Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Oil Palm Empty Fruit Bunch
2.2. Organosolv-Derived OPEFB Fractions
2.3. Inoculum
2.4. Acidogenic Fermentation
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of C/N Ratio and Medium Supplementation
3.2. Effect of Methanogenesis Inhibition
3.3. Profile of VFAs
3.4. OPEFB Based Biorefinery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacheco, P.; Gnych, S.; Dermawan, A.; Komarudin, H.; Okarda, B. The Palm Oil Global Value Chain: Implications for Economic Growth and Socialand Environmental Sustainability; CIFOR: Bogor, Indonesia, 2017; Volume 220. [Google Scholar]
- Barcelos, E.; Rios Sde, A.; Cunha, R.N.; Lopes, R.; Motoike, S.Y.; Babiychuk, E.; Skirycz, A.; Kushnir, S. Oil palm natural diversity and the potential for yield improvement. Front. Plant Sci. 2015, 6, 190. [Google Scholar] [CrossRef]
- USDA. Oilseeds: World Markets and Trades. Availabe online: https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 23 September 2020).
- USDA. Indonesia: Oilseeds and Product Update. Availabe online: https://www.fas.usda.gov/data/indonesia-oilseeds-and-products-update-15 (accessed on 23 September 2021).
- Yusoff, S. Renewable energy from palm oil—Innovation on effective utilization of waste. J. Clean. Prod. 2006, 14, 87–93. [Google Scholar] [CrossRef]
- Geng, A. Conversion of Oil Palm Empty Fruit Bunch to Biofuels. In Liquid, Gaseous and Solid Biofuels—Conversion Techniques; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Husain, Z.; Zainal, Z.A.; Abdullah, M.Z. Analysis of biomass-residue-based cogenerationsystem in palm oil mills. Biomass Bioenergy 2003, 24, 117–124. [Google Scholar] [CrossRef]
- Tahir, A.A.; Mohd Barnoh, N.F.; Yusof, N.; Mohd Said, N.N.; Utsumi, M.; Yen, A.M.; Hashim, H.; Mohd Noor, M.J.M.; Akhir, F.N.M.D.; Mohamad, S.E.; et al. Microbial Diversity in Decaying Oil Palm Empty Fruit Bunches (OPEFB) and Isolation of Lignin-degrading Bacteria from a Tropical Environment. Microbes Environ. 2019, 34, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latip, N.A.; Sofian, A.H.; Ali, M.F.; Ismail, S.N.; Idris, D.M.N.D. Structural and morphological studies on alkaline pre-treatment of oil palm empty fruit bunch (OPEFB) fiber for composite production. Mater. Today Proc. 2019, 17, 1105–1111. [Google Scholar] [CrossRef]
- Okoro, S.C.; Kiamehr, S.; Montgomery, M.; Frandsen, F.J.; Pantleon, K. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part I: Exposures in oxidizing and chlorinating atmospheres. Mater. Corros. 2017, 68, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Novianti, S.; Biddinika, M.K.; Prawisudha, P.; Yoshikawa, K. Upgrading of Palm Oil Empty Fruit Bunch Employing Hydrothermal Treatment in Lab-scale and Pilot Scale. Procedia Environ. Sci. 2014, 20, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Ditjenbun. Tree Crop Estate Statistics of Indonesia Palm Oil (2017–2019); Ministry of Agriculture of Indonesia: Jakarta, Indonesia, 2018.
- Chang, S.H. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 2014, 62, 174–181. [Google Scholar] [CrossRef]
- Gnansounou, E.; Dauriat, A. Techno-economic analysis of lignocellulosic ethanol: A review. Bioresour. Technol. 2010, 101, 4980–4991. [Google Scholar] [CrossRef]
- Noomtim, P.; Cheirsilp, B. Production of Butanol from Palm Empty Fruit Bunches Hydrolyzate by Clostridium Acetobutylicum. Energy Procedia 2011, 9, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Mondylaksita, K.; Ferreira, J.A.; Millati, R.; Budhijanto, W.; Niklasson, C.; Taherzadeh, M.J. Recovery of High Purity Lignin and Digestible Cellulose from Oil Palm Empty Fruit Bunch Using Low Acid-Catalyzed Organosolv Pretreatment. Agronomy 2020, 10, 674. [Google Scholar] [CrossRef]
- Chang, H.N.; Kim, N.-J.; Kang, J.; Jeong, C.M. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioprocess. Eng. 2010, 15, 1–10. [Google Scholar] [CrossRef]
- Kim, N.-J.; Lim, S.-J.; Chang, H. Volatile Fatty Acid Platform: Concept and Application. In Emerging Areas in Bioengineering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 173–190. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Borrion, A.; Li, H.; Li, J. Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour. Technol. 2017, 244, 213–224. [Google Scholar] [CrossRef]
- Annamalai, N.; Elayaraja, S.; Oleskowicz-Popiel, P.; Sivakumar, N.; Bahry, S.A. Volatile fatty acids production during anaerobic digestion of lignocellulosic biomass. In Recent Developments in Bioenergy Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–251. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Chen, Y.; Du, G.; Chen, J. Effects of organic matter and initial carbon–nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge. J. Chem. Technol. Biotechnol. 2008, 83, 1049–1055. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, J.; Yan, Y.; Feng, L. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl. Energy 2013, 102, 1197–1204. [Google Scholar] [CrossRef]
- Kumi, P.J.; Henley, A.; Shana, A.; Wilson, V.; Esteves, S.R. Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Res. 2016, 100, 267–276. [Google Scholar] [CrossRef]
- Mei, R.; Narihiro, T.; Nobu, M.K.; Liu, W.T. Effects of heat shocks on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate. Lett. Appl. Microbiol. 2016, 63, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Webster, T.M.; Smith, A.L.; Reddy, R.R.; Pinto, A.J.; Hayes, K.F.; Raskin, L. Anaerobic microbial community response to methanogenic inhibitors 2-bromoethanesulfonate and propynoic acid. Microbiologyopen 2016, 5, 537–550. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Karlsson, A.; Einarsson, P.; Schnurer, A.; Sundberg, C.; Ejlertsson, J.; Svensson, B.H. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J. Biosci. Bioeng. 2012, 114, 446–452. [Google Scholar] [CrossRef]
- Wainaina, S.; Lukitawesa; Kumar Awasthi, M.; Taherzadeh, M.J. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019, 10, 437–458. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 2009, 13, 1000–1013. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Owusu-Agyeman, I.; Eyice, O.; Cetecioglu, Z.; Plaza, E. The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. Bioresour. Technol. 2019, 290, 121733. [Google Scholar] [CrossRef]
- APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF): Washington, DC, USA, 2005. [Google Scholar]
- Mahboubi, A.; Ferreira, J.A.; Taherzadeh, M.J.; Lennartsson, P.R. Value-added products from dairy waste using edible fungi. Waste Manag. 2017, 59, 518–525. [Google Scholar] [CrossRef]
- Haug, R. The Practical Handbook of Compost Engineering; Routledge: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zhou, C.; Liu, Z.; Huang, Z.L.; Dong, M.; Yu, X.L.; Ning, P. A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting. Waste Manag. 2015, 40, 38–43. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Theoretical analysis of biogas potential prediction from agricultural waste. Resour.-Effic. Technol. 2016, 2, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Zhang, J.; Fan, J.; Wang, J.; Liu, H. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion. Water Sci. Technol. 2012, 65, 883–889. [Google Scholar] [CrossRef]
- Liu, M.; Ren, N.Q.; Chen, Y.; Zhu, W.F.; Ding, J. Conversion regular patterns of acetic acid, propionic acid and butyric acid in UASB reactor. J. Environ. Sci. 2004, 16, 387–391. [Google Scholar]
- Menon, A.; Wang, J.Y.; Giannis, A. Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manag. 2017, 59, 465–475. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, X.; Zhang, P.; Wan, J.; Guo, H.; Ghasimi, D.S.M.; Morera, X.C.; Zhang, T. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. J. Environ. Sci. 2020, 87, 93–111. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Horváth, I.S.; Taherzadeh, M.J. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renew. Energy 2020, 152, 1140–1148. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Wang, A.; Chen, J.; Ding, J. Chemical inhibitors of methanogenesis and putative applications. Appl. Microbiol. Biotechnol. 2011, 89, 1333–1340. [Google Scholar] [CrossRef]
- Lu, L.; Ren, N.; Zhao, X.; Wang, H.; Wu, D.; Xing, D. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ. Sci. 2011, 4, 1329–1336. [Google Scholar] [CrossRef]
- Hernández, C.; Alamilla-Ortiz, Z.L.; Escalante, A.E.; Navarro-Díaz, M.; Carrillo-Reyes, J.; Moreno-Andrade, I.; Valdez-Vazquez, I. Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. Int. J. Hydrog. Energy 2019, 44, 13126–13134. [Google Scholar] [CrossRef]
- Penning, H.; Conrad, R. Effect of inhibition of acetoclastic methanogenesis on growth of archaeal populations in an anoxic model environment. Appl. Environ. Microbiol. 2006, 72, 178–184. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, S.J.; Kirkegaard, R.H.; Dueholm, M.S.; Fernando, E.; Karst, S.M.; Albertsen, M.; Nielsen, P.H. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 2017, 8, 1134. [Google Scholar] [CrossRef] [PubMed]
- Ueki, A.; Akasaka, H.; Suzuki, D.; Ueki, K. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 2006, 56, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Copeland, A.; Spring, S.; Göker, M.; Schneider, S.; Lapidus, A.; Del Rio, T.G.; Tice, H.; Cheng, J.-F.; Lucas, S.; Chen, F. Complete genome sequence of Desulfomicrobium baculatum type strain (XT). Stand. Genom. Sci. 2009, 1, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Song, L.; Dong, X. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen. Int. J. Syst. Evol. Microbiol. 2010, 60, 2221–2225. [Google Scholar] [CrossRef]
- Németh, Á.; Vidra, A. Bio-produced Acetic Acid: A Review. Period. Polytech. Chem. Eng. 2017, 62, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Boer, E.; Łukaszewska, A.; Kluczkiewicz, W.; Lewandowska, D.; King, K.; Reijonen, T.; Kuhmonen, T.; Suhonen, A.; Jääskeläinen, A.; Heitto, A.; et al. Volatile fatty acids as an added value from biowaste. Waste Manag. 2016, 58, 62–69. [Google Scholar] [CrossRef]
- Christodoulou, X.; Velasquez-Orta, S.B. Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO. Environ. Sci. Technol. 2016, 50, 11234–11242. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, E.; Chwialkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Volatile fatty acids production during mixed culture fermentation—The impact of substrate complexity and pH. Chem. Eng. J. 2017, 326, 901–910. [Google Scholar] [CrossRef]
- Kalck, P.; Le Berre, C.; Serp, P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020, 402, 213078. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Luzon-Quintana, L.M.; Castro, R.; Duran-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. [Google Scholar] [CrossRef] [PubMed]
Material | TS (%) | VS (% dw) | TKN (% dw) | * C/N Ratio |
---|---|---|---|---|
Untreated OPEFB | 93.43 ± 0.40 | 96.02 ± 0.21 | 0.75 ± 0.01 | 71 |
Glucan-rich fraction | 5.52 ± 0.43 | 97.96 ± 0.02 | 0.21 ± 0.14 | 257 |
Hemicellulosic compounds-rich fraction | 0.55 ± 0.00 | 93.54 ± 0.04 | 0.43 ± 0.14 | 120 |
Mixed fractions | 2.02 ± 0.03 | 96.55 ± 0.05 | 0.26 ± 0.01 | 205 |
Substrates | Treatments | Highest VFA Yield (g VFA/g VS) | Methane Yield (NmL/g VS) |
---|---|---|---|
Avicel | Without medium adjustment | 0.19 ± 0.01 lmn | 2.30 ± 0.38 k |
C/N ratio adjustment | 0.40 ± 0.02 de | 38.15 ± 0.09 fg | |
Trace metals supplementation | 0.14 ± 0.01 mn | 80.29 ± 0.75 b | |
C/N ratio adjustment and trace metals supplementation | 0.10 ± 0.02 no | 33.20 ± 0.18 h | |
Untreated OPEFB | Without medium adjustment | 0.07 ± 0.01 op | 2.01 ± 0.29 k |
C/N ratio adjustment | 0.05 ± 0.00 jkl | 12.10 ± 0.82 j | |
Trace metals supplementation | 0.00 ± 0.00 q | 60.73 ± 0.65 c | |
C/N adjustment and trace metals supplementation | 0.00 ± 0.00 q | 37.41 ± 2.90 fg | |
Glucan-rich fraction | Without medium adjustment | 0.10 ± 0.02 no | 34.63 ± 0.03 gh |
C/N ratio adjustment | 0.03 ± 0.00 pq | 46.18 ± 3.53 d | |
Trace metals supplementation | 0.07 ± 0.01 op | 84.58 ± 9.89 a | |
C/N ratio adjustment and trace metals supplementation | 0.19 ± 0.00 klm | 43.00 ± 2.73 de | |
Hemicellulosic compounds-rich fraction | Without medium adjustment | 0.22 ± 0.08 jkl | 0.96 ± 0.20 k |
C/N ratio adjustment | 0.24 ± 0.01 hijk | 21.33 ± 1.15 i | |
Trace metals supplementation | 0.11 ± 0.01 no | 2.09 ± 0.97 k | |
C/N ratio adjustment and trace metals supplementation | 0.12 ± 0.01 no | 1.13 ± 0.08 k | |
Mixed fraction | Without medium adjustment | 0.44 ± 0.04 b | 40.33 ± 2.16 ef |
C/N ratio adjustment | 0.44 ± 0.00 b | 0.75 ± 0.20 k | |
Trace metals supplementation | 0.15 ± 0.01 mn | 18.29 ± 0.35 i | |
C/N ratio adjustment and trace metals supplementation | 0.24 ± 0.01 ijk | 0.00 ± 0.00 k |
Substrates | Treatments | Highest VFA Yield (g VFA/g VS) | Methane Yield (NmL/g VS) |
---|---|---|---|
Avicel | Without methanogenesis inhibition | 0.19 ± 0.01 lmn | 2.30 ± 0.38 k |
BES | 0.29 ± 0.01f ghi | 1.09 ± 0.10 k | |
Heat-shock treatment | 0.30 ± 0.00 efgh | 0.62 ± 0.04 k | |
Untreated OPEFB | Without methanogenesis inhibition | 0.07 ± 0.01 op | 2.01 ± 0.29 k |
BES | 0.04 ± 0.01 pq | 2.02 ± 0.05 k | |
Heat-shock treatment | 0.03 ± 0.00 pq | 0.71 ± 0.01 k | |
Glucan-rich fraction | Without methanogenesis inhibition | 0.10 ± 0.02 no | 34.63 ± 0.03 gh |
BES | 0.31 ± 0.03 efg | 0.83 ± 0.01 k | |
Heat-shock treatment | 0.38 ± 0.02 cd | 3.49 ± 0.41 k | |
Hemicellulosic compounds-rich fraction | Without methanogenesis inhibition | 0.22 ± 0.08 jkl | 0.96 ± 0.20 k |
BES | 0.34 ± 0.02 def | 0.00 ± 0.00 k | |
Heat-shock treatment | 0.43 ± 0.04 bc | 0.01 ± 0.00 k | |
Mixed fraction | Without methanogenesis inhibition | 0.44 ± 0.04 b | 40.33 ± 2.16 ef |
BES | 0.26 ± 0.07 ghij | 0.00 ± 0.00 k | |
Heat-shock treatment | 0.50 ± 0.00 a | 0.02 ± 0.00 k |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondylaksita, K.; Ferreira, J.A.; Budhijanto, W.; Niklasson, C.; Taherzadeh, M.J.; Millati, R. Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch. Fermentation 2021, 7, 263. https://doi.org/10.3390/fermentation7040263
Mondylaksita K, Ferreira JA, Budhijanto W, Niklasson C, Taherzadeh MJ, Millati R. Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch. Fermentation. 2021; 7(4):263. https://doi.org/10.3390/fermentation7040263
Chicago/Turabian StyleMondylaksita, Kinanthi, Jorge A. Ferreira, Wiratni Budhijanto, Claes Niklasson, Mohammad J. Taherzadeh, and Ria Millati. 2021. "Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch" Fermentation 7, no. 4: 263. https://doi.org/10.3390/fermentation7040263
APA StyleMondylaksita, K., Ferreira, J. A., Budhijanto, W., Niklasson, C., Taherzadeh, M. J., & Millati, R. (2021). Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch. Fermentation, 7(4), 263. https://doi.org/10.3390/fermentation7040263