and % DPPH Inhibition of the Plant Extracts
3.2. Prevalence of Bacteria and Fungi Isolated from Spoilage Tomato Fruit
3.3. Antimicrobial Activity of Plant Extracts by the Disc Diffusion Method
3.4. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Methanolic Extracts
3.5. Effect of the Extracts on the Keeping Quality of Homemade Tomato Paste
3.6. Effect of the Extracts on the Total Bacterial and Coliform Count of Raw Cow Milk
3.7. Effect of the Extracts on the Keeping Quality of Pasteurized Cow Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main groups of microorganisms of relevance for food safety and stability: General aspects and overall description. In Innovative Technologies for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–107. [Google Scholar]
- Jarvis, B.; Seiler, D.; Ould, A.J.; Williams, A. Observations on the enumeration of moulds in food and feedingstuffs. J. Appl. Bacteriol. 1983, 55, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Mishra, A.K.; Kumar, S.; Mandal, S.K.; Nsv, L.; Kumar, V.; Baek, K.-H.; Mohanta, Y.K. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2022, 12, 12. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-K.; Chen, Y.-A.; Lin, C.-J.; Lin, H.-J.; Kao, M.-C.; Huang, M.-Z.; Lin, Y.-H.; Chiang-Ni, C.; Chen, C.-J.; Lo, U.-G. Molecular mechanisms and potential clinical applications of Campylobacter jejuni cytolethal distending toxin. Front. Cell. Infect. Microbiol. 2016, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Flint, J.A.; Van Duynhoven, Y.T.; Angulo, F.J.; DeLong, S.M.; Braun, P.; Kirk, M.; Scallan, E.; Fitzgerald, M.; Adak, G.K.; Sockett, P. Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: An international review. Clin. Infect. Dis. 2005, 41, 698–704. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jacxsens, L.; Membré, J.-M.; Nauta, M.; Peterz, M. Relevance of microbial finished product testing in food safety management. Food Control 2016, 60, 31–43. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Todd, E. Food-Borne Disease Prevention and Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17, 5129. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Indicators of food microbial quality and safety. In Modern Food Microbiology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 473–495. [Google Scholar]
- Ferysiuk, K.; Wójciak, K.M. Reduction of nitrite in meat products through the application of various plant-based ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Vafai, S.B.; Delaney, N.F.; Clish, C.B.; Deik, A.A.; Pierce, K.A.; Ludwig, D.S.; Mootha, V.K. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol. Genet. Metab. 2015, 114, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Laganà, P.; Avventuroso, E.; Romano, G.; Gioffré, M.E.; Patanè, P.; Parisi, S.; Moscato, U.; Delia, S. The Codex Alimentarius and the European legislation on food additives. In Chemistry and Hygiene of Food Additives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 23–32. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Kumar, A. Food preservation: Traditional and modern techniques. Acta Sci. Nutr. Health 2019, 3, 45–49. [Google Scholar] [CrossRef]
- Dupont, S.; Caffin, N.; Bhandari, B.; Dykes, G.A. In vitro antibacterial activity of Australian native herb extracts against food-related bacteria. Food Control 2006, 17, 929–932. [Google Scholar] [CrossRef]
- Arjun, D.; Kumar, R.; Singh, C. The effects of ethanol plant extracts on food-borne pathogen bacteria. Adv. Food. Sci. Technol 2014, 2, 271–275. [Google Scholar]
- Atwaa, E.S.H.; Shahein, M.R.; Alrashdi, B.M.; Hassan, M.A.A.; Alblihed, M.A.; Dahran, N.; Ali, F.A.Z.; Elmahallawy, E.K. Effects of Fermented Camel Milk Supplemented with Sidr Fruit (Ziziphus spina-christi L.) Pulp on Hyperglycemia in Streptozotocin-Induced Diabetic Rats. Fermentation 2022, 8, 269. [Google Scholar] [CrossRef]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, Physicochemical and Sensory Properties of Probiotic Yoghurt Made from Whole Milk Powder Reconstituted in Aqueous Fennel Extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; El-Zahar, K.M.; Elmaadawy, A.A.; Hijazy, H.H.A.; Sitohy, M.Z.; Albrakati, A.; Elmahallawy, E.K. Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. Fermentation 2022, 8, 41. [Google Scholar] [CrossRef]
- Swelam, S.; Zommara, M.A.; Abd El-Aziz, A.E.-A.M.; Elgammal, N.A.; Baty, R.S.; Elmahallawy, E.K. Insights into Chufa Milk Frozen Yoghurt as Cheap Functional Frozen Yoghurt with High Nutritional Value. Fermentation 2021, 7, 255. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.; Hernández-Mendoza, A.; Torres-Llanez, M.; González-Córdova, A.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Albrakati, A.; Elmahallawy, E.K. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022, 8, 112. [Google Scholar] [CrossRef]
- Elkot, W.F.; Ateteallah, A.H.; Al-Moalem, M.H.; Shahein, M.R.; Alblihed, M.A.; Abdo, W.; Elmahallawy, E.K. Functional, Physicochemical, Rheological, Microbiological, and Organoleptic Properties of Synbiotic Ice Cream Produced from Camel Milk Using Black Rice Powder and Lactobacillus acidophilus LA-5. Fermentation 2022, 8, 187. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Elkot, W.F.; Hijazy, H.H.A.; Kassab, R.B.; Alblihed, M.A.; Elmahallawy, E.K. The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation 2022, 8, 192. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.-S.H.; Babalghith, A.O.; ALRashdi, B.M.; Radwan, H.A.; Umair, M.; Abdalmegeed, D.; Mahfouz, H.; Dahran, N.; Cacciotti, I.; et al. Impact of incorporation of Hawthorn (C. oxyanatha) leaves aqueous extract on yogurt properties and its therapeutic effects against oxidative stress in Rats induced by carbon tetrachloride. Fermentation 2022, 8, 200. [Google Scholar] [CrossRef]
- Shahein, M.R.; Elkot, W.F.; Albezrah, N.K.A.; Abdel-Hafez, L.J.M.; Alharbi, M.A.; Massoud, D.; Elmahallawy, E.K. Insights into the microbiological and physicochemical properties of bio-frozen yoghurt made with probiotic strains in combination with Jerusalem artichoke tubers powder. Fermentation 2022, 8, 390. [Google Scholar] [CrossRef]
- Aygün, A.; Gülbağça, F.; Nas, M.S.; Alma, M.H.; Çalımlı, M.H.; Ustaoglu, B.; Altunoglu, Y.C.; Baloğlu, M.C.; Cellat, K.; Şen, F. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. J. Pharm. Biomed. Anal. 2020, 179, 113012. [Google Scholar] [CrossRef]
- Embuscado, M.E. Herbs and spices as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 251–283. [Google Scholar]
- Gottardi, D.; Bukvicki, D.; Prasad, S.; Tyagi, A.K. Beneficial effects of spices in food preservation and safety. Front. Microbiol. 2016, 7, 1394. [Google Scholar] [CrossRef]
- Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [Google Scholar] [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Nunes, C.d.R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
- Kosar, M.; Bozan, B.; Temelli, F.; Baser, K. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chem. 2007, 103, 952–959. [Google Scholar] [CrossRef]
- Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Evaluation of antimicrobial and antioxidant activities of Syrian Sumac fruit extract. J. Nat. Prod. 2013, 6, 96–102. [Google Scholar]
- Moghadam, P.; Dadelahi, S.; Hajizadeh, Y.S.; Matin, M.G.; Amini, M.; Hajazimian, S. Chemical Composition and Antibacterial Activities of Sumac Fruit (Rhus coriaria) Essential Oil on Dental Caries Pathogens. Open Microbiol. J. 2020, 14, 142–146. [Google Scholar] [CrossRef]
- Rayne, S.; Mazza, G. Biological activities of extracts from sumac (Rhus spp.): A review. Nat. Preced. 2007, 62, 165–175. [Google Scholar] [CrossRef]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and antioxidant activities of Rhus coriaria L.(Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.; Hesami, B.; Sharafi, Y. Antimicrobial and antioxidant activities of Iranian sumac (Rhus coriaria L.) fruit ethanolic extract. J. Appl. Microbiol. Biochem. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Gabr, S.A.; El-Metwally, M.M.; Al-Ghadir, A.H. Antioxidant and antibacterial active constituents of Rhus coriaria. Biotechnology 2014, 13, 37. [Google Scholar] [CrossRef]
- Ahmadian-Attari, M.M.; Khanlarbeik, M.; Fazeli, M.R.; Jamalifar, H. Sumac (Rhus coriaria L.) represents a considerable antibacterial activity against meticillin susceptible and meticillin resistant Staphylococcus aureus. Int. J. Enteric Pathog. 2017, 5, 76–79. [Google Scholar] [CrossRef]
- Khanzada, S.K.; Shaikh, W.; Sofia, S.; Kazi, T.; Usmanghani, K.; Kabir, A.; Sheerazi, T. Chemical constituents of Tamarindus indica L. medicinal plant in Sindh. Pak. J. Bot. 2008, 40, 2553–2559. [Google Scholar]
- Bressiani, P.A.; De Lima, G.R.F.; Düsman, E.; Tonin, L.T.D. Cytotoxic and antioxidant activities of Tamarindus indica pulp extract from Brazil. J. Food Meas. Charact. 2021, 15, 2743–2749. [Google Scholar] [CrossRef]
- Abdallah, M.; Muhammad, A. Antibacterial activity of leaves and fruit extract of Tamarindus indica against clinical isolates of Escherichia coli and Shigella at Potiskum Yobe state, Nigeria. Asian J. Pharm. Res. Health Care 2018, 7, 606–609. [Google Scholar]
- Lim, H.-W.; Seo, K.-H.; Chon, J.-W.; Song, K.-Y. Antimicrobial activity of Hibiscus sabdariffa L.(Roselle) powder against food-borne pathogens present in dairy products: Preliminary study. J. Dairy Sci. Biotechnol. 2020, 38, 37–44. [Google Scholar] [CrossRef]
- Prasetyoputri, A.; Rahmawati, S.; Atikana, A.; Izzati, F.; Hapsari, Y.; Septiana, E.; Putra, M. A Mini Review on the Antibacterial Activity of Roselle (Hibiscus sabdariffa L.) Phytochemicals. In Proceedings of the 6th International Conference on Biotechnology Engineering (ICBioE 2021), Kuala Lumpur, Malaysia, 22–23 June 2021; p. 012017. [Google Scholar]
- Arogbodo, J.O.; Faluyi, O.B.; Igbe, F.O. In vitro Antimicrobial Activity of Ethanolic Leaf Extracts of Hibiscus Asper Hook. F. and Hibiscus Sabdariffa L. on some Pathogenic Bacteria. J. Sci. Res. Med. Biol. Sci. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Abdelghany, A.; Menazea, A.; Ismail, A. Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 2019, 1197, 603–609. [Google Scholar] [CrossRef]
- Cortes, U.A.B.; Gutiérrez, M.C.; Mendoza, D.G.; Salitre, L.G.; Vargas, A.S.; Catzim, C.E.A.; Durán, C.C.; Valenzuela, B.E.L. Microencapsulation and antimicrobial activity of extract acetone-methanol of Hibiscus sabdariffa L. using a blend modified starch and pectin as a wall material. Ind. Crops Prod. 2021, 170, 113725. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef]
- Kloy, A.; Ahmad, J.; Yusuf, U.; Muhammad, M. Antibacterial properties of rosemary (Rosmarinus officinalis). South Asian Res. J. Pharm. Sci. 2020, 2, 4–7. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, X.; Zhou, N.; Li, J.; Liu, J.; Yue, J.; Hao, X.; Gan, M.; Lin, P.; Shang, X. Chemical characterization of the polar antibacterial fraction of the ethanol extract from Rosmarinus officinalis. Food Chem. 2021, 344, 128674. [Google Scholar] [CrossRef]
- Saraiva, C.; Silva, A.C.; García-Díez, J.; Cenci-Goga, B.; Grispoldi, L.; Silva, A.F.; Almeida, J.M. Antimicrobial activity of Myrtus communis L. and Rosmarinus officinalis L. Essential oils against Listeria monocytogenes in cheese. Foods 2021, 10, 1106. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon’s by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- Ekawati, E.; Darmanto, W. Lemon (Citrus limon) juice has antibacterial potential against diarrhea-causing pathogen. In Proceedings of the 12th Congress of Indonesian Soc. for Biochemistry and Molecular Biology in Conjunction with the 2nd Int. Conf. “Collaboration Seminar of Chemistry and Industry (CoSCI)” and AnMicro Workshop, Airlangga, Indonesia, 11–12 October 2018; p. 012023. [Google Scholar]
- Hindi, N.K.K.; Chabuck, Z.A.G. Antimicrobial activity of different aqueous lemon extracts. J. Appl. Pharm. Sci. 2013, 3, 74. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Adams, M.R.; Moss, M.O.; Moss, M.O. Food Microbiology; Royal Society of Chemistry: London, UK, 2000. [Google Scholar]
- Garrity, G.M.; Brenner, D.J.; Krieg, N.; Staley, J.; Manual, B.S. Systematic Bacteriology. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, Bergey’s Manual Trust, Department of Microbiology and Molecular Genetics; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2. [Google Scholar]
- Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 3. [Google Scholar]
- Mahon, C.R.; Lehman, D.C.; Manuselis, G. Textbook of Diagnostic Microbiology-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Patel, P. Rapid Analysis Techniques in Food Microbiology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Abbey, S. Foundation in Medical Mycology, 4th ed.; Kenalf Publication: Port Harcourt, Nigeria, 2007; pp. 22–30. [Google Scholar]
- Handa, S. An overview of extraction techniques for medicinal and aromatic plants. Extr. Technol. Med. Aromat. Plants 2008, 1, 21–40. [Google Scholar]
- Rukayadi, Y.; Lau, K.; Zainin, N.; Zakaria, M.; Abas, F. Screening antimicrobial activity of tropical edible medicinal plant extracts against five standard microorganisms for natural food preservative. Int. Food Res. J. 2013, 20, 2905. [Google Scholar]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Black, J.G.; Black, L.J. Microbiology: Principles and Explorations; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Thiem, B.; Goślińska, O. Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia 2004, 75, 93–95. [Google Scholar] [CrossRef]
- Arokiyaraj, S.; Saravanan, M.; Prakash, N.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: An in vitro study. Mater. Res. Bull. 2013, 48, 3323–3327. [Google Scholar] [CrossRef]
- Rhim, J.-Y.; Moon, Y.-S.; Jung, S.-H.; Lee, K.-Y.; Lyu, S.-Y.; Shim, C.-S.; Park, W.-B. Antimicrobial activities of combined extract of Aloe vera with propolis against oral pathogens. J.-Korean Soc. Food Sci. Nutr. 2002, 31, 899–904. [Google Scholar]
- Ji, L.-L.; Luo, Y.-M. Studies on the antimicrobial activities of extracts from Eupatorium lindleyanum DC against food spoilage and food-borne pathogens. Food Control 2008, 19, 995–1001. [Google Scholar] [CrossRef]
- Troy, V.S.C. Mold Counting of Tomato Products; Continental Can Company: Chicago, IL, USA, 1956. [Google Scholar]
- Gould, W.A. Tomato, Production, Processing and Quality Evaluation; AVI Pub. Co.: Westport, CT, USA, 1974. [Google Scholar]
- Downes, F.; Ito, H. Compendium of Methods for the Microbiological Examination of Food; American Public: Washington, DC, USA, 2001. [Google Scholar]
- Manual, O. Culture Media, Ingredients and Other Laboratory Services; Unipath Limited: Hampshire, UK, 1990; Volume 24. [Google Scholar]
- Abdalla, A.E.; Darwish, S.M.; Ayad, E.H.; El-Hamahmy, R.M. Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 2007, 103, 1141–1152. [Google Scholar] [CrossRef]
- Statistix. Statistix 10: Data Analysis Software for Researchers; Statistix: Tallahassee, FL, USA, 2014. [Google Scholar]
- Fereidoonfar, H.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M.; Safdari, L. Chemical variation and antioxidant capacity of sumac (Rhus coriaria L.). Ind. Crops Prod. 2019, 139, 111518. [Google Scholar] [CrossRef]
- Santos, T.R.J.; Vasconcelos, A.G.S.; de Aquino Santana, L.C.L.; Gualberto, N.C.; Feitosa, P.R.B.; de Siqueira, A.C.P. Solid-state fermentation as a tool to enhance the polyphenolic compound contents of acidic Tamarindus indica by-products. Biocatal. Agric. Biotechnol. 2020, 30, 101851. [Google Scholar] [CrossRef]
- Purbowati, I.S.M.; Maksum, A. The antioxidant activity of Roselle (Hibiscus sabdariffa Linii) phenolic compounds in different variations microwave-assisted extraction time and power. IOP Conf. Ser. Earth Environ. Sci. 2019, 406, 012005. [Google Scholar] [CrossRef]
- Afonso, M.S.; de O Silva, A.M.; Carvalho, E.B.; Rivelli, D.P.; Barros, S.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr. Metab. 2013, 10, 19. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Bello, O.; Bello, I.; Aminu, D.; Olawuyi, O.; Afolabi-Balogun, N.; Lawal, A.; Azeez, A.; Habib, U. Antibiotic sensitivity of bacterial and fungal isolates from tomato (Solanum lycopersicum L.) fruit. Trop. Plant Res. 2016, 3, 112–119. [Google Scholar]
- Parekh, J.; Chanda, S. Antibacterial and phytochemical studies on twelve species of Indian medicinal plants. Afr. J. Biomed. Res. 2007, 10, 175–181. [Google Scholar] [CrossRef]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Yao, J.; Moellering, R. Antimicrobial agents. Man. Clin. Microbiol. 1995, 6, 1281–1307. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Urzúa, A.; Jara, F.; Tojo, E.; Wilkens, M.; Mendoza, L.; Rezende, M. A new antibacterial clerodane diterpenoid from the resinous exudate of Haplopappus uncinatus. J. Ethnopharmacol. 2006, 103, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Zhang, L.-F.; Xu, J.-G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.; Alves, T.M.d.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.; de Castro, S.L.; Ferreira, V.F.; De Lacerda, M. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Curr. Med. Chem. 2012, 19, 2128–2175. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Zheoat, A.M.; Alenezi, S.; Elmahallawy, E.K.; Ungogo, M.A.; Alghamdi, A.H.; Watson, D.G.; Igoli, J.O.; Gray, A.I.; de Koning, H.P.; Ferro, V.A. Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens 2021, 10, 175. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Ismail, M.M.; Essam, T.M.; Mohamed, A.F.; Mourad, F.E. Screening for the antimicrobial activities of alcoholic and aqueous extracts of some common spices in Egypt. Int. J. Microbiol. Res. 2012, 3, 200–207. [Google Scholar]
- El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Al-Daihan, S.; Al-Faham, M.; Al-shawi, N.; Almayman, R.; Brnawi, A.; shafi Bhat, R. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms. J. King Saud Univ.-Sci. 2013, 25, 115–120. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Mahasneh, A.M.; El-Oqlah, A.A. Antimicrobial activity of extracts of herbal plants used in the traditional medicine of Jordan. J. Ethnopharmacol. 1999, 64, 271–276. [Google Scholar] [CrossRef]
- Buwa, L.; Van Staden, J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. J. Ethnopharmacol. 2006, 103, 139–142. [Google Scholar] [CrossRef]
- Talib, W.H.; Mahasneh, A.M. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules 2010, 15, 1811–1824. [Google Scholar] [CrossRef]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Harizal, S.; Mansor, S.; Hasnan, J.; Tharakan, J.; Abdullah, J. Acute toxicity study of the standardized methanolic extract of Mitragyna speciosa Korth in rodent. J. Ethnopharmacol. 2010, 131, 404–409. [Google Scholar] [CrossRef]
- Ilmie, M.U.; Jaafar, H.; Mansor, S.M.; Abdullah, J.M. Subchronic toxicity study of standardized methanolic extract of Mitragyna speciosa Korth in Sprague-Dawley Rats. Front. Neurosci. 2015, 9, 189. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Van Cauter, M.; Cornu, O.; Yombi, J.-C.; Rodriguez-Villalobos, H.; Kaminski, L. The effect of storage delay and storage temperature on orthopaedic surgical samples contaminated by Staphylococcus Epidermidis. PLoS ONE 2018, 13, e0192048. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef]
- Meurant, G. Handbook of Milk Composition; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Jenkins, T.; McGuire, M. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006, 89, 1302–1310. [Google Scholar] [CrossRef]
- Perin, L.M.; Pereira, J.G.; Bersot, L.S.; Nero, L.A. The microbiology of raw milk. In Raw Milk; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–64. [Google Scholar]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.S.; Kabisch, J.; Böhnlein, C.; Franz, C.M. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef]
Family | Latin Name | English Name | Local Name | Part Used |
---|---|---|---|---|
Anacardiaceae | Rhus coriaria | Sumac | Sumac | Fruits |
Fabaceae (Leguminosa) | Tamarindus indica | Tamarind | Tamrhindy | Pods |
Lamiaceae (Labiatae) | Rosmarinus officinalis | Rosemary | Rosemary | Aerial parts |
Malvaceae | Hibiscus sabdariffa | Roselle | Karkadae | Red calyces |
Rutaceae | Citrus limon | Lemon | Limoon | Fruits |
Plant Extract | TPC mg GAE/g DW | % DPPH Inhibition |
---|---|---|
Rhus coriaria | 284.28 ± 12.6 | 90.42 ± 25 |
Tamarindus indica | 196.84 ± 8.4 | 88.60 ± 1.8 |
Rosmarinus officinalis | 17.60 ± 3.5 | 82.72 ± 2.3 |
Hibiscus sabdariffa | 29.68 ± 2.8 | 85.24 ± 2.7 |
Citrus limon | 14.96 ± 1.9 | 80.16 ± 1.4 |
Inhibition Zone (mm) * | ||||||||
---|---|---|---|---|---|---|---|---|
Plant Species | Sol. | E. coli | P. aeruginosa | B. subtilis | S. aureus | Penicillium spp. | A. niger | LSD |
Citrus limon | E | 23 ± 2 c | 18 ± 1 d | 27 ± 2 a | 25 ± 1 b | 0 ± 0 f | 8 ± 1 e | 1.60 |
M | 26 ± 2 c | 22 ± 2 d | 34 ± 2 a | 31 ± 2 b | 0 ± 0 f | 9 ± 1 e | 2.68 | |
WD | 15 ± 1 a,b | 13 ± 1 b | 16 ± 1 a | 14 ± 1 a,b | 0 ± 0 c | 0 ±0 c | 2.53 | |
WI | 19 ± 2 c | 11 ± 1 d | 23 ± 2 a | 21 ± 1 b | 0 ± 0 e | 0 ± 0 e | 1.46 | |
Hibiscus sabdariffa | E | 12 ± 2 d | 15 ± 2 c | 31 ± 2 a | 26 ± 3 b | 11 ± 1 d | 13 ± 2 c,d | 2.31 |
M | 14 ± 1 c | 13 ± 1 c | 34 ± 2 a | 28 ± 2 b | 13 ± 1 c | 12 ± 1 c | 2.78 | |
WD | 24 ± 1 b | 25 ± 2 b | 30 ± 2 a | 30 ± 2 a | 10 ± 1 c | 9 ± 1 c | 1.15 | |
WI | 22 ± 2 c | 27 ± 2 b | 33 ± 3 a | 32 ± 2 a | 9 ± 1 d | 8 ± 1 d | 2.78 | |
Rhus Coriaria | E | 35 ± 2 c | 28 ± 1 d | 41 ± 2 a | 38 ± 2 b | 19 ± 1 f | 24 ± 2 e | 1.55 |
M | 37 ± 3 b | 31 ± 2 c | 45 ± 3 a | 42 ± 2 a | 23 ± 2 d | 26 ± 3 d | 3.10 | |
WD | 20 ± 2 b | 24 ± 2 a | 26 ± 3 a | 19 ± 2 b | 14 ± 1 c | 18 ± 2 b | 3.11 | |
WI | 24 ± 1 c | 27 ± 2 b | 32 ± 2 a | 31 ± 2 a | 16 ± 1 e | 20 ± 2 d | 2.92 | |
Rosmarinus officinalis | E | 15 ± 1 b | 8 ± 1 d | 17 ± 1 a | 13 ± 1 c | 7 ± 1 e | 7 ± 1 e | 0.58 |
M | 18 ± 1 b | 10 ± 1 c,d | 22 ± 2 a | 18 ± 1 b | 8 ± 1 e | 11 ± 1 c | 2.96 | |
WD | 8 ± 1 b | 8 ± 1 b | 13 ± 2 a | 11 ± 2a | 0 ± 0 c | 0 ± 0 c | 2.16 | |
WI | 9 ± 2 b | 10 ± 2 b | 15 ± 2 a | 10 ± 2 b | 0 ± 0 c | 0 ± 0 c | 2.36 | |
Tamarindus indica | E | 30 ± 2 bc | 28 ± 1 c | 34 ± 2 a | 31 ± 2 b | 13 ± 2 d | 15 ± 2 d | 2.47 |
M | 29 ± 3 b | 25 ± 2 c | 36 ± 3 a | 35 ± 2 a | 16 ± 2 d | 18 ± 3 d | 3.05 | |
WD | 20 ± 2 d | 32 ± 2 a | 26 ± 2 c | 29 ± 2 b | 9 ± 1 f | 12 ± 1 e | 2.31 | |
WI | 22 ± 1 c | 31 ± 2 a | 28 ± 2 b | 27 ± 2 b | 8 ± 1 e | 13 ± 1 d | 2.78 |
E. coli | P. aeruginosa | B. subtilis | S. aureus | |||||
---|---|---|---|---|---|---|---|---|
Plant Species | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Rhus coriaria | 0.585 ± 0.2 c | 0.625 ± 0.2 c | 0.877 ± 0.1 c | 1.316 ± 0.3 c | 0.26 d | 0.31 ± 0.07 d | 0.39 ± 0.2 c | 0.39 ± 0.1 c |
Tamarindus indica | 0.625 ± 0.3 b,c | 0.877 ± 0.4 b,c | 1.316 ± 0.2 c | 1.975 ± 0.5 b,c | 0.39 ± 0.08 c,d | 0.39 ± 0.1 d | 0.625 ± 0.1 b,c | 1.25 ± 0.1 b |
Citrus limon | 1.25 ± 0.5 b | 1.316 ± 0.3 b | 1.975 ± 0.4 b | 2.5 ±0.8 b | 0.585 ± 0.2 b,c | 0.625 ± 0.2c | 0.877 ± 0.2 b | 1.975 ± 0.4 ab |
Hibiscus sabdariffa | 0.877 ±0.2 b,c | 1.25 ± 0.5 b | 1.975 ± 0.3 b | 2.962 ± 0.7 b | 0.625 ± 0.1 b | 0.877 ± 0.1 b | 0.877 ± 0.4 b | 1.975 ± 0.2 ab |
Rosmarinus officinalis | 2.5 ± 0.3 a | 2.962 ± 0.2 a | 2.962 ± 0.2 a | 4.444 ± 0.85 a | 1.25 ± 0.4 a | 1.975 ± 0.2 a | 1.316 ± 0.2 a | 2.5 ± 0.3 a |
LSD | 0.659 | 0.537 | 0.631 | 0.993 | 0.215 | 0.199 | 0.367 | 0.825 |
Penicillium spp. | Aspergillus niger | |||
---|---|---|---|---|
Plant Species | MIC | MFC | MIC | MFC |
Rhus coriaria | 2.5 ± 0.92 d | 4.444 ± 1.04 c | 1.975 ± 0.94 c | 2.5 ± 0.72 c |
Tamarindus indica | 2.962 ± 0.74 d | 4.444 ± 1.06 c | 2.5 ± 0.78 c | 4.444 ± 0.95 b |
Hibiscus sabdariffa | 4.444 ± 1.02 c | 6 ± 1.3 b | 2.962 ± 0.66 c | 5 ± 1.2 b |
Rosmarinus officinalis | 6.666 ± 1.05 b | 10 ± 1.0 a | 5 ± 1.01 b | 10 ± 1.3 a |
Citrus limon | >10 ± 0.96 a | >10 ± 1.2 a | 6.666 ± 1.0 a | 10 ± 1.2 a |
LSD | 1.25 | 1.52 | 1.25 | 1.42 |
Fungi | Bacteria | |||
---|---|---|---|---|
Samples | Room Temperature | Refrigeration | Room Temperature | Refrigeration |
Control | 4 ± 2 e | 8 ± 1 f | 12 ± 2 e | 16 ± 2 d |
Sodium benzoate | 28 ± 3 a | 40 ± 3 a | 24 ± 1 b | 36 ± 2 b |
Rhus coriaria | 24 ± 3 b | 32 ± 2 b | 32 ± 2 a | 44 ± 3 a |
Tamarindus indica | 16 ± 2 c | 28 ± 3 c | 24 ± 2 b | 36 ± 2 b |
Hibiscus sabdariffa | 16 ± 2 c | 24 ± 2 c | 20 ± 1 c | 24 ± 2 c |
Rosmarinus officinalis | 12 ± 3 c | 16 ± 2 d | 16 ± 1 d | 24 ± 2 c |
Citrus limon | 8 ± 2 d | 12 ± 2 e | 24 ± 2 b | 32 ± 3 b |
LSD | 3.49 | 3.68 | 2.85 | 5.05 |
Samples | Total Microbial Count (CFU mL−1) | Total Coliform Count (CFU mL−1) |
---|---|---|
Control | 9.2 × 10 8 | 1.8 × 10 6 |
Rhus Coriaria (Sumac) | 4.7 × 10 3 | ND |
Tamarindus indica (Tamarind) | 5.9 × 10 3 | ND |
Hibiscus sabdariffa (Roselle) | 2.2 × 10 4 | ND |
Rosmarinus officinalis (Rosemary) | 8.6 × 10 4 | ND |
Citrus limon (Lemon) | 1.8 × 10 5 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atwaa, E.S.H.; Shahein, M.R.; Radwan, H.A.; Mohammed, N.S.; Aloraini, M.A.; Albezrah, N.K.A.; Alharbi, M.A.; Sayed, H.H.; Daoud, M.A.; Elmahallawy, E.K. Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives. Fermentation 2022, 8, 428. https://doi.org/10.3390/fermentation8090428
Atwaa ESH, Shahein MR, Radwan HA, Mohammed NS, Aloraini MA, Albezrah NKA, Alharbi MA, Sayed HH, Daoud MA, Elmahallawy EK. Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives. Fermentation. 2022; 8(9):428. https://doi.org/10.3390/fermentation8090428
Chicago/Turabian StyleAtwaa, El Sayed Hassan, Magdy Ramadan Shahein, Hanan A. Radwan, Nahed S. Mohammed, Maha A. Aloraini, Nisreen Khalid Aref Albezrah, Maha A. Alharbi, Haitham Helmy Sayed, Mamdouh Abdelmegid Daoud, and Ehab Kotb Elmahallawy. 2022. "Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives" Fermentation 8, no. 9: 428. https://doi.org/10.3390/fermentation8090428
APA StyleAtwaa, E. S. H., Shahein, M. R., Radwan, H. A., Mohammed, N. S., Aloraini, M. A., Albezrah, N. K. A., Alharbi, M. A., Sayed, H. H., Daoud, M. A., & Elmahallawy, E. K. (2022). Antimicrobial Activity of Some Plant Extracts and Their Applications in Homemade Tomato Paste and Pasteurized Cow Milk as Natural Preservatives. Fermentation, 8(9), 428. https://doi.org/10.3390/fermentation8090428