Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method
Abstract
:1. Introduction
2. Non-Conventional Grape Varieties for Sparkling Wine Production Using the Traditional Method
2.1. White Sparkling Wines
2.2. Rosé Sparkling Wines
2.3. Red Sparkling Wines
3. Indigenous Yeast Starters for First and Second Fermentation of Sparkling Wines Using Non-Conventional Grape Varieties and the Traditional Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cebollero, E.; Rejas, M.T.; Gonzalez, R. Chapter 12 Autophagy in Wine Making, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; Volume 451. [Google Scholar]
- Garofalo, C.; Arena, M.P.; Laddomada, B.; Cappello, M.S.; Bleve, G.; Grieco, F.; Beneduce, L.; Berbegal, C.; Spano, G.; Capozzi, V. Starter cultures for sparkling wine. Fermentation 2016, 2, 21. [Google Scholar] [CrossRef]
- Buxaderas, S.; López-Tamames, E. Sparkling Wines: Features and Trends from Tradition; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 66, ISBN 9780123945976. [Google Scholar]
- Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. Effect of production phase on bottle-fermented sparkling wine quality. J. Agric. Food Chem. 2015, 63, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, N.; Ristic, R.; Culbert, J.A.; Pearce, K.; Wilkinson, K.L. Investigating australian consumers’ perceptions of and preferences for different styles of sparkling wine using the fine wine instrument. Foods 2021, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- Raymond Eder, M.L.; Fariña, L.; Dellacassa, E.; Carrau, F.; Rosa, A.L. Chemical and sensory features of Torrontes Riojano sparkling wines produced by second fermentation in bottle using different Saccharomyces strains. Food Sci. Technol. Int. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sartor, S.; Burin, V.M.; Ferreira-Lima, N.E.; Caliari, V.; Bordignon-Luiz, M.T. Polyphenolic Profiling, Browning, and Glutathione Content of Sparkling Wines Produced with Nontraditional Grape Varieties: Indicator of Quality During the Biological Aging. J. Food Sci. 2019, 84, 3546–3554. [Google Scholar] [CrossRef]
- Caliari, V.; Burin, V.M.; Rosier, J.P.; BordignonLuiz, M.T. Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res. Int. 2014, 62, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Nicolli, K.P.; Welke, J.E.; Closs, M.; Caramão, E.B.; Costa, G.; Manfroi, V.; Zini, C.A. Characterization of the volatile profile of Brazilian moscatel sparkling wines through solid phase microextraction and gas chromatography. J. Braz. Chem. Soc. 2015, 26, 1411–1430. [Google Scholar] [CrossRef]
- Caliari, V.; Panceri, C.P.; Rosier, J.P.; Bordignon-Luiz, M.T. Effect of the traditional, charmat and asti method production on the volatile composition of moscato giallo sparkling wines. LWT-Food Sci. Technol. 2015, 61, 393–400. [Google Scholar] [CrossRef]
- Nascimento, A.M.d.S.; de Souza, J.F.; Lima, M.D.S.; Pereira, G.E. Volatile profiles of sparkling wines produced by the traditional method from a semi-arid region. Beverages 2018, 4, 103. [Google Scholar] [CrossRef] [Green Version]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Pegg, C.L.; Phung, T.K.; Caboche, C.H.; Niamsuphap, S.; Bern, M.; Howell, K.; Schulz, B.L. Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine. Mol. Cell. Proteom. 2021, 20, 100020. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Berbegal, C.; Grieco, F.; Tufariello, M.; Spano, G.; Capozzi, V. Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties. Int. J. Food Microbiol. 2018, 285, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Francesca, N.; Mercurio, V.; Prestianni, R.; Settanni, L.; Spanò, G.; Naselli, V.; Moschetti, G. Use of grape racemes from Grillo cultivar to increase the acidity level of sparkling base wines produced with different Saccharomyces cerevisiae strains. Yeast 2020, 37, 475–486. [Google Scholar] [CrossRef]
- Montevecchi, G.; Masino, F.; Simone, G.V.; Cerretti, E.; Antonelli, A. Aromatic profile of white sweet semi-sparkling wine from Malvasia di candia aromatica grapes. S. Afr. J. Enol. Vitic. 2015, 36, 267–276. [Google Scholar] [CrossRef]
- Tufariello, M.; Pati, S.; D’Amico, L.; Bleve, G.; Losito, I.; Grieco, F. Quantitative issues related to the headspace-SPME-GC/MS analysis of volatile compounds in wines: The case of Maresco sparkling wine. Lwt 2019, 108, 268–276. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.C.; Riponi, C.; Chinnici, F. Chitosan in sparkling wines produced by the traditional method: Influence of its presence during the secondary fermentation. Foods 2020, 9, 1174. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Reis, A.; Domingues, M.R.M.; Rocha, S.M.; Coimbra, M.A. Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines. J. Agric. Food Chem. 2011, 59, 3168–3179. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Coimbra, M.A.; Nogueira, J.M.F.; Rocha, S.M. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal. Chim. Acta 2009, 635, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Cotea, V.V.; Focea, M.C.; Luchian, C.E.; Colibaba, L.C.; Scutarașu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of different commercial yeasts on volatile fraction of sparkling wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Coldea, T.E.; Mudura, E.; Fărcaș, A.; Marc, L. Valorisation of hybrid grape variety into processing of red sparkling wine. J. Agroaliment. Process. Technol. 2016, 22, 6–9. [Google Scholar]
- Ivit, N.N.; Loira, I.; Morata, A.; Benito, S.; Palomero, F.; Suárez-Lepe, J.A. Making natural sparkling wines with non-Saccharomyces yeasts. Eur. Food Res. Technol. 2018, 244, 925–935. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. Sparkling wines produced from alternative varieties: Sensory attributes and evolution of phenolics during winemaking and aging. Am. J. Enol. Vitic. 2013, 64, 39–49. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. Changes in polysaccharide composition during sparkling wine making and aging. J. Agric. Food Chem. 2013, 61, 12362–12373. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Magariño, S.; Ortega-Heras, M.; Bueno-Herrera, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Grape variety, aging on lees and aging in bottle after disgorging influence on volatile composition and foamability of sparkling wines. LWT-Food Sci. Technol. 2015, 61, 47–55. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Role of major wine constituents in the foam properties of white and rosé sparkling wines. Food Chem. 2015, 174, 330–338. [Google Scholar] [CrossRef]
- García, M.J.; Aleixandre, J.L.; Álvarez, I.; Lizama, V. Foam aptitude of Bobal variety in white sparkling wine elaboration and study of volatile compounds. Eur. Food Res. Technol. 2009, 229, 133–139. [Google Scholar] [CrossRef]
- Liu, P.H.; Vrigneau, C.; Salmon, T.; Hoang, D.A.; Boulet, J.C.; Jégou, S.; Marchal, R. Influence of grape berry maturity on juice and base wine composition and foaming properties of sparkling wines from the champagne region. Molecules 2018, 23, 1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozo-Bayón, M.A.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Andujar-Ortiz, I.; Pueyo, E. Impact of using Trepat and Monastrell red grape varieties on the volatile and nitrogen composition during the manufacture of rosé Cava sparkling wines. LWT-Food Sci. Technol. 2010, 43, 1526–1532. [Google Scholar] [CrossRef] [Green Version]
- Girbau-Solà, T.; López-Barajas, M.; López-Tamames, E.; Buxaderas, S. Foam aptitude of Trepat and Monastrell red varieties in Cava elaboration. 2. Second fermentation and aging. J. Agric. Food Chem. 2002, 50, 5600–5604. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.J.; Muñoz-Redondo, J.M.; Cuevas, F.J.; Marrufo-Curtido, A.; León, J.M.; Ramírez, P.; Moreno-Rojas, J.M. The influence of pre-fermentative maceration and ageing factors on ester profile and marker determination of Pedro Ximenez sparkling wines. Food Chem. 2017, 230, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Magariño, S.; Bueno-Herrera, M.; López de la Cuesta, P.; González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Volatile composition, foam characteristics and sensory properties of Tempranillo red sparkling wines elaborated using different techniques to obtain the base wines. Eur. Food Res. Technol. 2019, 245, 1047–1059. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Apolinar-Valiente, R.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S.; Williams, P.; Doco, T. Influence of Grape Maturity on Complex Carbohydrate Composition of Red Sparkling Wines. J. Agric. Food Chem. 2016, 64, 5020–5030. [Google Scholar] [CrossRef] [PubMed]
- González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestaran, B.; Bueno-Herrera, M.; López de la Cuesta, P.; Pérez-Magariño, S. Evaluation of grape ripeness, carbonic maceration and pectolytic enzymes to improve the chemical and sensory quality of red sparkling wines. J. Sci. Food Agric. 2020, 100, 2618–2629. [Google Scholar] [CrossRef]
- Bozdogàn, A.; Canbaş, A. The effect of yeast strain, immobilisation, and ageing time on the amount of free amino acids and amino acids in peptides of sparkling wines obtained from cv. dimrit grapes. S. Afr. J. Enol. Vitic. 2012, 33, 257–263. [Google Scholar] [CrossRef]
- Bozdogan, A.; Canbas, A. Influence of yeast strain, immobilisation and ageing time on the changes of free amino acids and amino acids in peptides in bottle-fermented sparkling wines obtained from Vitis vinifera cv. Emir. Int. J. Food Sci. Technol. 2011, 46, 1113–1121. [Google Scholar] [CrossRef]
- Zoecklein, B. A Review of Methode Champagne Production; Virginia Coop. Ext.: Ettrick, VA, USA, 2002. [Google Scholar]
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for sparkling wine production: A review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.D.; Welke, J.E.; Nicolli, K.P.; Zanus, M.; Caramão, E.B.; Manfroi, V.; Zini, C.A. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine. Food Chem. 2015, 183, 291–304. [Google Scholar] [CrossRef]
- Ganss, S.; Kirsch, F.; Winterhalter, P.; Fischer, U.; Schmarr, H.G. Aroma changes due to second fermentation and glycosylated precursors in Chardonnay and Riesling sparkling wines. J. Agric. Food Chem. 2011, 59, 2524–2533. [Google Scholar] [CrossRef]
- Pérez, D.; Assof, M.; Bolcato, E.; Sari, S.; Fanzone, M. Combined effect of temperature and ammonium addition on fermentation profile and volatile aroma composition of Torrontés Riojano wines. LWT-Food Sci. Technol. 2018, 87, 488–497. [Google Scholar] [CrossRef]
- Culbert, J.A.; Ristic, R.; Ovington, L.A.; Saliba, A.J.; Wilkinson, K.L. Sensory profiles and consumer acceptance of different styles of Australian Moscato. Aust. J. Grape Wine Res. 2018, 24, 96–104. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Boidron, J.N.; Terrier, A. Aroma of Muscat Grape Varieties. J. Agric. Food Chem. 1975, 23, 1042–1047. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. Factors influencing the aroma composition of chardonnay wines. J. Agric. Food Chem. 2014, 62, 6512–6534. [Google Scholar] [CrossRef]
- Simpson; Miller Aroma composition of Chardonnay wine. VITIS-J. Grapevine Res. 1984, 23, 143.
- Carrau, F.M.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.A.; Dellacassa, E. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Song, M.; Xia, Y.; Tomasino, E. Investigation of a Quantitative Method for the Analysis of Chiral Monoterpenes in White Wine by HS-SPME-MDGC-MS of Different Wine Matrices. Molecules 2015, 20, 7359–7378. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Magariño, S.; Ortega-Heras, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Multivariate analysis for the differentiation of sparkling wines elaborated from autochthonous Spanish grape varieties: Volatile compounds, amino acids and biogenic amines. Eur. Food Res. Technol. 2013, 236, 827–841. [Google Scholar] [CrossRef]
- Raymond Eder, M.L.; Rosa, A.L. Yeast diversity in Vitis non-vinifera ecosystems. Rev. Argent. Microbiol. 2019, 51, 278–283. [Google Scholar] [CrossRef]
- Hidalgo, P.; Pueyo, E.; Pozo-Bayón, M.Á.; Martínez-Rodríguez, A.; Martín-Álvarez, P.; Polo, M.C. Sensory and analytical study of rosé sparkling wines manufactured by second fermentation in the bottle. J. Agric. Food Chem. 2004, 52, 6640–6645. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Perpetuini, G.; Tittarelli, F.; Schirone, M.; Arfelli, G.; Piva, A.; Patrignani, F.; Lanciotti, R.; Olivastri, L.; Suzzi, G.; et al. Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production. Food Res. Int. 2018, 109, 552–560. [Google Scholar] [CrossRef]
- Borrull, A.; Poblet, M.; Rozès, N. New insights into the capacity of commercial wine yeasts to grow on sparkling wine media. Factor screening for improving wine yeast selection. Food Microbiol. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Nunez, Y.P.; Carrascosa, A.V.; Gonzalez, R.; Polo, M.C.; Martínez-Rodríguez, A. Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a champenoise method. J. Agric. Food Chem. 2005, 53, 7232–7237. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Carrascosa, A.V.; Martín, V.; Moreno-Arribas, M.V.; Polo, M.C. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method. J. Ind. Microbiol. Biotechnol. 2002, 29, 314–322. [Google Scholar] [CrossRef]
- Kemp, B.; Condé, B.C.; Jégou, S.; Howell, K.S.; Vasserot, Y.; Marchal, R. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Crit. Rev. Food Sci. Nutr. 2019, 59, 2072–2094. [Google Scholar] [CrossRef]
- Vigentini, I.; Cardenas, S.B.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Foschino, R. Use of native yeast strains for in-bottle fermentation to face the uniformity in sparkling wine production. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Carrascosa, A.V.; Barcenilla, J.M.; Angeles Pozo-Bayón, M.; Carmen Polo, M. Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol. 2001, 18, 183–191. [Google Scholar] [CrossRef]
- Carrau, F.; Boido, E.; Ramey, D. Yeasts for Low Input Winemaking: Microbial Terroir and Flavor Differentiation, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 111. [Google Scholar]
- Marti-Raga, M.; Martín, V.; Gil, M.; Sancho, M.; Zamora, F.; Mas, A.; Beltran, G. Contribution of yeast and base wine supplementation to sparkling wine composition. J. Sci. Food Agric. 2016, 96, 4962–4972. [Google Scholar] [CrossRef]
- Ivit, N.N.; Kemp, B. The impact of non-Saccharomyces yeast on traditional method sparkling wine. Fermentation 2018, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Canals, J.M.; Zamora, F. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foaming properties of sparkling wine. Eur. Food Res. Technol. 2017, 243, 681–688. [Google Scholar] [CrossRef]
Country | Sparkling Wine | Color(s) | Grape Varieties |
---|---|---|---|
France | Champagne | White, rosé | Chardonnay, Pinot noir, and Pinot meunier |
France | Crémant | White, rosé | Chardonnay, Pinot noir, Chenin blanc, Cabernet franc, Mauzac, and Pinot blanc |
Spain | Cava | White, rosé | Macabeo, Xarel.lo, Parellada, Pinot noir, and Chardonnay |
Italy | Talento | White, rosé | Chardonnay, Pinot nero, and Pinot bianco |
Italy | Lambrusco | Red | Lambrusco Grasparossa, Lambrusco Maestri, Lambrusco Marani, Lambrusco Montericco, Lambrusco Salamino, and Lambrusco Sorbara |
Australia | Shiraz | Red | Shiraz |
(*) | New sparkling | White, rosé | Chardonnay and Pinot noir |
Country | Grape Variety | Reference |
---|---|---|
Argentina | Torrontés Riojano | [6] |
Brazil | Goethe | [7,8] |
Manzoni | [7,8] | |
Moscatel | [8,9] | |
Niagara | [7,8] | |
Villenave | [7,8] | |
Moscato Giallo | [10] | |
Syrah | [11] | |
Chenin Blanc | [11] | |
Chile | País | [12] |
Germany | Sauvignon blanc | [13] |
Italy | Bombino bianco | [14] |
Grillo | [15] | |
Malvasia di Candia | [16] | |
Nero di Troia | [14] | |
Maresco | [17] | |
Verdicchio | [18] | |
Pinot gris | [19] | |
Pignoletto | [19] | |
Portugal | Baga | [20,21] |
Fernão-Pires | [20,21] | |
Romania | Muscat Ottonel | [22] |
Feteasca Neagra | [23] | |
Spain | Airén | [24] |
Albarín | [25,26,27,28] | |
Bobal | [29] | |
Garnacha | [25,26,27,28,30] | |
Godello | [25,26,27,28] | |
Malvasía | [25,26,27,28] | |
Monastrell | [30,31,32] | |
Pedro Ximénez | [33] | |
Pietro Picudo | [25,26,27,28] | |
Tempranillo | [24,28,34,35,36] | |
Verdejo | [25,26,27,28] | |
Viura | [25,26,27,28] | |
Turkey | Dimrit | [37] |
Emir | [38] |
Grape Variety | Wine | pH | Titratable Acidity (g/L) | Volatile Acidity (g/L) | SO2 Total (mg/L) | Ethanol (% v/v) | Sugars (g/L) | Ref. |
---|---|---|---|---|---|---|---|---|
Grillo | White | 3.07 ± 0.04 | 17.03 ± 0.07 | 0.39 ± 0.05 | 42.00 ± 2.00 | 10.05 ± 0.08 | 1.75 ± 0.04 | [15] |
Albarin | White | 2.79 | 9.5 | 0.28 | 56 | 11.1 | ND | [25] |
Viura | White | 2.95 | 8.2 | 0.16 | 53 | 10.7 | ND | [25] |
Godello | White | 2.84 | 7.6 | 0.31 | 64 | 11.7 | ND | [25] |
Malvasía | White | 2.99 | 8.0 | 0.27 | 65 | 10.6 | ND | [25] |
Verdejo | White | 2.93 | 8.2 | 0.21 | 56 | 10.3 | ND | [25] |
Torrontés Riojano | White | 3.3 | 5.1 | ND | ND | 10.7 | 1.83 | [6] |
Villenave | White | 2.69 ± 0.1 | 9.13 ± 0.23 | 0.18 ± 0.01 | 24.72 ± 0.08 | 10.03 ± 0.05 | ND | [7] |
Niagara | White | 3.11 ± 0.1 | 5.24 ± 0.09 | 0.19 ± 0.01 | 11.28 ± 0.08 | 10.07 ± 0.02 | ND | [7] |
Manzoni | White | 3.07 ± 0.1 | 7.59 ± 0.09 | 0.09 ± 0.02 | 61.92 ± 0.08 | 12.07 ± 0.06 | ND | [7] |
Goethe | White | 3.32 ± 0.1 | 6.03 ± 0.08 | 0.17 ± 0.02 | 48.08 ± 0.08 | 10.47 ± 0.04 | ND | [7] |
Pedro Ximénez | White | 3.24 | 5.67 | 0.39 | ND | 12.4 | 2.4 | [33] |
Airén | White | 3.36 | 5.40 | 0.31 | ND | 9.49 | 0.36 | [24] |
Muscat Ottonel | White | 2.90 ± 0.02 | 6.3 ± 0.07 | 0.30 ± 0.02 | 72 ± 0.47 | 12.5 ± 0.03 | 3.4 ± 0.13 | [22] |
Garnacha | Rosé | 3.03 | 7.5 | 0.18 | 63 | 11.8 | ND | [25] |
Pietro Picudo | Rosé | 3.08 | 8.5 | 0.17 | 30 | 11.5 | ND | [25] |
Tempranillo | Red | 3.7 ± 0.1 | 4.6 ± 0.2 | 0.39 ± 0.05 | ND | 13.0 ± 0.2 | ND | [34] |
Tempranillo | Red | 3.45 ± 0.1 | 5.5 ± 0.2 | 0.55 ± 0.06 | ND | 12.3 ± 0.2 | ND | [36] |
Tempranillo 1 | Red | 3.47 | 5.10 | 0.32 | ND | 11.1 | ND | [35] |
Tempranillo 2 | Red | 3.71 | 4.80 | 0.20 | ND | 13.0 | ND | [35] |
Tempranillo | Red | 3.36 | 5.20 | 0.48 | ND | 9.74 | 2.21 | [24] |
Chardonnay | White | 2.80 ± 0.00 | 7.5 ± 0.0 | ND | ND | 11.0 ± 0.1 | 6.1 ± 0.5 | [30] |
Pinot meunier | White | 2.85 ± 0.01 | 7.6 ± 0.0 | ND | ND | 10.9 ± 0.1 | ND | [30] |
Riesling | White | 3.3 | 6.9 | 0.26 | ND | 10.5 | ND | [42] |
Grape Variety | Sparkling Wine | Aging Time (Months) | pH | Titratable Acidity (g/L) | Volatile Acidity (g/L) | SO2 Total (mg/L) | Ethanol (% v/v) | Sugars (g/L) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Albarin | White | 9 | 2.76 | 7.2 | 0.39 | 35 | 12.2 | ND | [25] |
Viura | White | 9 | 2.89 | 7.4 | 0.24 | 43 | 11.6 | ND | [25] |
Godello | White | 9 | 2.82 | 7.2 | 0.32 | 43 | 12.2 | ND | [25] |
Malvasía | White | 9 | 3.10 | 7.4 | 0.28 | 31 | 11.6 | ND | [25] |
Verdejo | White | 9 | 2.94 | 7.4 | 0.30 | 33 | 11.6 | ND | [25] |
Torrontés Riojano | White | 10 | 3.25 ± 0.04 | 4.85 ± 0.09 | ND | ND | 11.97 ± 0.09 | 2.07 ± 1.31 | [6] |
Pedro Ximénez | White | 9 | 3.22 | 5.59 | 0.35 | ND | 12.6 | 2.4 | [33] |
Airén | White | 4 | 3.39 ± 0.01 | 5.17 ± 0.06 | 0.36 ± 0.00 | ND | 10.75 ± 0.50 | 0.08 ± 0.01 | [24] |
Manzoni | White | 18 | ND | 8.49 ± 0.13 | 0.36 ± 0.11 | ND | 10.8 ± 0.2 | 8.2 ± 0.2 | [8] |
Villenave | White | 18 | ND | 4.36 ± 0.15 | 0.55 ± 0.10 | ND | 10.8 ± 0.3 | 1.0 ± 0.1 | [8] |
Moscato | White | 18 | ND | 5.26 ± 0.25 | 0.63 ± 0.12 | ND | 12.3 ± 0.4 | 8.7 ± 0.2 | [8] |
Niágara | White | 18 | ND | 4.88 ± 0.4 | 0.57 ± 0.12 | ND | 9.1 ± 0.2 | 1.0 ± 0.1 | [8] |
Goethe | White | 18 | ND | 5.60 ± 0.17 | 0.75 ± 0.08 | ND | 11.4 ± 0.4 | 1.0 ± 0.1 | [8] |
Muscat Ottonel | White | 15 | 3.1 ± 0.01 | 6.70 ± 0.02 | 0.30 ± 0.01 | 56 ± 0.47 | 11.6 ± 0.07 | 0.7 ± 0.02 | [22] |
Moscato Giallo | White | 10 | ND | 6.69 ± 0.20 | 0.62 ± 0.05 | ND | 10.9 ± 0.1 | 1.10 ± 0.09 | [10] |
Chenin blanc | White | 6 | 3.42 ± 0.02 | 9.68 ± 0.17 | 0.46 ± 0.03 | ND | 12.35 ± 0.37 | 2.60 ± 0.08 | [11] |
Syrah | White | 6 | 3.58 ± 0.02 | 8.18 ± 0.07 | 0.48 ± 0.04 | ND | 13.20 ± 0.30 | 2.67 ± 0.15 | [11] |
Pinot gris and Pignoletto | White | 12 | 3.11 ± 0.01 | 5.51 ± 0.01 | 0.28 ± 0.01 | ND | 11.30 ± 0.03 | ND | [19] |
Garnacha | Rosé | 9 | 2.85 | 6.9 | 0.25 | 44 | 12.3 | ND | [25] |
Pietro Picudo | Rosé | 9 | 3.02 | 7.1 | 0.29 | 21 | 12.5 | ND | [25] |
Tempranillo | Red | 9 | 3.5 ± 0.1 | 4.7 ± 0.2 | 0.32 ± 0.04 | ND | 13.7 ± 0.2 | ND | [34] |
Tempranillo | Red | 9 | 3.42 ± 0.1 | 5.6 ± 0.2 | 0.52 ± 0.05 | ND | 13.3 ± 0.2 | ND | [36] |
Tempranillo 1 | Red | 9 | 3.49 | 5.2 | 0.32 | ND | 12.3 | 1.50 | [35] |
Tempranillo 2 | Red | 9 | 3.70 | 4.9 | 0.30 | ND | 14.0 | 1.70 | [35] |
Tempranillo | Red | 4 | 3.38 ± 0.01 | 5.03 ± 0.06 | 0.45 ± 0.01 | ND | 10.76 ± 0.27 | 0.12 ± 0.10 | [24] |
S. blanc | White | 18 | ND | 6.31 ± 0.12 | 0.65 ± 0.08 | ND | 12.9 ± 0.2 | 10.6 ± 0.3 | [8] |
Riesling Renano | White | 18 | ND | 8.64 ± 0.25 | 0.40 ± 0.09 | ND | 11.2 ± 0.3 | 4.5 ± 0.3 | [8] |
Pinot grigio | White | 18 | ND | 6.60 ± 0.13 | 0.71 ± 0.09 | ND | 10.5 ± 0.2 | 1.0 ± 0.1 | [8] |
Pinot noir | White | 18 | ND | 5.33 ± 0.15 | 0.75 ± 0.10 | ND | 11.4 ± 0.2 | 1.0 ± 0.1 | [8] |
Chardonnay | White | 18 | ND | 6.39 ± 0.12 | 0.77 ± 0.11 | ND | 11.8 ± 0.1 | 1.0 ± 0.1 | [8] |
Compound 1 | Muscat Ottonel | Moscato Giallo | Moscato Embrapa | Torrontés Riojano | Chardonnay | Riesling | Pinot Noir | Descriptor | OPT 2 |
---|---|---|---|---|---|---|---|---|---|
Ethyl hexanoate | ND | 748.198 ± 10.000 | 841.6 ± 29.3 | 424.7 ± 146.0 | 744.0 ± 8.0 | 750.0 ± 40.0 | 154.1 ± 170.0 | Apple, fruit | 14 [48] |
Ethyl octanoate | 7998.72 ± 0.15 | 1229.184 ± 35.021 | 954.4 ± 32.1 | 322.0 ± 160.0 | 712.0 ± 7.0 | 670.0 ± 30.0 | 59.8 ± 6.9 | Pineapple, pear, soapy | 5 [49] |
Sum esters3 | 10,634.41 | 2614.719 | 2569.9 | 10,515 ± 195 | 75,921.6 | 28,771 | 267.4 | ||
2-Phenylethanol | ND | 8226.558 ± 12.664 | 11824.2 ± 162.7 | 29.9 ± 6.7 | 11.6 ± <0.1 | 9.1 ± 0.1 | 2990.5 ± 163.8 | Rose, honey, woody | 14,000 [8] |
Nerol oxide | ND | 26.303 ± 2.516 | 84.9 ± 5.3 | 88.6 ± 48.0 | ND | ND | 15.5 ± 2.5 | Flower | 400 [8] |
Linalool | 138.86 ± 0.06 | 1732.887 ± 7.311 | 169.0 ± 28.0 | 7.7 ± 4.0 | <5 | 11.2 ± 0.1 | 42.2 ± 2.7 | Flower, lavender | 0.8 [50] |
α-Terpineol | 42.79 ± 0.40 | 1211.424 ± 11.521 | 97.1 ± 8.4 | 166.8 ± 23.0 | 3.4 ± <0.1 | 25.8 ± 0.3 | 9.5 ± 1.5 | Citrus | 250 [8] |
Sum terpenes3 | 181.65 | 3659.781 | 588.1 | 2890 ± 187 | 28 | 89.3 | 98.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond Eder, M.L.; Rosa, A.L. Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation 2021, 7, 321. https://doi.org/10.3390/fermentation7040321
Raymond Eder ML, Rosa AL. Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation. 2021; 7(4):321. https://doi.org/10.3390/fermentation7040321
Chicago/Turabian StyleRaymond Eder, María Laura, and Alberto Luis Rosa. 2021. "Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method" Fermentation 7, no. 4: 321. https://doi.org/10.3390/fermentation7040321
APA StyleRaymond Eder, M. L., & Rosa, A. L. (2021). Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. Fermentation, 7(4), 321. https://doi.org/10.3390/fermentation7040321