Aquafeed Production from Fermented Fish Waste and Lemon Peel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Microorganisms
2.3. Experimental Set-Up
2.4. Yeast Cell, Lactic Acid Bacteria and Coliform Bacteria Numbers
2.5. Protein, Moisture, and Ash Determination
2.6. Crude Fat and Fatty Acid Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Substrate Fermentation
3.2. Substrate Protein, Ash and Crude Lipids Concentration
3.3. Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2020; ISSN 2410-5902. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fishmeal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Nwanna, L.C. Nutritional Value and Digestibility of Fermented Shrimp Head Waste Meal by African Catfish Clariasgariepinus. Pak. J. Nutr. 2003, 2, 339–345. [Google Scholar] [CrossRef]
- Samuels, W.A.; Fontenot, J.P.; Allen, V.G.; Abazinge, M.D. Seafood processing wastes ensiled with straw: Utilization and intake by sheep. J. Anim. Sci. 1991, 69, 4983–4992. [Google Scholar] [CrossRef]
- Westendorf, M.L.; Dong, Z.C.; Schoknecht, P.A. Recycled cafeteria food waste as a feed for swine: Nutrient content digestibility, growth, and meat quality. J. Anim. Sci. 1998, 76, 2976–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westendorf, M.L. Food Waste as Animal Feed: An Introduction. In Food Waste to Animal Feed; Michael, L., Ed.; Iowa State University Press: Ames, IA, USA, 2000; pp. 3–16, 69–90. [Google Scholar]
- Suan, S.; Jing, L.; Wenjian, G.; David, B. Nutrient value of fish manure waste on lactic acid fermentation by Lactobacillus pentosus. R. Soc. Chem. 2018, 8, 31267–31274. [Google Scholar] [CrossRef] [Green Version]
- Zhiwen, Z.; Baiyu, Z.; Qinhong, C.; Jingjing, L.; Kenneth, L.; Bing, C. Fish Waste Based Lipopeptide Production and the Potential Application as a Bio-Dispersant for Oil Spill Control. Front. Bioeng. Biotechnol. 2020, 8, 734. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Andrew, C.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Coello, N.; Montiel, E.; Concepcion, M.; Christen, P. Optimization of a culture medium containing fish silage for L-lysine production by Corynebacterium glutamicum. Bioresour. Technol. 2002, 85, 207–211. [Google Scholar] [CrossRef]
- Tropea, A.; Wilson, D.; La Torre, G.L.; Lo Curto, R.B.; Saugman, P.; Troy-Davies, P.; Dugo, G.; Waldron, K.W. Bioethanol Production From Pineapple Wastes. J. Food Res. 2014, 3, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Amit, K.R.; Swapna, H.C.; Bhaskar, N.; Halami, P.M.; Sachindra, N.M. Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzym. Microb. Technol. 2010, 46, 9–13. [Google Scholar] [CrossRef]
- Bernardeau, M.; Guguen, M.; Vernoux, J.P. Beneficial lactobacilli in food and feed: Long-term use biodiversity and proposal for specific and realistic safety assessments. FEMS Microbiol. 2006, 30, 487–513. [Google Scholar] [CrossRef] [PubMed]
- Bucio, A.; Hartemink, R.; Schrama, J.W.; Verreth, J.; Rombouts, F.M. Presence of lactobacilli in the intestinal content of freshwater fish from a river and from a farm with a recirculation system. Food Microbiol. 2006, 23, 476–482. [Google Scholar] [CrossRef]
- Balcazar, J.L.; Venderll, D.; de Blas, I.; Ruiz-Zarzuela, I.; Muzquiz, J.L.; Girones, O. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 2008, 278, 188–191. [Google Scholar] [CrossRef]
- Giraffa, G.; Chanishvili, N.; Widyastuti, Y. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 2010, 161, 480–487. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sharifian, M.; Vesaghi, M.J.; Khalili, M.; Esteban, M.Á. The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisiikutum) fry. Fish Shellfish. Immunol. 2014, 39, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Ennouali, M.; Elmoualdi, L.; Labioui, H.; Ouhsine, M.; Elyachioui, M. Biotransformation of the fish waste by fermentation. Afr. J. Biotechnol. 2006, 5, 1733–1737. [Google Scholar] [CrossRef]
- White, L.A.; Newman, M.C.; Cromwell, G.L.; Lindemann, M.D. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J. Anim. Sci. 2002, 80, 2619–2628. [Google Scholar] [CrossRef]
- Tropea, A.; Wilson, D.; Cicero, N.; Potortì, A.G.; La Torre, G.L.; Dugo, G.; Richardson, D.; Waldron, K.W. Development of minimal fermentation media supplementation for ethanol production using two Saccharomyces cerevisiae strains. Nat. Prod. Res. 2016, 30, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Lara-Flores, M.; Olvera-Novoa, M.A.; Guzma’n-Me’ndez, B.E.; Lo’-pez-Madrid, W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 2002, 216, 193–201. [Google Scholar] [CrossRef]
- Nadège, R.; Mourente, G.; Sadasivam, K.; Corraze, G. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture 2006, 261, 1077–1087. [Google Scholar] [CrossRef]
- Mahmud, N.A.; Robiul Hasan, M.D.; Hossain, M.B.; Minar, M.H. Proximate Composition of Fish Feed Ingredients Available in Lakshmipur Region, Bangladesh. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 556–560. [Google Scholar]
- Soltan, M.A.; El-Laithy, S.M. Evaluation of fermented silage made from fish, tomato and potato by-products as a feed ingredient for Nile tilapia. Oreochromis niloticus. Egypt. J. Aquat. BioiFish 2008, 12, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Soltan, M.A.; Hanafy, M.A.; Wafa, M.I.A. An evaluation of fermented silage made from fish by-products as a feed ingredient for african catfish (Clariasgariepinus). Glob. Vet. 2008, 2, 80–86. [Google Scholar]
- Manderson, K.; Pinart, M.; Tuohy, K.M.; Grace, W.E.; Hotchkiss, A.T.; Widmer, W.; Yadhav, M.P.; Gibson, G.R.; Rastall, R.A. In Vitro Determination of Prebiotic Properties of Oligosaccharides Derived from an Orange Juice Manufacturing By-Product Stream. Appl. Environ. Microbiol. 2005, 71, 8383–8389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Gomez, B.; Gullon, B.; Remoroza, C.; Schols, H.A.; Parajo, J.C.; Alonso, J.L. Purification, Characterization, and Prebiotic Properties of Pectic Oligosaccharides from Orange Peel Wastes. J. Agric. Food Chem. 2014, 62, 9769–9782. [Google Scholar] [CrossRef]
- Gibson, G.R. Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. Suppl. 2004, 1, 25–31. [Google Scholar] [CrossRef]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish—An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Ringø, E.; Dimitroglou, A.; Hoseinifar, S.H.; Davies, S.J. Prebiotics in finfish: An update. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Ringø, E., Merrifield, D.L., Eds.; Wiley-Blackwell Scientific Publication: London, UK, 2014. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Ghasemi, Y. Single Cell Protein: Production and Process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Shigeaki, I.; Kyoko, S.U.; Yukako, K.; Akemi, K.; Isao, Y.; Koudai, T.; Ayumi, M.; Kunimasa, K. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. J. Biosci. Bioeng. 2013, 116, 682–687. [Google Scholar] [CrossRef]
- García-Díez, J.; Saraiva, C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int. J. Environ. Res. Public Health 2021, 18, 2544. [Google Scholar] [CrossRef] [PubMed]
- Ayan, S. A review of fish meal replacement with fermented biodegradable organic wastes in aquaculture. Int. J. Fish. Aquat. Stud. 2018, 6, 203–208. [Google Scholar]
- Nadja, L.; Thiago, B.C.; Susana, M.I.S.; Andreas, B.; Lene, J. The effect of pectins on survival of probiotic Lactobacillus spp. in gastrointestinal juices is related to their structure and physical properties. Food Microbiol. 2018, 74, 11–20. [Google Scholar] [CrossRef]
- Huan, L.; Mingyong, X.; Shaoping, N. Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Front. 2020, 1, 45–59. [Google Scholar] [CrossRef]
- Araya-Cloutier, C.; Rojas-Garbanzo, C.; Velàzquez-Carrillo, C. Effetct of initial sugar concentration on the production of L(+) lactic acid by simultaneous enzymatic hydrolysis and fermentation of an agro-industrial waste product of pineapple (Ananas comosus) using Lactobacillus casei subspeies rhamnosus. Int. J. Wellness Ind. 2012, 1, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Craig, S.; Helfrich, L.A. Understanding Fish Nutrition, Feeds and Feeding. Va. Coop. Ext. 2002. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/80712/FST-269.pdf (accessed on 19 November 2021).
- Babalola, T.O.O.; Apata, D.F. Chemical and quality evaluation of some alternative lipid sources for aqua feed production. Agric. Biol. J. N. Am. 2011, 2, 935–943. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Wache, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Yano, Y.; Oikawa, H.; Satomi, M. Reduction of lipids in fishmeal prepared from fish waste by a yeast Yarrowia lipolytica. Int. J. Food Microbiol. 2007, 121, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Oseni, O.A.; Akindahunsi, A.A. Some phytochemical properties and effect of fermentation on the seed of Jatropha curcas L. J. Food Technol. 2011, 6, 158–165. [Google Scholar] [CrossRef] [Green Version]
Protein % | Crude Lipid % | Ash % | ||
---|---|---|---|---|
H statistic | 16.290 | 7.058 | 13.386 | |
Asymp. Sign. | 0.006 | 0.0216 | 0.020 | |
0 h | Mean ± S.D. | 11.68 ± 0.48 (A) | 13.74 ± 0.72 (A) | 0.83 ± 0.04 (A) |
24 h | Mean ± S.D. | 15.46 ± 0.40 (A) | 14.04 ± 0.74 (A) | 0.82 ± 0.04 (A) |
48 h | Mean ± S.D. | 20.01 ± 0.26 (A) | 14.65 ± 0.77 (A) | 0.78 ± 0.04 (AB) |
72 h | Mean ± S.D. | 32.09 ± 0.77 (B) | 14.85 ± 0.78 (A) | 0.71 ± 0.04 (AB) |
96 h | Mean ± S.D. | 48.55 ± 1.15 (B) | 15.05 ± 0.79 (A) | 0.66 ± 0.03 (B) |
120 h | Mean ± S.D. | 48.55 ± 1.15 (B) | 15.25 ± 0.80 (A) | 0.66 ± 0.03 (B) |
SFA (%) | MUFA (%) | PUFA (%) | ||
---|---|---|---|---|
H statistic | 5.398 | 13.070 | 13.819 | |
Asymp. Sign. | 0.369 | 0.023 | 0.017 | |
0 h | Mean ± S.D. | 28.92 ± 1.51 | 39.02 ± 2.04 (A) | 31.73 ± 1.66 (A) |
24 h | Mean ± S.D. | 28.45 ± 1.49 | 39.68 ± 2.08 (A) | 29.44 ± 1.54 (A) |
48 h | Mean ± S.D. | 27.68 ± 1.45 | 42.20 ± 2.21 (A) | 28.08 ± 1.47 (A) |
72 h | Mean ± S.D. | 27.53 ± 1.44 | 44.90 ± 2.35 (A) | 26.43 ± 1.38 (B) |
96 h | Mean ± S.D. | 26.96 ± 1.41 | 47.48 ± 2.49 (B) | 24.63 ± 1.29 (B) |
120 h | Mean ± S.D. | 26.49 ± 1.39 | 48.19 ± 2.52 (B) | 24.53 ± 1.29 (B) |
C14:0 | C15:0 | C16:0 | C17:0 | C18:0 | C20:0 | C21:0 | C22:0 | C23:0 | C24:0 | |||
H statistic | 13.757 | 11.294 | 4.273 | 14.537 | 10.584 | 14.868 | 14.434 | 7.602 | 15.690 | 15.409 | ||
Asymp. Sign. | 0.017 | 0.031 | 0.511 | 0.013 | 0.060 | 0.011 | 0.013 | 0.207 | 0.008 | 0.009 | ||
0 h | Mean | 2.38 | 0.24 | 17.53 | 0.005 * | 3.72 | 0.005 * | 0.005 * | 0.55 | 3.85 (B) | 0.65 (B) | |
S.D. | 0.12 | 0.01 | 0.92 | 0.00 | 0.19 | 0.00 | 0.00 | 0.03 | 0.20 | 0.03 | ||
24 h | Mean | 2.57 | 0.22 | 17.69 | 0.005 * | 3.92 | 0.005 * | 0.005 * | 0.60 | 3.20 (AB) | 0.26 (AB) | |
S.D. | 0.13 | 0.01 | 0.93 | 0.00 | 0.21 | 0.00 | 0.00 | 0.03 | 0.17 | 0.01 | ||
48 h | Mean | 3.09 | 0.26 | 17.21 | 0.005 * | 3.63 | 0.005 * | 0.005 * | 0.58 | 2.75 (AB) | 0.17 (A) | |
S.D. | 0.16 | 0.01 | 0.90 | 0.00 | 0.19 | 0.00 | 0.00 | 0.03 | 0.14 | 0.01 | ||
72 h | Mean | 2.31 | 0.22 | 17.62 | 0.20 | 3.21 | 0.23 | 0.06 | 0.52 | 3.00 (AB) | 0.15 (A) | |
S.D. | 0.12 | 0.01 | 0.92 | 0.01 | 0.17 | 0.01 | 0.00 | 0.03 | 0.16 | 0.01 | ||
96 h | Mean | 2.62 | 0.25 | 17.16 | 0.15 | 3.65 | 0.10 | 0.05 | 0.57 | 2.25 (A) | 0.16 (A) | |
S.D. | 0.14 | 0.01 | 0.90 | 0.01 | 0.19 | 0.01 | 0.00 | 0.03 | 0.12 | 0.01 | ||
120 h | Mean | 2.62 | 0.25 | 17.16 | 0.15 | 3.65 | 0.10 | 0.05 | 0.57 | 2.25 (A) | 0.16 (A) | |
S.D. | 0.14 | 0.01 | 0.90 | 0.01 | 0.19 | 0.01 | 0.00 | 0.03 | 0.12 | 0.01 | ||
C14:1 | C16:1 | C17:1 | C18:1n9t | C18:1n9c | C20:1n9 | C22:1n9 | C24:1n9 | |||||
H statistic | 14.434 | 12.251 | 14.110 | 15.058 | 10.708 | 15.199 | 10.081 | 16.579 | ||||
Asymp. Sign. | 0.013 | 0.031 | 0.015 | 0.011 | 0.057 | 0.010 | 0.073 | 0.005 | ||||
0 h | Mean | 0.005 * | 2.77 | 0.005 * | 0.52 | 33.02 | 1.58 (A) | 0.95 | 0.19 (A) | |||
S.D. | 0.00 | 0.14 | 0.00 | 0.03 | 1.73 | 0.08 | 0.05 | 0.01 | ||||
24 h | Mean | 0.005 * | 3.23 | 0.005 * | 0.63 | 33.33 | 1.47 (A) | 0.85 | 0.17 (A) | |||
S.D. | 0.00 | 0.17 | 0.00 | 0.03 | 1.75 | 0.08 | 0.04 | 0.01 | ||||
48 h | Mean | 0.005 * | 3.67 | 0.005 * | 0.87 | 34.95 | 1.63 (AB) | 0.96 | 0.13 (A) | |||
S.D. | 0.00 | 0.19 | 0.00 | 0.05 | 1.83 | 0.09 | 0.05 | 0.01 | ||||
72 h | Mean | 0.06 | 3.58 | 0.16 | 0.74 | 36.06 | 2.95 (AB) | 1.03 | 0.33 (AB) | |||
S.D. | 0.00 | 0.19 | 0.01 | 0.04 | 1.89 | 0.15 | 0.05 | 0.02 | ||||
96 h | Mean | 0.06 | 3.33 | 0.14 | 0.65 | 38.12 | 3.77 (B) | 1.01 | 0.40 (B) | |||
S.D. | 0.00 | 0.17 | 0.01 | 0.03 | 2.00 | 0.20 | 0.05 | 0.02 | ||||
120 h | Mean | 0.07 | 3.38 | 0.15 | 0.69 | 38.39 | 3.94 (B) | 1.02 | 0.55 (B) | |||
S.D. | 0.00 | 0.18 | 0.01 | 0.04 | 2.01 | 0.21 | 0.05 | 0.03 | ||||
C18:2n6t | C18:2n6c | C18:3n6 | C18:3n3 | C20:2n6 | C20:3n6 | C20:3n3 | C20:4n6 | C20:5n3 | C22:2 | C22:6 n3 | ||
H statistic | 14.427 | 14.184 | 16.064 | 11.854 | 15.503 | 15.592 | 14.868 | 16.155 | 16.251 | 15.827 | 15.082 | |
Asymp. Sign. | 0.013 | 0.004 | 0.017 | 0.037 | 0.008 | 0.008 | 0.011 | 0.006 | 0.006 | 0.007 | 0.011 | |
0 h | Mean | 0.27 | 20.49 (A) | 0.29 | 4.71 | 1.44 (AB) | 0.26 (B) | 0.18 | 0.60 (B) | 0.16 (B) | 0.39 (B) | 2.93 |
S.D. | 0.01 | 1.07 | 0.02 | 0.25 | 0.08 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.15 | |
24 h | Mean | 0.26 | 20.50 (A) | 0.22 | 3.70 | 1.12 (A) | 0.10 (A) | 0.28 | 0.75 (B) | 0.15 (B) | 0.38 (B) | 1.97 |
S.D. | 0.01 | 1.07 | 0.01 | 0.19 | 0.06 | 0.01 | 0.01 | 0.04 | 0.01 | 0.02 | 0.10 | |
48 h | Mean | 0.21 | 19.07 (A) | 0.20 | 4.25 | 1.96 (B) | 0.09 (A) | 0.23 | 0.09 (A) | 0.04 (AB) | 0.06 (A) | 1.87 |
S.D. | 0.01 | 1.00 | 0.01 | 0.22 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.10 | |
72 h | Mean | 0.29 | 16.98 (AB) | 0.33 | 4.36 | 1.83 (B) | 0.08 (A) | 0.12 | 0.10 (A) | 0.02 (A) | 0.05 (A) | 2.26 |
S.D. | 0.02 | 0.89 | 0.02 | 0.23 | 0.10 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.12 | |
96 h | Mean | 0.25 | 15.47 (B) | 0.25 | 4.06 | 1.73 (AB) | 0.10 (A) | 0.12 | 0.08 (A) | 0.05 (AB) | 0.06 (A) | 2.45 |
S.D. | 0.01 | 0.81 | 0.01 | 0.21 | 0.09 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.13 | |
120 h | Mean | 0.22 | 15.59 (B) | 0.26 | 4.07 | 1.52 (AB) | 0.11 (A) | 0.12 | 0.10 (A) | 0.03 (AB) | 0.07 (A) | 2.43 |
S.D. | 0.01 | 0.82 | 0.01 | 0.21 | 0.08 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation 2021, 7, 272. https://doi.org/10.3390/fermentation7040272
Tropea A, Potortì AG, Lo Turco V, Russo E, Vadalà R, Rando R, Di Bella G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation. 2021; 7(4):272. https://doi.org/10.3390/fermentation7040272
Chicago/Turabian StyleTropea, Alessia, Angela Giorgia Potortì, Vincenzo Lo Turco, Elisabetta Russo, Rossella Vadalà, Rossana Rando, and Giuseppa Di Bella. 2021. "Aquafeed Production from Fermented Fish Waste and Lemon Peel" Fermentation 7, no. 4: 272. https://doi.org/10.3390/fermentation7040272
APA StyleTropea, A., Potortì, A. G., Lo Turco, V., Russo, E., Vadalà, R., Rando, R., & Di Bella, G. (2021). Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation, 7(4), 272. https://doi.org/10.3390/fermentation7040272