Studies on Proximate Composition, Mineral and Total Phenolic Content of Yogurt Bites Enriched with Different Plant Raw Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Yogurt Bites Preparation
- Control (yogurt bites without plant raw materials);
- Yogurt bites with 1% rosehip fruit powder;
- Yogurt bites with 1% nettle leaves powder;
- Yogurt bites with 1% mulberry leaves powder;
- Yogurt bites with 1% beetroot powder.
2.3. Proximate Composition Analysis
2.4. Mineral Elements Analysis
2.5. Determination of Total Phenolic Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Mineral Composition
3.3. Total Phenolic Amount
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Faccinetto-Beltran, P.; Andrea, R.; Fernández, G.; Santacruz, A.; Daniel, A.; Velázquez, J. Chocolate as Carrier to Deliver Bioactive Ingredients: Current Advances and Future Perspectives. Foods 2021, 10, 2065. [Google Scholar] [CrossRef] [PubMed]
- Muehlhoff, E.; Bennett, A.; Mcmahon, D. Milk and Dairy Products in Human Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 11–35. [Google Scholar]
- Rizzoli, R. Dairy products, yogurts, and bone health. Am. J. Clin. Nutr. 2014, 99, 1256S–1262S. [Google Scholar] [CrossRef] [Green Version]
- Franzoi, M.; Niero, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk. J. Dairy Sci. 2017, 101, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- O’connell, J.; Fox, P. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Jankowska, A.; Reps, A. Factors affecting the shelf-life of yoghurt during storage [Czynniki decydujące o trwałości jogurtu podczas przechowywania]. Prz. Mlecz. 2013, 11, 2–5. [Google Scholar]
- Hartl, A.; Vogl, C.R. Dry matter and fiber yields, and the fiber characteristics of five nettle clones (Urtica dioica L.) organically grown in Austria for potential textile use. Altern. Agric. 2002, 17, 195–200. [Google Scholar]
- Vogl, C.R.; Hartl, A. Production and processing of organically grown fiber nettle (Urtica dioica L.) and its potential use in the natural textile industry: A review. J. Altern. Agric. 2003, 18, 119–128. [Google Scholar] [CrossRef]
- Rafajlovska, V.; Kavrakovski, Z.; Siminovska, J.; Srbinoska, M. Determination of protein and mineral contents in stinging nettle. Qual. Life 2013, 4, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Rutto, L.K.; Xu, Y.; Ramirez, E.; Brandt, M. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.). Int. J. Food Sci. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.A.H.; Otmani, I.S.E.; Derfoufi, S.; Benmoussa, A. Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica). Int. J. Pharm. Pharm. Sci. 2015, 7, 8–14. [Google Scholar]
- Joshi, B.C.; Mukhija, M.; Kalia, A.N. Pharmacognostical review of Urtica dioica L. Int. J. Gren Pharm. 2014, 8, 201–209. [Google Scholar]
- Kale, R.G.; Sawate, A.R.; Kshirsagar, R.B.; Patil, B.M.; Mane, R.P. Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). Int. J. Chem. Stud. 2018, 6, 2977–2979. [Google Scholar]
- Neelwarne, B.; Halagur, S.B. Red beet: An overview. In Red Beet Biotechnology—Food and Pharmaceutical Applications; Neelwarne, B., Ed.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2013; pp. 1–43. [Google Scholar]
- Chawla, H.; Parle, M.; Sharma, K.; Yadav, M. Beetroot: A health promoting functional food. Inventi Impact: Nutraceuticals 2016, 1, 8–12. [Google Scholar]
- Masih, D.; Singh, N.; Singh, A. Red beetroot: A source of natural colourant and antioxidants: A review. J. Pharmacogn. Phytochem. 2019, 8, 162–166. [Google Scholar]
- Bavec, M.; Turinek, M.; Grobelnik, M.S.; Slatnar, A.; Bavec, F. Influence of industrial and alternative farming systems on contents of sugars, organic acids, total phenolic content, and the antioxidant activity of red beet (Beta vulgaris L. ssp. vulgaris). J. Agric. Food Chem. 2010, 58, 11825–11831. [Google Scholar] [CrossRef]
- Patel, S. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Sci. Technol. 2017, 63, 29–38. [Google Scholar] [CrossRef]
- Kulaitienė, J.; Medveckienė, B.; Levickienė, D.; Vaitkevičienė, N.; Makarevičienė, V.; Jarienė, E. Changes in Fatty Acids Content in Organic Rosehip (Rosa spp.) Seeds during Ripening. Plants 2020, 9, 1793. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef]
- Butt, M.S.; Nazir, A.; Sultan, T.M.; Schoën, K. Morus alba L. nature’s functional tonic. Trends Food Sci. Technol. 2008, 19, 505–512. [Google Scholar] [CrossRef]
- Adeduntan, S.A.; Oyerinde, A.S. Evaluation of chemical and antinutritional characteristics of obeche (Triplochition scleroxylon) and some mulberry (Morus alba) leaves. Int. J. Biol. Chem. Sci. 2009, 3, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Radojković, M.M.; Zeković, Z.P.; Dojinović, B.P.; Stojanović, Z.S.; Cvetanović, A.D.; Manojlović, D.D. Characterization of Morus species in respect to micro, macro, and toxic elements. Acta Period. Technol. 2014, 45, 229–237. [Google Scholar] [CrossRef]
- Levickienė, D.; Vaitkevičienė, N.; Jarienė, E.; Mažeika, R. The content of macroelements in white mulberry (Morus alba L.) leaves. Agric. Sci. 2018, 4, 177–183. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press Inc.: San Diego, CA, USA, 1995. [Google Scholar]
- Al-Mhanna, N.M.; Huebner, H.; Buchholz, R. Analysis of the sugar content in food products by using gas chromatography mass spectrometry and enzymatic methods. Foods 2018, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- AOAC, Official Method 932.06. Fat in milk powder. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- EN ISO 8968-3:2007. Milk—Determination of Nitrogen Content; iTeh Standards: Newark, NJ, USA, 2007. [Google Scholar]
- Tamilselvi, N.; Krishnamoorthy, P.; Dhamotharan, R.; Arumugam, P.; Sagadevan, E. Analysis of total phenols, total tannins and screening of phytocomponents in Indigofera aspalathoides (Shivanar Vembu) Vahl EX DC. J. Chem. Pharm. Res. 2012, 4, 3259–3262. [Google Scholar]
- Agustini, T.W.; Soetrisnanto, D.; Ma’ruf, W.F. Study on Chemical, Physical, Microbiological and Sensory of Yoghurt Enriched by Spirulina Platensis. Int. Food Res. J. 2017, 24, 367–371. [Google Scholar]
- Barakat, H.; Hassan, M.F.Y. Chemical, Nutritional, Rheological, and Organoleptical Characterizations of Stirred Pumpkin-Yoghurt. Food Nutr. Sci. 2017, 8, 746–759. [Google Scholar] [CrossRef] [Green Version]
- Matter, A.A.; Mahmoud, E.A.M.; Zidan, N.S. Fruit Flavored Yoghurt: Chemical, Functional and Rheological Properties. Int. J. Agric. Environ. Res. 2016, 2, 57–66. [Google Scholar]
- Yu, M.S.; Kim, J.M.; Lee, C.H.; Son, Y.J.; Kim, S.K. Quality Characteristics of Stirred Yoghurt Added with Fermented Red Pepper. Korean J. Food Sci. Anim. Resour. 2014, 34, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Najgebauer-Lejko, D.; Grega, T.; Tabaszewska, M. Yoghurts with Addition of Selected Vegetables: Acidity, Antioxidant Properties and Sensory Quality. Acta Sci. Pol. Technol. 2014, 13, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koul, V.K.; Jain, M.P.; Koul, S.; Sharma, V.K.; Tikoo, C.L.; Jain, S.M. Spray drying of beet root juice using different carriers. Indian J. Chem. Technol. 2002, 9, 442–445. [Google Scholar]
- Roy, K.; Gullapalli, S.; Chaudhuri, U.R.; Chakraborty, R. The use of a natural colorant based on betalain in the manufacture of sweet products in India. Int. J. Food Sci. Technol. 2004, 39, 1087–1091. [Google Scholar] [CrossRef]
- Kadakal, C.; Nas, S.; Artik, N. Kusburnu (Rosa canina L.) meyve ve cekirdeginin bilesimi ve insan beslenmesi acisindan onemi. Gida Temmuz-Agustos 2002, 7, 111–117. [Google Scholar]
- Akagić, A.; Vranac, A.; Gaši, F.; Drkenda, P.; Spaho, N.; Oručević Žuljević, S.; Kurtović, M.; Musić, O.; Murtić, S.; Hudina, M. Sugars, acids and polyphenols profile of commercial and traditional apple cultivars for processing. Acta Agric. Slov. 2019, 113, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Pirie, A.; Mullins, M.G. Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. Am. J. Enol. Vitic. 1977, 28, 204–209. [Google Scholar]
- Milivojević, J.; Rakonjac, V.; Fotirić Akšić, M.; Bogdanović Pristov, J.; Maksimović, V. Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity. Pesqui. Agropecu. Bras. 2013, 48, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Walstra, P.; Walstra, P.; Wouters, J.T.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, USA, 2005; p. 291. [Google Scholar]
- Hahsemi Gahruie, H.; Eskandari, M.H.; Mesbahi, G.; Hanifpour, M.A. Scientific and technical aspects of yogurt fortification: A review. Food Sci. Hum. Wellness 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hahsemi Gahruie, H. Yogurt. The most suitable carrier for increasing bioavailability of minerals. Prog. Nutr. 2018, 20, 294–296. [Google Scholar]
- Lotfi, M.; Venkatesh Mannar, M.; Merx, R.J.; Heuvel, P.N. Micronutrient Fortification of Foods: Current Practices, Research, and Opportunities; The Micronutrient Initiative: Ottawa, Canada, 1996; p. 106. [Google Scholar]
- Bilgin, N.A.; Misirli, A.; Şen, F.; Türk, B.; Yağmur, B. Fruit Pomological, Phytochemical Characteristic and Mineral Content of Rosehip Genotypes. Int. J. Food Eng. 2020, 6, 18–23. [Google Scholar] [CrossRef]
- Paulauskienė, A.; Tarasevičienė, Ž.; Laukagalis, V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle (Urtica dioica L.). Plants 2021, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Ozrenk, K.; Gündoğdu, M.; Doğan, A. Organic acid, sugar and mineral matter contents in rosehip (Rosa canina L.) Fruits of Erzincan Region. YYU J. AGR 2012, 22, 20–25. [Google Scholar]
- EU Regulation. No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. OJEU 2011, 304, 18–63 (BG, ES, CS, DA, DE, ET, EL, EN, FR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV). [Google Scholar]
- Levickienė, D. The Influence of the Biodynamic Preparations on the Soil Properties and Accumulation of Bioactive Compounds in the Leaves of White Mulberry (Morus alba L.). Ph.D. Dissertation, ASU, Kaunas, Lithuania, 2018. [Google Scholar]
- Maietti, A.; Tedeschi, P.; Catani, M.; Stevanin, C.; Pasti, L.; Cavazzini, A.; Marchetti, N. Nutrient Composition and Antioxidant Performances of Bread-Making Products Enriched with Stinging Nettle (Urtica dioica) Leaves. Foods 2021, 10, 938. [Google Scholar] [CrossRef]
- Pradhan, S.; Manivannan, S.; Tamang, J.P. Proximate, mineral composition and antioxidant properties of some wild leafy vegetables. J. Sci. Ind. Res. 2015, 74, 155–159. [Google Scholar]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medveckienė, B.; Kulaitienė, J.; Jarienė, E.; Vaitkevičienė, N.; Hallman, E. Carotenoids, Polyphenols, and Ascorbic Acid in Organic Rosehips (Rosa spp.) Cultivated in Lithuania. Appl. Sci. 2020, 10, 5337. [Google Scholar] [CrossRef]
- Antarkar, S.; Sharma, A.; Bhargava, A.; Gupta, H.; Tomar, R.; Srivastava, S. Physico-chemical and nutritional evaluation of cookies with different levels of Rosehip and Hibiscus powder substitution. Arch. Curr. Res. Int. 2019, 17, 1–10. [Google Scholar] [CrossRef]
- Flores-Mancha, M.A.; Ruíz-Gutiérrez, M.G.; Sánchez-Vega, R.; Santellano-Estrada, E.; Chávez-Martínez, A. Effect of encapsulated beet extracts (Beta vulgaris) added to yogurt on the physicochemical characteristics and antioxidant activity. Molecules 2021, 26, 4768. [Google Scholar] [CrossRef]
- Wang, Y.; Song, K.Y.; Kim, Y. Effects of thermally treated mulberry leaves on the quality, properties, and antioxidant activities of yogurt. J. Food Process. Preserv. 2021, 00, e16139. [Google Scholar] [CrossRef]
Nutrition Facts | Beetroot | Mulberry Leaves | Nettle Leaves | Rosehip Fruit |
---|---|---|---|---|
Moisture (%) | 3.07 ± 0.03 | 3.26 ± 0.04 | 3.51 ± 0.08 | 3.24 ± 0.05 |
Protein (g·100 g−1) | 4.31 ± 0.11 | 3.42 ± 0.09 | 5.28 ± 0.13 | 3.93 ± 0.07 |
Fat (g·100 g−1) | 1.42 ± 0.02 | 1.15 ± 0.02 | 1.39 ± 0.03 | 0.98 ± 0.02 |
Sucrose (g·100 g−1) | 31.66 ± 0.29 | 9.96 ± 0.13 | 5.57 ± 0.09 | 18.57 ± 0.14 |
Glucose (g·100 g−1) | 1.27 ± 0.02 | 1.41 ± 0.05 | 1.39 ± 0.03 | 9.13 ± 0.12 |
Fructose (g·100 g−1) | <0.02 | 0.53 ± 0.02 | 1.50 ± 0.03 | 11.08 ± 0.10 |
Total sugar (g·100 g−1) | 32.92 ± 0.20 | 11.89 ± 0.17 | 8.46 ± 0.14 | 38.08 ± 0.24 |
K (mg·100 g−1) | 2500.01 ± 38.2 | 1630.14 ± 29.3 | 2950.25 ± 41.3 | 2630.46 ± 40.0 |
Ca (mg·100 g−1) | 220.03 ± 9.20 | 2870.08 ± 36.7 | 2680.16 ± 35.6 | 590.33 ± 11.15 |
P (mg·100 g−1) | 410.22 ± 13.2 | 430.88 ± 10.2 | 770.47 ± 16.1 | 690.81 ± 14.31 |
Mg (mg·100 g−1) | 170.06 ± 12.00 | 270.68 ± 9.21 | 430.58 ± 14.5 | 340.66 ± 10.0 |
Fe (mg·100 g−1) | 3.81 ± 0.07 | 7.93 ± 0.11 | 13.25 ± 0.41 | 7.52 ± 0.13 |
Zn (mg·100 g−1) | 2.43 ± 0.04 | 2.73 ± 0.09 | 3.34 ± 0.19 | 2.55 ± 0.17 |
B (mg·100 g−1) | 1.99 ± 0.01 | 2.71 ± 0.03 | 3.28 ± 0.04 | 3.19 ± 0.04 |
Mn (mg·100 g−1) | 1.49 ± 0.02 | 1.82 ± 0.03 | 1.93 ± 0.03 | 1.73 ± 0.02 |
Total phenolic (mg·100 g−1) | 224.69 ± 7.13 | 301.94 ± 8.99 | 313.46 ± 12.58 | 461.94 ± 14.31 |
Nutrition Facts | As Sold for 100 g |
---|---|
Energy (kcal) | 121 |
Fat (g) | 10 |
Saturated fat (g) | 6.5 |
Carbohydrates (g) | 4.0 |
Sugars (g) | 4.0 |
Proteins (g) | 3.7 |
Salt (g) | 0.1 |
Elements | LOD | LOQ |
---|---|---|
K | 0.0027 | 0.009 |
Ca | 0.0056 | 0.0187 |
P | 0.01 | 0.033 |
Mg | 0.01 | 0.033 |
Fe | 0.0155 | 0.0511 |
Zn | 0.008 | 0.264 |
B | 0.0231 | 0.106 |
Mn | 0.0042 | 0.0138 |
Control | YBB | YBM | YBN | YBR | p-Values | |
---|---|---|---|---|---|---|
Moisture (%) | 4.31 ± 0.11 b 1 | 4.13 ± 0.11 b | 4.31 ± 0.12 b | 4.23 ± 0.13 b | 4.76 ± 0.23 a | 0.0035 |
Protein (g·100 g−1) | 13.72 ± 0.22 ab | 13.84 ± 0.27 a | 13.57 ± 0.32 ab | 14.13 ± 0.26 a | 13.05 ± 0.15 b | 0.5400 |
Carbohydrates (g·100 g−1) | 46.66 ± 0.61 a | 45.94 ± 0.83 a | 46.66 ± 1.04 a | 46.18 ± 0.71 a | 46.77 ± 1.03 a | 0.0044 |
Total fat (g·100 g−1) | 32.00 ± 0.67 a | 32.80 ± 0.85 a | 32.00 ± 0.73 a | 32.00 ± 0.95 a | 32.00 ± 1.01 a | 0.7152 |
Energy (kcal) | 530 ± 5.31 a | 534 ± 6.32 a | 529 ± 4.99 a | 529 ± 4.16 a | 527 ± 5.11 a | 0.5752 |
Energy (kJ) | 2210 ± 15.02 a | 2230 ± 14.21 a | 2208 ± 8.30 a | 2209 ± 10.23 a | 2201 ± 6.30 a | 0.0855 |
Control | YBB | YBM | YBN | YBR | p-Values | |
---|---|---|---|---|---|---|
Sucrose | 19.75 ± 0.70 b 1 | 21.29 ± 0.79 a | 20.09 ± 0.81 b | 19.21 ± 0.62 b | 20.49 ± 0.65 b | 0.0463 |
Glucose | 0.63 ± 0.05 c | 0.74 ± 0.05 c | 0.52 ± 0.06 c | 1.20 ± 0.08 b | 2.34 ± 0.23 a | <0.0001 |
Fructose | 0.21 ± 0.03 b | 0.08 ± 0.01 c | 0.25 ± 0.04 b | 0.23 ± 0.03 b | 1.46 ± 0.22 a | <0.0001 |
Total sugars | 20.59 ± 0.99 b | 21.37 ± 0.96 b | 20.86 ± 0.85 b | 20.64 ± 0.88 b | 24.29 ± 1.03 a | 0.0031 |
Mineral Elements | Control | YBB | YBM | YBN | YBR | p-Values |
---|---|---|---|---|---|---|
K | 315.70 ± 6.41 d 1 | 435.94 ± 9.04 c | 445.20 ± 5.00 c | 603.30 ± 35.03 a | 546.22 ± 5.74 b | <0.0001 |
Ca | 198.78 ± 4.74 d | 213.83 ± 5.20 c | 240.81 ± 3.32 a | 226.24 ± 2.00 b | 186.21 ± 3.40 d | <0.0001 |
P | 146.70 ± 2.39 e | 160.73 ± 4.21 d | 202.57 ± 2.61 c | 255.50 ± 3.60 a | 241.52 ± 5.53 b | <0.0001 |
Mg | 14.52 ± 1.51 e | 24.80 ± 2.50 d | 34.80 ± 1.09 c | 51.93 ± 1.12 a | 40.28 ± 1.39 b | <0.0001 |
Fe | 1.98 ± 0.04 d | 2.35 ± 0.16 c | 3.30 ± 0.14 b | 5.29 ± 0.26 a | 3.53 ± 0.19 b | <0.0001 |
Zn | 1.82 ± 0.02 d | 2.27 ± 0.12 c | 2.54 ± 0.09 b | 3.08 ± 0.17 a | 2.73 ± 0.13 b | <0.0001 |
B | 0.09 ± 0.008 c | 0.23 ± 0.02 b | 0.23 ± 0.03 b | 0.32 ± 0.02 a | 0.29 ± 0.02 a | <0.0001 |
Mn | 0.03 ± 0.036 c | 0.14 ± 0.006 b | 0.11 ± 0.03 b | 0.20 ± 0.01 a | 0.23 ± 0.03 a | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulaitienė, J.; Vaitkevičienė, N.; Levickienė, D. Studies on Proximate Composition, Mineral and Total Phenolic Content of Yogurt Bites Enriched with Different Plant Raw Material. Fermentation 2021, 7, 301. https://doi.org/10.3390/fermentation7040301
Kulaitienė J, Vaitkevičienė N, Levickienė D. Studies on Proximate Composition, Mineral and Total Phenolic Content of Yogurt Bites Enriched with Different Plant Raw Material. Fermentation. 2021; 7(4):301. https://doi.org/10.3390/fermentation7040301
Chicago/Turabian StyleKulaitienė, Jurgita, Nijolė Vaitkevičienė, and Dovilė Levickienė. 2021. "Studies on Proximate Composition, Mineral and Total Phenolic Content of Yogurt Bites Enriched with Different Plant Raw Material" Fermentation 7, no. 4: 301. https://doi.org/10.3390/fermentation7040301