Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Fermentation Trials
2.3. Physicochemical Analysis
2.4. Organic Acids Analysis
2.5. Volatile Compounds Determination
2.6. Determination of Odor Activity Values and Relative Odor Contributions
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Composition
3.2. Volatile Compound Composition
3.2.1. Aldehydes
3.2.2. C13-Norisoprenoids and Terpenes
3.2.3. Higher Alcohols and Esters
3.2.4. Fatty Acids
3.2.5. Lactones
3.2.6. Volatile Phenols
3.3. Odor Active Values (OAVs) and Relative Odor Contributions (ROCs)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to Wine aroma and its intended use for Wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT Food Sci. Technol. 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Saberi, S.; Cliff, M.A.; van Vuuren, H.J.J. Impact of mixed S. cerevisiae strains on the production of volatiles and estimated sensory profiles of Chardonnay wines. Food Res. Int. 2012, 48, 725–735. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines. Front. Microbiol. 2016, 7, 642. [Google Scholar] [CrossRef] [Green Version]
- Gatto, V.; Binati, R.L.; Lemos Junior, W.J.F.; Basile, A.; Treu, L.; de Almeida, O.G.G.; Innocente, G.; Campanaro, S.; Torriani, S. New insights into the variability of lactic acid production in Lachancea thermotolerans at the phenotypic and genomic level. Microbiol. Res. 2020, 238, 126525. [Google Scholar] [CrossRef]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef]
- Porter, T.J.; Divol, B.; Setati, M.E. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. Int. J. Food Microbiol. 2019, 290, 273–287. [Google Scholar] [CrossRef]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Kapsopoulou, K.; Mourtzini, A.; Anthoulas, M.; Nerantzis, E. Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2007, 23, 735–739. [Google Scholar] [CrossRef]
- Beckner Whitener, M.E.; Carlin, S.; Jacobson, D.; Weighill, D.; Divol, B.; Conterno, L.; Du Toit, M.; Vrhovsek, U. Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT Food Sci. Technol. 2015, 64, 412–422. [Google Scholar] [CrossRef]
- Whitener, M.E.B.; Stanstrup, J.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Aust. J. Grape Wine Res. 2017, 23, 179–192. [Google Scholar] [CrossRef]
- Beckner Whitener, M.E.; Stanstrup, J.; Panzeri, V.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics 2016, 12, 53. [Google Scholar] [CrossRef]
- OIV Standard for International Wine and Spirituous Beverages of Vitivinicultural Origin; International Organisation of Vine and Wine: Paris, France, 2009.
- Jagatić Korenika, A.M.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef]
- Falqué, E.; Fernández, E.; Dubourdieu, D. Differentiation of white wines by their aromatic index. Talanta 2001, 54, 271–281. [Google Scholar] [CrossRef]
- Allen, M.S.; Lacey, M.J.; Boyd, S. Determination of Methoxypyrazines in Red Wines by Stable Isotope Dilution Gas Chromatography—Mass Spectrometry. J. Agric. Food Chem. 1994, 42, 1734–1738. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Ohloff, G. The Fashion of Odors and Their Chemical Perspectives: Scent and Fragrances; Springer: Berlin, Germany, 1994. [Google Scholar]
- Benito, S.; Hofmann, T.; Laier, M.; Lochbühler, B.; Schüttler, A.; Ebert, K.; Fritsch, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Sgouros, G.; Mallouchos, A.; Filippousi, M.E.; Banilas, G.; Nisiotou, A. Molecular characterization and enological potential of a high lactic acid-producing lachancea thermotolerans vineyard strain. Foods 2020, 9, 595. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Faia, A. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods 2019, 9, 1231. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Field, S.J.; Ryden, P.; Wilson, D.; James, S.A.; Roberts, I.N.; Richardson, D.J.; Waldron, K.W.; Clarke, T.A. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnol. Biofuels 2015, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modig, T.; Lidén, G.; Taherzadeh, M.J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002, 363, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.J.; Gustafsson, L.; Niklasson, C.; Lidén, G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J. Biosci. Bioeng. 1999, 87, 169–174. [Google Scholar] [CrossRef]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Fernández, M.; Úbeda, J.F.; Briones, A.I. Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int. J. Food Microbiol. 2000, 59, 29–36. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Esteve-Zarzoso, B.; Cabellos, J.M.; Gil-Díaz, M.; Arroyo, T. Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). Eur. Food Res. Technol. 2013, 236, 193–207. [Google Scholar] [CrossRef]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [Green Version]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef]
- Chen, K.; Escott, C.; Loira, I.; del Fresno, J.M.; Morata, A.; Tesfaye, W.; Calderon, F.; Suárez-Lepe, J.A.; Han, S.; Benito, S. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines. Food Microbiol. 2018, 69, 51–63. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Palomero, F.; Benito, S. Quality and composition of airén wines fermented by sequential inoculation of lachancea thermotolerans and saccharomyces cerevisiae. Food Technol. Biotechnol. 2016, 54, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Louw, L.; Tredoux, A.G.J.; van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Lukic, I.; Horvat, I. Differentiation of commercial PDO wines produced in istria (Croatia) according to variety and harvest year based on HS-SPME-GC/MS volatile aroma compound profi ling. Food Technol. Biotechnol. 2017, 55, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Chacón, J.J.; Vichi, S.; Urpí, P.; López-Tamames, E.; Buxaderas, S. Antioxidant activity of lees cell surface during sparkling wine sur lie aging. Int. J. Food Microbiol. 2010, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of lactones in wines by headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry. J. Anal. Methods Chem. 2014, 2014, 863019. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Volume 2. [Google Scholar]
- Jackson, R.S. Chemical constituents of grapes and wine. In Wine Science; Academic Press: Amsterdam, The Netherland, 2020; ISBN 9780128161180. [Google Scholar]
- Nakamura, S.; Crowell, E.A.; Ough, C.S.; Totsuka, A. Quantitative Analysis of γ-Nonalactone in Wines and Its Threshold Determination. J. Food Sci. 1988, 53, 1243–1244. [Google Scholar] [CrossRef]
- Šuklje, K.; Zhang, X.; Antalick, G.; Clark, A.C.; Deloire, A.; Schmidtke, L.M. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition. J. Agric. Food Chem. 2016, 64, 870–880. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gallego, M.A.G.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Study of the terpene profile at harvest and during berry development of Vitis vinifera L. aromatic varieties Aleatico, Brachetto, Malvasia di Candia aromatica and Moscato bianco. J. Sci. Food Agric. 2017, 97, 2898–2907. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; Moyano, L.; Ruiz, M.J.; Medina, M. Chromatography-Olfactometry Study of the Aroma of Fino Sherry Wines. Int. J. Anal. Chem. 2010, 2010, 626298. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.thegoodscentcompany.com (accessed on 10 November 2020).
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory threshold of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and concentrations in young Riesling and non-Riesling wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Engel, K.H.; Flath, R.A.; Buttery, R.G.; Mon, T.R.; Teranishi, R.; Ramming, D.W. Investigation of volatile constituents in nectarines. 1. Analytical and sensory characterization of aroma components in some nectarine cultivars. J. Agric. Food Chem. 1988, 36, 549–553. [Google Scholar] [CrossRef]
- Sonni, F.; Moore, E.G.; Chinnici, F.; Riponi, C.; Smyth, H.E. Characterisation of Australian Verdelho wines from the Queensland Granite Belt region. Food Chem. 2016, 196, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Fariña, L.; Villar, V.; Ares, G.; Carrau, F.; Dellacassa, E.; Boido, E. Volatile composition and aroma profile of Uruguayan Tannat wines. Food Res. Int. 2015, 69, 244–255. [Google Scholar] [CrossRef]
- Ferreira, V.; Ortín, N.; Escudero, A.; López, R.; Cacho, J. Chemical characterization of the aroma of Grenache rosé wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef]
- Guth, H. Quantification and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Available online: http://www.leffingwell.com/odorthre.htm (accessed on 10 November 2020).
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the key aroma compounds in Chinese syrah wine by gas chromatography-Olfactometry-Mass spectrometry and Aroma reconstitution studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Sáenz-Navajas, P.; Culleré, L.; Ferreira, V.; Chatin, A.; Chaperon, V.; Litoux-Desrues, F.; Escudero, A. Chemosensory characterization of Chardonnay and Pinot Noir base wines of Champagne. Two very different varieties for a common product. Food Chem. 2016, 207, 239–250. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Compilation of Odour Treshold Values in Air and Water; Oliemans Punter & Partners BV: Zeist, The Netherland, 2011; ISBN 9789081089401. [Google Scholar]
- Ohloff, G. Importance of minor components in flavors and fragrances. Perfum. Flavor 1978, 3, 11–22. [Google Scholar]
- Moyano, L.; Chaves, M.; Zea, L. A Technical Alternative to Aging. J. Agric. Sci. Appl. 2012, 1, 116–121. [Google Scholar]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem. 2007, 103, 601–606. [Google Scholar] [CrossRef]
- Sáenz, C.; Cedrón, T.; Cabredo, S. Classification of wines from five Spanish origin denominations by aromatic compound analysis. J. AOAC Int. 2010, 93, 1916–1922. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Matsuda, H.; Utsumi, Y.; Hagiwara, T.; Kanisawa, T. Synthesis and odor of optically active rose oxide. Tetrahedron Lett. 2002, 43, 9077–9080. [Google Scholar] [CrossRef]
- Pardo, E.; Rico, J.; Gil, J.V.; Orejas, M. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microb. Cell Fact. 2015, 14, 136. [Google Scholar] [CrossRef] [Green Version]
- Langen, J.; Wegmann-Herr, P.; Schmarr, H.G. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2016, 408, 6483–6496. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1006–1009. [Google Scholar] [CrossRef]
- Mestre, M.V.; Maturano, Y.P.; Gallardo, C.; Combina, M.; Mercado, L.; Toro, M.E.; Carrau, F.; Vazquez, F.; Dellacassa, E. Impact on sensory and aromatic profile of low ethanol malbec wines fermented by sequential culture of Hanseniaspora uvarum and Saccharomyces cerevisiae native yeasts. Fermentation 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile Constituents of Apricot (Prunus Armeniaca). J. Agric. Food Chem. 1990, 38, 471–477. [Google Scholar] [CrossRef]
- González Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC-MS. Food Chem. 2011, 129, 890–898. [Google Scholar] [CrossRef]
Babić Control | Babić Lachancea | Blatina Control | Blatina Lachancea | Frankovka Control | Frankovka Lachancea | Trnjak Control | Trnjak Lachancea | |
---|---|---|---|---|---|---|---|---|
Compounds | ||||||||
Alcohol (%, v/v) | 13.7 ± 0.1 a | 13.0 ± 0.0 b | 12.9 ± 0.0 a | 12.5 ± 0.0 b | 13.5 ± 0.0 a | 12.6 ± 0.1 b | 11.8 ± 0.0 a | 11.7 ± 0.0 a |
Total acidity * (g/L) | 6.60 ± 0.04 b | 7.75 ± 0.02 a | 5.33 ± 0.05 b | 5.85 ± 0.07 a | 7.55 ± 0.04 b | 10.10 ± 0.02 a | 4.82 ± 0.03 b | 6.90 ± 0.04 a |
Volatile acidity ** (g/L) | 0.47 ± 0.01 a | 0.50 ± 0.00 a | 0.44 ± 0.00 a | 0.54 ± 0.01 b | 0.64 ± 0.00 a | 0.67 ± 0.00 a | 0.37 ± 0.00 a | 0.35 ± 0.01 a |
pH | 3.40 ± 0.01 a | 3.33 ± 0.00 b | 3.46 ± 0.01 a | 3.35 ± 0.00 b | 3.38 ± 0.00 a | 3.30 ± 0.00 b | 3.86 ± 0.01 a | 3.76 ± 0.01 b |
Malic acid (g/L) | 0.79 ± 0.05 a | 0.62 ± 0.03 b | 1.08 ± 0.04 a | 0.76 ± 0.05 b | 0.75 ± 0.01 a | 0.50 ± 0.03 b | 1.14 ± 0.02 a | 1.10 ± 0.01 a |
Lactic acid (g/L) | 0.16 ± 0.02 b | 0.99 ± 0.04 a | 0.09 ± 0.05 b | 0.81 ± 0.02 a | 0.11 ± 0.04 b | 1.09 ± 0.01 a | 0.12 ± 0.02 b | 0.32 ± 0.04 a |
ODT (µg/L) | Odor Descriptor | Babić Control | Babić Lachancea | Blatina Control | Blatina Lachancea | Frankovka Control | Frankovka Lachancea | Trnjak Control | Trnjak Lachancea | |
---|---|---|---|---|---|---|---|---|---|---|
Aldehydes | ||||||||||
2,4-Decadienal | 270 [46] | Floral [47] | 0.17 ± 0.01 a | 0.04 ± 0.02 b | 0.34 ± 0.01 a | 0.12 ± 0.01 b | 0.31 ± 0.04 a | 0.18 ± 0.01 b | 0.11 ± 0.01 a | 0.14 ± 0.02 a |
2,4-Heptadienal (E,E) | 3.53 ± 0.06 a | 2.66 ± 0.05 b | 4.47 ± 0.03 a | 3.85 ± 0.01 b | 2.68 ± 0.44 a | 1.60 ± 0.21 a | 0.10 ± 0.02 a | 0.13 ± 0.01 a | ||
2,4-Hexadienal | 1.88 ± 0.11 a | 1.55 ± 0.01 a | 1.46 ± 0.05 a | 1.14 ± 0.03 b | 1.31 ± 0.14 a | 1.36 ± 0.11 a | 1.31 ± 0.19 a | 1.54 ± 0.04 a | ||
2,4-Nonadienal | 0.09 [48] | Cucumber [26] | 0.09 ± 0.01 a | 0.02 ± 0.01 b | 0.05 ± 0.01 a | 0.08 ± 0.01 a | 0.56 ± 0.01 b | 0.77 ± 0.03 a | 0.37 ± 0.31 a | 0.44 ± 0.39 a |
2-Octenal | 1.29 ± 0.49 b | 2.15 ± 0.09 a | 4.21 ± 1.01 a | 3.72 ± 0.66 a | 6.35 ± 0.74 a | 6.64 ± 0.78 a | 1.27 ± 0.48 b | 4.11 ± 0.47 a | ||
5-Hydroxymethylfurfural | 100,000 [49] | Almond [50] | 2.75 ± 0.05 a | 0.38 ± 0.01 b | 0.61 ± 0.06 a | 0.18 ± 0.02 b | 1.23 ± 0.01 a | 0.04 ± 0.01 b | 0.15 ± 0.19 a | 0.20 ± 0.02 a |
Benzaacetaldehyde | 4 [51] | 14.90 ± 0.28 a | 15.71 ± 0.67 a | 11.73 ± 0.59 a | 9.84 ± 0.03 b | 34.14 ± 1.58 a | 27.52 ± 2.33 a | 34.60 ± 1.24 b | 50.00 ± 8.60 a | |
Benzaldehyde | 350 [43] | Bitter, almond [52] | 7.54 ± 0.06 b | 7.81 ± 0.06 a | 3.50 ± 0.28 b | 4.38 ± 0.02 a | 8.51 ± 0.21 a | 7.30 ± 0.16 b | 122.19 ± 6.80 b | 155.29 ± 10.11 a |
Decanal | 0.1–2 [53] | 2.67 ± 0.01 a | 2.19 ± 0.10 b | 1.74 ± 0.06 b | 2.12 ± 0.01 a | 3.48 ± 0.10 b | 3.89 ± 0.01 a | 1.60 ± 0.16 b | 2.18 ± 0.23 a | |
Furfural | 770 [54] | Almond, yeast [55] | 5.31 ± 0.69 a | 2.07 ± 0.01 b | 1.93 ± 0.09 a | 1.74 ± 0.02 a | 0.65 ± 0.01 a | 0.13 ± 0.01 b | 3.23 ± 0.23 b | 6.79 ± 0.48 a |
Ʃ | 40.11 a | 34.56 b | 30.01 a | 27.17 b | 59.20 a | 49.42 b | 164.86 b | 220.74 a | ||
Higher alcohols | ||||||||||
1-Butanol | 150,000 [56] | Medicinal [43] | 185.27 ± 1.41 a | 153.08 ± 3.13 b | 168.70 ± 1.63 a | 155.30 ± 1.54 b | 156.25 ± 2.85 b | 243.53 ± 1.00 a | 108.29 ± 9.09 b | 192.29 ± 13.62 a |
1-Decanol | 5000 [57] | Pear, waxy, violet [57] | 5.23 ± 0.01 a | 4.80 ± 0.03 b | 1.15 b ± 0.01 b | 6.05 ± 0.01 a | 2.20 ± 0.01 a | 0.64 ± 0.04 b | 2.73 ± 0.33 a | 1.89 ± 0.35 b |
1-Heptanol | 425 [51] | Oily [47] | 29.01 ± 0.92 a | 32.15 ± 1.58 a | 19.22 ± 0.62 a | 17.68 ± 0.71 a | 19.34 ± 0.03 a | 7.78 ± 0.16 b | 32.72 ± 0.96 a | 31.72 ± 4.75 a |
1-Hexanol | 2500 [55] | Grass just cut [43] | 1464.07 ± 1.56 b | 1484.66 ± 1.46 a | 1872.75 ± 4.77 a | 1764.33 ± 1.21 b | 868.37 ± 1.45 a | 729.93 ± 0.52 b | 2581.10 ± 41.61 a | 2642.37 ± 225.20 a |
1-Nonanol | 4.18 ± 0.10 a | 3.78 ± 0.01 b | 5.64 ± 0.08 a | 4.29 ± 0.01 b | 4.98 ± 0.13 a | 1.50 ± 0.06 b | 5.40 ± 0.27 a | 4.58 ± 1.20 a | ||
1-Octadecanol | 22.97 ± 0.69 a | 0.22 ± 0.01 b | 0.34 ± 0.01 a | 0.33 ± 0.04 a | 25.16 ± 0.56 a | 0.07 ± 0.03 b | 1.74 ± 0.16 a | 0.29 ± 2.59 a | ||
1-Octanol | 110–130 [53] | Chemical [43] | 34.66 ± 0.66 b | 39.62 ± 0.70 a | 9.45 ± 0.04 b | 11.79 ± 0.49 a | 15.14 ± 1.10 a | 11.12 ± 0.30 b | 22.99 ± 1.85 a | 10.46 ± 2.69 b |
1-Pentanol | 64,000 [37] | Bitter, almond, balsamic [37] | 0.48 ± 0.01 b | 34.97 ± 0.97 a | 32.37 ± 1.06 a | 30.04 ± 0.73 a | 30.42 ± 1.20 a | 26.80 ± 0.13 a | 0.10 ± 0.06 a | 0.13 ± 0.02 a |
2-Pentadecanol | 0.95 ± 0.01 a | 0.24 ± 0.02 b | 0.34 ± 0.04 a | 0.17 ± 0.03 b | 1.01 ± 0.02 a | 0.33 ± 0.01 b | 3.07 ± 0.32 a | 2.28 ± 0.51 a | ||
2-Pentene-1-ol | 0.14 ± 0.04 b | 0.38 ± 0.01 a | 3.07 ± 0.03 a | 2.65 ± 0.01 b | 0.24 ± 0.07 a | 0.15 ± 0.07 a | 2.77 ± 0.20 b | 3.85 ± 0.30 a | ||
2-Methyl-1-butanol | 30,000 [58] | Whiskey, burnt, nail polish [59] | 13,752.80 ± 69.76 b | 14,600.50 ± 1.87 a | 12,760.75 ± 3.58 b | 13,794.74 ± 3.50 a | 19,820.03 ± 396.27 a | 16,713.06 ± 437.03 b | 25,883.52 ± 353.92 a | 26,051.04 ± 77.75 a |
2-Ethyl-1-hexanol | 3.93 ± 0.08 b | 5.50 ± 0.07 a | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 1.11 ± 0.01 a | 0.77 ± 0.01 b | 2.14 ± 0.17 a | 2.68 ± 0.58 a | ||
2-Ethyl-3-heptanol | 1.66 ± 0.01 a | 0.96 ± 0.04 b | 1.91 ± 0.11 a | 1.63 ± 0.03 a | 0.15 ± 0.07 a | 0.10 ± 0.05 a | 0.26 ± 0.29 a | 0.35 ± 0.22 a | ||
trans-2-Hexene-1-ol | 100 [60] | Herbaceous, green [47] | 11.73 ± 0.78 a | 11.75 ± 0.73 a | 5.08 ± 0.02 a | 4.89 ± 0.13 a | 5.63 ± 0.42 b | 7.90 ± 0.01 a | 7.87 ± 0.19 a | 7.48 ± 0.79 a |
cis-3-Hexene-1-ol | 400 [43] | Grass, green [43] | 16.57 ± 0.07 b | 21.59 ± 0.76 a | 76.66 ± 0.69 a | 72.26 ± 0.47 b | 18.95 ± 0.69 a | 19.95 ± 0.37 a | 141.29 ± 5.90 b | 190.06 ± 18.90 a |
trans-3-Hexene-1-ol | 1000 [43] | Grass, resinous, cream [43] | 47.73 ± 0.74 a | 32.66 ± 19.75 a | 30.22 ± 1.05 a | 29.88 ± 0.61 a | 25.74 ± 0.88 a | 28.33 ± 0.78 a | 31.50 ± 0.78 a | 31.29 ± 3.71 a |
Phenylethyl alcohol | 14,000 [61] | Floral, rose, honey [57] | 5176.93 ± 1.85 b | 6465.90 ± 4.74 a | 6974.79 ± 0.50 a | 6695.82 ± 0.47 b | 9971.16 ± 0.51 a | 6307.75 ± 0.52 b | 7311.89 ± 188.33 a | 7536.44 ± 708.53 a |
Isoamyl alcohol | 30,000 [58] | Alcohol, nail polish [57] | 12,130.23 ± 7.52 a | 5566.17 ± 0.70 b | 10,960.85 ± 6.62 a | 10,430.94 ± 0.34 b | 17,083.44 ± 23.84 a | 14,469.53 ± 23.50 b | 9621.08 ± 4725.72 a | 9022.92 ± 2075.75 b |
Isobutanol | 40,000 [37] | Alcohol, nail polish [57] | 4548.47 ± 1.29 b | 6089.32 ± 6.86 a | 3414.33 ± 5.55 a | 3055.67 ± 3.63 b | 6135.18 ± 0.98 b | 6702.63 ± 3.66 a | 3370.62 ± 160.10 b | 5077.13 ± 394.26 a |
Ʃ | 37,436.96 a | 34,548.24 b | 36,337.69 a | 36,078.53 b | 54,184.46 a | 45,271.83 b | 49,131.05 a | 50,809.20 a | ||
Volatile phenols | ||||||||||
4-Vinylguaiacol | 40 [62] | Clove, curry [43] | 0.93 ± 0.08 b | 1.57 ± 0.02 a | 19.62 ± 0.71 a | 15.01 ± 0.06 b | 0.90 ± 0.01 b | 3.19 ± 0.08 a | 10.51 ± 0.56 b | 26.23 ± 4.79 a |
4-Vinylphenol | 180 [61] | Phenolic, medicinal [43] | 0.30 ± 0.02 b | 1.04 ± 0.01 a | 28.49 ± 1.48 a | 26.75 ± 0.99 a | 3.54 ± 0.01 a | 1.07 ± 0.03 b | 6.96 ± 1.00 b | 50.32 ± 4.95 a |
Eugenol | 6 [54] | Cinnamon, clove [43] | 2.38 ± 0.04 a | 1.87 ± 0.03 b | 9.39 ± 0.22 a | 9.12 ± 0.09 a | 4.08 ± 0.04 a | 4.28 ± 0.23 a | 33.98 ± 0.87 a | 30.16 ± 4.02 a |
Guaiacol | 9.5 [55] | Smoky, hospital [55] | 5.70 ± 0.29 a | 2.25 ± 0.05 b | 1.48 ± 0.01 a | 1.07 ± 0.04 b | 1.95 ± 0.06 a | 1.87 ± 0.04 a | 3.40 ± 0.09 a | 2.86 ± 0.74 a |
Homovanillyl alcohol | 85.19 ± 0.57 b | 90.39 ± 1.12 a | 17.21 ± 0.08 a | 16.78 ± 0.95 a | 124.39 ± 1.66 a | 118.71 ± 0.74 b | 41.77 ± 2.30 b | 72.86 ± 10.72 a | ||
Vanillin | 200 [58] | Vanilla [43] | 17.72 ± 1.40 a | 5.57 ± 0.22 b | 8.15 ± 0.01 a | 7.18 ± 0.02 b | 7.76 ± 0.31 a | 4.19 ± 0.11 b | 16.46 ± 2.05 a | 17.44 ± 2.00 a |
Ʃ | 112.22 a | 102.69 a | 84.32 a | 75.89 a | 142.60 a | 133.30 a | 113.11 b | 199.87 a | ||
Terpenes | ||||||||||
1,8-Terpin | 1.77 ± 0.04 a | 1.01 ± 0.02 b | 0.36 ± 0.01 b | 1.43 ± 0.06 a | 0.95 ± 0.06 b | 1.26 ± 0.01 a | 0.99 ± 0.22 b | 2.08 ± 0.88 a | ||
6,7-Dihydro-7-hydroxylinalool | 33.04 ± 0.93 a | 9.23 ± 0.08 b | 6.56 ± 0.15 a | 5.46 ± 0.13 b | 12.60 ± 0.59 a | 12.05 ± 1.07 a | 5.50 ± 0.96 a | 6.18 ± 2.41 a | ||
8-Hydroxylinalool | 1.74 ± 0.02 b | 3.61 ± 0.02 a | 2.01 ± 0.06 a | 26.33 ± 34.33 a | 27.60 ± 0.89 a | 24.17 ± 0.28 b | 9.35 ± 1.84 a | 13.72 ± 3.09 a | ||
α-Pinene | 0.12 ± 0.01 a | 0.10 ± 0.01 a | 0.04 ± 0.01 b | 0.54 ± 0.02 a | 0.22 ± 0.01 a | 0.15 ± 0.06 a | 1.10 ± 0.26 a | 1.99 ± 0.90 a | ||
α-Terpineol | 330 [63] | Lilac, floral, sweet [43] | 1.95 ± 0.06 a | 1.18 ± 0.02 b | 2.37 ± 0.04 a | 2.75 ± 0.21 a | 9.90 ± 0.21 a | 8.42 ± 0.42 b | 6.87 ± 0.19 a | 7.28 ± 1.07 a |
2,6-Dimethyl-3,7-octadiene-2,6-diol | 0.87 ± 0.03 a | 0.08 ± 0.01 b | 0.17 ± 0.04 a | 0.17 ± 0.03 a | 55.68 ± 0.63 a | 52.18 ± 1.41 a | 0.87 ± 0.23 a | 1.10 ± 0.41 a | ||
2,6-Dimethyl-7-octene-2,6-diol | 32.62 ± 0.70 a | 7.98 ± 0.01 b | 5.93 ± 0.01 a | 1.74 ± 0.02 b | 1.89 ± 0.09 b | 2.48 ± 0.01 a | 4.98 ± 0.48 a | 7.37 ± 2.82 a | ||
β-Ocimene | 0.69 ± 0.06 a | 0.38 ± 0.02 b | 0.56 ± 0.04 a | 0.82 ± 0.09 a | 0.43 ± 0.04 a | 0.28 ± 0.02 b | 0.38 ± 0.17 a | 0.27 ± 0.05 a | ||
α-Farnesen | 1.83 ± 0.03 a | 1.18 ± 0.01 b | 0.64 ± 0.07 a | 0.73 ± 0.03 a | 0.73 ± 0.06 a | 0.78 ± 0.01 a | 1.21 ± 0.03 a | 0.93 ± 0.55 a | ||
cis,trans-α-Farnesene | 1.74 ± 0.02 a | 1.75 ± 0.04 a | 1.18 ± 0.02 a | 1.13 ± 0.04 a | 1.95 ± 0.06 a | 1.65 ± 0.01 b | 1.82 ± 0.27 b | 2.44 ± 0.16 a | ||
trans-β-Farnesene | 87 [64] | 0.83 ± 0.08 a | 0.73 ± 0.02 a | 0.95 ± 0.04 a | 0.72 ± 0.01 b | 0.85 ± 0.06 a | 0.66 ± 0.05 a | 0.59 ± 0.10 a | 0.68 ± 0.05 a | |
cis-β-Farnesene | 2.27 ± 0.03 a | 1.18 ± 0.01 b | 0.87 ± 0.02 a | 0.65 ± 0.01 b | 1.18 ± 0.01 a | 0.90 ± 0.08 b | 0.90 ± 0.08 b | 1.43 ± 0.13 a | ||
cis-Linalool oxide, furan | 6000 [55] | Flower [55] | 0.57 ± 0.03 a | 0.65 ± 0.04 a | 0.16 ± 0.01 a | 0.01 ± 0.00 b | 0.91 ± 0.02 b | 1.04 ± 0.01 a | 0.44 ± 0.22 a | 0.81 ± 0.17 a |
Citronellol | 40 [63] | Rose [65] | 39.05 ± 0.28 a | 35.06 ± 0.89 b | 23.84 ± 0.45 a | 22.99 ± 1.00 a | 59.13 ± 0.33 a | 42.88 ± 0.54 b | 45.75 ± 2.55 a | 43.35 ± 7.64 a |
Farnesol | 20 [66] | Floral, clove [47] | 2.39 ± 0.14 b | 14.13 ± 0.21 a | 8.40 ± 0.23 a | 7.33 ± 0.08 b | 43.92 ± 0.29 a | 39.77 ± 0.65 b | 9.44 ± 0.35 a | 9.12 ± 2.82 a |
Geraniol | 20 [61] | Citrus [43] | 6.65 ± 2.11 b | 12.05 ± 1.24 a | 0.96 ± 0.04 b | 4.42 ± 0.10 a | 0.56 ± 0.04 b | 14.10 ± 0.18 a | 12.03 ± 0.42 b | 17.39 ± 1.73 a |
Geranyl acetate | 9 [67] | Flowery [67] | 4.41 ± 0.05 b | 8.83 ± 0.03 a | 3.54 ± 0.01 b | 3.67 ± 0.04 a | 5.47 ± 0.01 b | 7.04 ± 0.01 a | 3.11 ± 0.43 b | 6.82 ± 1.27 a |
Hotrienol | 110 [52] | Fresh, floral, sweet [52] | 12.31 ± 1.34 a | 8.84 ± 0.01 a | 1.74 ± 0.01 b | 2.62 ± 0.04 a | 155.03 ± 0.13 a | 100.95 ± 0.28 b | 2.83 ± 0.33 a | 0.82 ± 0.82 b |
Linalool | 25 [61] | Citrus, floral, sweet [43] | 22.31 ± 1.25 b | 30.66 ± 0.85 a | 22.93 ± 0.32 a | 21.56 ± 0.69 a | 76.33 ± 0.08 a | 40.06 ± 0.09 b | 18.82 ± 0.36 a | 18.57 ± 3.05 a |
Neral | 1.16 ± 0.01 b | 4.09 ± 0.03 a | 1.04 ± 0.02 b | 1.15 ± 0.01 a | 4.98 ± 0.07 a | 1.64 ± 0.02 b | 2.34 ± 0.15 a | 0.85 ± 0.25 b | ||
Nerolidol | 250 [51] | Rose, apple, green, waxy [47] | 1.16 ± 0.04 a | 0.95 ± 0.06 a | 0.64 ± 0.01 b | 1.25 ± 0.06 a | 0.85 ± 0.04 a | 0.76 ± 0.04 a | 1.04 ± 0.20 a | 0.85 ± 0.23 a |
Neric acid | 3.26 ± 0.04 b | 3.56 ± 0.05 a | 3.09 ± 0.01 a | 2.74 ± 0.06 b | 3.89 ± 0.10 a | 3.85 ± 0.06 a | 3.07 ± 0.47 a | 3.01 ± 0.24 a | ||
Nerol | 300 [63] | Rose, fruity, floral [43] | 3.45 ± 0.01 a | 3.51 ± 0.52 a | 1.95 ± 0.01 a | 1.59 ± 0.01 b | 1.15 ± 0.01 b | 3.68 ± 0.04 a | 5.01 ± 0.18 b | 6.07 ± 0.58 a |
Menthol | 0.63 ± 0.05 b | 1.14 ± 0.02 a | 0.43 ± 0.06 b | 0.91 ± 0.06 a | 0.67 ± 0.03 b | 0.85 ± 0.01 a | 1.07 ± 0.34 a | 0.92 ± 0.26 a | ||
Ocimenol | 0.90 ± 0.01 a | 0.64 ± 0.07 b | 2.66 ± 0.05 a | 0.02 ± 0.01 b | 1.37 ± 0.19 a | 0.06 ± 0.04 b | 2.56 ± 0.64 b | 4.46 ± 0.98 a | ||
Terpendiol I | 3.21 ± 0.12 a | 1.77 ± 0.03 b | 6.03 ± 0.03 a | 5.38 ± 0.02 b | 0.21 ± 0.02 a | 0.30 ± 0.02 a | 2.06 ± 0.12 a | 0.18 ± 3.30 b | ||
Terpendiol II | 0.65 ± 0.01 b | 1.10 ± 0.01 a | 0.40 ± 0.08 a | 0.45 ± 0.06 a | 74.29 ± 0.95 b | 94.80 ± 0.59 a | 1.99 ± 1.04 a | 0.80 ± 0.41 a | ||
Terpinene-4-ol | 4.38 ± 0.13 a | 2.16 ± 0.04 b | 1.97 ± 0.03 b | 2.57 ± 0.04 a | 0.97 ± 0.03 a | 0.54 ± 0.02 b | 4.84 ± 4.15 b | 6.52 ± 0.68 a | ||
Tetrahydrolinalool | 21.68 ± 0.78 b | 89.23 ± 0.65 a | 33.82 ± 0.47 a | 31.93 ± 0.69 a | 28.00 ± 0.93 a | 19.43 ± 0.43 b | 11.60 ± 0.28 a | 10.50 ± 1.68 a | ||
Linalyl formate | 2.33 ± 0.03 a | 0.28 ± 0.01 b | 0.01 ± 0.01 b | 2.44 ± 0.04 a | 0.33 ± 0.03 b | 0.74 ± 0.01 a | 0.25 ± 0.14 a | 0.27 ± 0.23 a | ||
Ʃ | 209.89 b | 247.06 a | 135.19 a | 155.41 a | 571.97 a | 477.40 b | 162.80 a | 176.80 a | ||
C13 Norisoprenoids | ||||||||||
α-Ionol | 0.32 ± 0.01 a | 0.26 ± 0.05 a | 0.29 ± 0.06 a | 0.24 ± 0.02 a | 0.30 ± 0.01 a | 0.21 ± 0.04 a | 0.41 ± 0.03 a | 0.44 ± 0.16 a | ||
β-Ionon | 3.4 [68] | Flora l [68] | 0.13 ± 0.03 a | 0.10 ± 0.01 a | 0.17 ± 0.04 a | 0.17 ± 0.03 a | 0.10 ± 0.01 a | 0.10 ± 0.02 a | 0.53 ± 0.02 a | 0.60 ± 0.07 a |
β-Ionone-5,6-epoxide | 0.28 ± 0.02 a | 0.16 ± 0.01 b | 0.06 ± 0.02 a | 0.04 ± 0.01 a | 0.19 ± 0.01 a | 0.16 ± 0.01 a | 0.28 ± 0.20 a | 0.17 ± 0.11 a | ||
β-Damascenone | 0.05 [58] | Sweet, fruity, floral, honey [61] | 9.24 ± 0.42 a | 8.51 ± 0.02 a | 3.76 ± 0.01 a | 2.45 ± 0.05 b | 5.54 ± 0.02 a | 5.61 ± 0.25 a | 4.79 ± 0.25 a | 6.52 ± 1.17 a |
TDN | 2 [69] | Petrol, kerosene [55] | 1.10 ± 0.01 a | 1.24 ± 0.07 a | 0.40 ± 0.01 a | 0.32 ± 0.01 b | 0.71 ± 0.02 a | 0.62 ± 0.06 a | 0.54 ± 0.02 a | 0.87 ± 0.46 a |
Ʃ | 11.06 a | 10.26 a | 4.67 a | 3.20 b | 6.83 a | 6.69 a | 6.55 a | 8.59 a | ||
Esters | ||||||||||
Ethyl butanoate | 20 [54] | Pineapple, apple, peach [57] | 174.39 ± 1.16 b | 190.00 ± 1.34 a | 65.44 ± 1.63 b | 77.66 ± 0.05 a | 166.28 ± 4.18 a | 106.34 ± 0.49 b | 142.49 ± 4.12 a | 127.40 ± 14.59 a |
Ethyl decanoate | 200 [62] | Floral, grape, fruity [59] | 12.97 ± 0.45 b | 38.47 ± 1.69 a | 18.07 ± 0.81 a | 10.90 ± 0.35 b | 28.38 ± 0.71 a | 13.85 ± 0.73 b | 28.47 ± 0.14 a | 9.20 ± 2.30 b |
Ethyl furoate | 16,000 [54] | 0.23 ± 0.04 b | 2.13 ± 0.03 a | 3.24 ± 0.08 a | 0.06 ± 0.01 b | 3.29 ± 0.01 a | 2.35 ± 0.02 b | 1.94 ± 1.25 a | 1.54 ± 0.16 a | |
Ethyl hexanoate | 14 [61] | Fruity, green apple, banana [59] | 346.14 ± 1.05 b | 403.95 ± 1.88 a | 76.55 ± 1.51 a | 69.89 ± 0.28 b | 207.57 ± 2.20 a | 204.53 ± 0.83 a | 381.84 ± 4.62 a | 187.62 ± 28.00 b |
Ethyl hydrogen succinate | 0.15 ± 0.00 b | 20.03 ± 0.62 a | 2707.20 ± 2.91 a | 2395.19 ± 0.53 b | 0.20 ± 0.00 b | 5.93 ± 0.06 a | 6361.92 ± 117.27 a | 2854.00 ± 906.31 b | ||
Ethyl lactate | 154,000 [54] | Butter [57] | 1754.17 ± 1.44 b | 2889.01 ± 0.16 a | 3307.43 ± 2.89 a | 3108.26 ± 2.14 a | 1528.19 ± 2.88 b | 3189.99 ± 15.93 a | 1844.03 ± 58.14 b | 2419.02 ± 145.90 a |
Ethyl linalyl acetal | 0.48 ± 0.01 a | 0.26 ± 0.01 b | 0.25 ± 0.01 b | 0.44 ± 0.02 a | 0.65 ± 0.06 a | 0.54 ± 0.01 a | 0.37 ± 0.09 a | 0.36 ± 0.15 a | ||
Ethyl linoleate | 0.01 ± 0.04 b | 0.45 ± 0.01 a | 0.44 ± 0.01 b | 1.61 ± 0.02 a | 1.56 ± 0.01 a | 0.65 ± 0.06 b | 0.29 ± 0.55 a | 0.72 ± 0.20 a | ||
Ethyl octanoate | 580 [62] | Sweet, floral, fruity, pear [57] | 217.15 ± 2.98 b | 367.23 ± 2.76 a | 95.21 ± 1.86 a | 76.83 ± 0.45 b | 187.34 ± 0.03 a | 110.71 ± 0.72 b | 249.47 ± 2.11 a | 80.23 ± 16.60 b |
Ethyl vanillate | 3000 [62] | Creamy, vanilla [59] | 0.01 ± 0.03 a | 0.01 ± 0.08 a | 0.28 ± 0.02 a | 0.06 ± 0.04 b | 0.04 ± 0.01 a | 0.08 ± 0.01 a | 0.04 ± 0.02 a | 0.10 ± 0.06 a |
Ethyl-2-hydroxy-3-methyl butanoate | 7.04 ± 0.11 b | 31.11 ± 0.24 a | 11.75 ± 0.56 a | 10.91 ± 0.39 a | 9.10 ± 0.08 a | 6.57 ± 0.02 b | 3.63 ± 0.11 a | 3.16 ± 0.60 a | ||
Ethyl-2-methylbutanoate | 18 [54] | Apple, strawberry [59] | 6.17 ± 0.16 a | 1.19 ± 0.09 b | 3.90 ± 0.12 a | 3.94 ± 0.03 a | 6.63 ± 0.05 a | 3.67 ± 0.34 b | 1.80 ± 0.47 a | 1.90 ± 0.45 a |
Ethyl-3-hydroxybutanoate | 20,000 [65] | Grape, fruity, caramel [70] | 30.00 ± 0.27 b | 43.80 ± 0.97 a | 17.78 ± 0.95 a | 15.19 ± 1.00 a | 29.79 ± 0.63 a | 12.95 ± 0.46 b | 31.34 ± 0.38 a | 12.86 ± 3.63 b |
Ethyl-3-methylbutanoate | 3 [54] | Fruity, pineapple [47] | 9.31 ± 0.04 a | 5.52 ± 0.04 b | 6.55 ± 0.06 a | 6.33 ± 0.01 b | 21.31 ± 0.67 a | 7.45 ± 0.28 b | 4.40 ± 0.31 a | 3.99 ± 0.66 a |
Isoamyl acetate | 30 [61] | Banana [57] | 1017.78 ± 2.05 a | 886.04 ± 0.78 b | 527.92 ± 1.85 a | 478.02 ± 0.70 b | 2276.20 ± 0.98 a | 1456.07 ± 1.24 b | 661.26 ± 19.59 a | 597.79 ± 52.38 b |
Isobutyl acetate | 6140 [57] | Apple, banana [59] | 42.57 ± 1.00 a | 48.36 ± 1.62 a | 57.91 ± 0.33 a | 53.54 ± 1.01 b | 67.15 ± 0.59 b | 76.71 ± 0.73 a | 35.41 ± 3.49 b | 81.15 ± 2.91 a |
Hexyl acetate | 670 [56] | Fruity, green, sweet [59] | 35.55 ± 1.37 a | 12.21 ± 1.35 b | 3.30 ± 0.05 a | 3.02 ± 0.04 b | 9.59 ± 0.71 a | 10.70 ± 0.50 a | 15.94 ± 1.16 b | 28.79 ± 1.94 a |
Methyl vanillate | 9.46 ± 0.05 a | 8.65 ± 0.05 b | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 77.75 ± 0.71 b | 80.97 ± 0.37 a | 21.71 ± 0.34 a | 21.51 ± 3.64 a | ||
Geranium acid methyl ester | 4.65 ± 0.08 a | 3.47 ± 0.01 b | 0.01 ± 0.00 a | 0.01 ± 0.01 a | 6.42 ± 0.30 a | 4.45 ± 0.40 b | 3.30 ± 0.13 a | 3.04 ± 1.09 a | ||
Diethyl glutarate | 0.28 ± 0.02 a | 0.06 ± 0.02 b | 0.23 ± 0.03 a | 0.16 ± 0.03 a | 0.30 ± 0.05 a | 0.25 ± 0.01 a | 0.32 ± 0.01 b | 1.04 ± 0.11 a | ||
Diethyl malate | 40.82 ± 0.89 a | 20.63 ± 0.85 b | 67.72 ± 0.81 a | 62.87 ± 0.68 b | 19.69 ± 0.85 a | 15.75 ± 0.69 b | 45.87 ± 2.59 b | 80.58 ± 8.91 a | ||
Diethyl succinate | 200,000 [37] | Overripe, aged [55] | 438.85 ± 0.83 b | 865.90 ± 5.18 a | 434.01 ± 1.80 a | 408.95 ± 0.84 b | 473.02 ± 0.77 a | 171.29 ± 18.46 b | 428.85 ± 9.81 a | 340.64 ± 38.95 b |
2-Phenylethyl acetate | 250 [71] | Rose, honey, tobacco [57] | 0.50 ± 0.07 b | 1.08 ± 0.02 a | 13.04 ± 0.33 a | 12.11 ± 0.18 a | 0.49 ± 0.03 a | 0.47 ± 0.04 a | 15.51 ± 2.19 b | 95.62 ± 2.04 a |
Ʃ | 4148.45 b | 5839.52 a | 7418.19 a | 6795.92 b | 5120.67 b | 5482.20 a | 10,280.21 a | 6952.26 b | ||
Lactones | ||||||||||
γ-Butirolactone | 10,000 [57] | Coconut, caramel [43] | 477.88 ± 2.38 b | 544.56 ± 1.42 a | 463.59 ± 9.15 a | 463.10 ± 0.22 a | 525.68 ± 0.76 b | 721.52 ± 0.86 a | 235.97 ± 23.02 b | 415.74 ± 28.48 a |
γ-Decalactone | 1000 [57] | Peach, fruity [43] | 2.30 ± 0.01 a | 1.78 ± 0.02 b | 1.42 ± 0.38 b | 2.62 ± 0.10 a | 2.60 ± 0.01 b | 10.73 ± 0.79 a | 1.88 ± 0.52 b | 13.99 ± 0.39 a |
γ-Hexalactone | 1600 [72] | Sweet, cake, peach [43] | 5.36 ± 0.22 a | 5.12 ± 0.04 a | 3.20 ± 0.07 a | 2.95 ± 0.01 b | 3.88 ± 0.02 a | 4.22 ± 0.35 a | 3.90 ± 0.16 b | 6.44 ± 0.41 a |
γ-Nonalactone | 25 [49] | Coconut, peach [43] | 24.00 ± 0.27 a | 19.31 ± 0.02 b | 27.96 ± 0.64 a | 27.25 ± 1.73 a | 22.19 ± 0.71 a | 14.92 ± 0.93 b | 53.18 ± 1.31 a | 39.68 ± 6.15 b |
γ-Octalactone | 7 [49] | 2.30 ± 0.01 a | 0.74 ± 0.02 b | 2.26 ± 0.01 a | 1.72 ± 0.01 b | 2.39 ± 0.38 a | 0.98 ± 0.01 b | 1.11 ± 2.01 a | 3.16 ± 0.65 a | |
γ-Undecalactone | 60 [49] | Apricot, peach [47] | 0.56 ± 0.04 a | 0.36 ± 0.04 b | 0.56 ± 0.01 a | 0.34 ± 0.01 b | 0.53 ± 0.05 a | 0.66 ± 0.01 a | 0.44 ± 0.03 b | 0.81 ± 0.09 a |
δ-Decalactone | 3.54 ± 0.01 a | 3.37 ± 0.26 a | 2.90 ± 0.01 a | 2.77 ± 0.01 b | 3.39 ± 0.23 a | 1.99 ± 0.16 b | 4.11 ± 0.11 a | 2.76 ± 0.68 b | ||
Ʃ | 515.93 b | 575.24 a | 501.88 a | 500.74 a | 560.64 b | 755.00 a | 300.57 b | 482.57 a | ||
Fatty acids | ||||||||||
Butanoic acid | 400 [55] | Rancid, cheesy [43] | 56.80 ± 0.12 a | 69.13 ± 0.61 a | 220.62 ± 0.75 a | 223.53 ± 3.06 a | 50.25 ± 0.76 a | 33.28 ± 0.52 b | 526.76 ± 16.87 a | 628.68 ± 105.07 a |
Heptanoic acid | 3000 [53] | Rancid, cheesy [43] | 13.05 ± 0.42 a | 11.69 ± 0.68 a | 9.61 ± 0.18 a | 8.76 ± 0.29 a | 5.32 ± 0.45 b | 13.64 ± 0.68 a | 17.56 ± 0.35 a | 14.38 ± 1.82 b |
Hexanoic acid | 420 [53] | Cheesy, oily [57] | 1261.73 ± 41.87 b | 1420.06 ± 1.02 a | 546.11 ± 1.05 a | 513.36 ± 1.12 b | 707.79 ± 0.63 a | 570.43 ± 0.95 b | 1929.66 ± 23.44 a | 1045.24 ± 407.61 b |
Isovaleric acid | 33 [61] | Sweet, rancid [43] | 4.50 ± 0.23 b | 6.13 ± 0.01 a | 3.06 ± 0.02 a | 3.19 ± 0.01 a | 5.53 ± 0.68 a | 3.76 ± 0.10 a | 3.33 ± 0.36 a | 3.14 ± 0.40 a |
Nonanoic acid | 10.04 ± 0.16 a | 10.75 ± 0.62 a | 15.69 ± 0.64 a | 9.28 ± 0.10 b | 9.91 ± 0.10 b | 12.55 ± 0.75 a | 9.94 ± 1.42 a | 11.74 ± 1.91 a | ||
Octanoic acid | 500 [54] | Rancid, oily [59] | 1185.08 ± 0.49 b | 1394.94 ± 3.65 a | 430.56 ± 0.98 a | 402.15 ± 1.41 b | 724.85 ± 2.14 a | 506.16 ± 1.13 b | 1655.69 ± 16.56 a | 511.98 ± 354.13 b |
Propanoic acid | 8100 [56] | Rancid, oily [47] | 6.61 ± 0.07 b | 25.82 ± 1.10 a | 3.31 ± 0.09 a | 3.60 ± 0.11 a | 7.52 ± 0.01 b | 12.04 ± 0.49 a | 49.25 ± 2.48 b | 63.41 ± 4.59 a |
Decanoic acid | 1000 [71] | Rancid, waxy [43] | 8.37 ± 0.03 b | 149.26 ± 1.29 a | 5.89 ± 0.09 b | 137.57 ± 2.79 a | 7.23 ± 0.07 a | 6.90 ± 0.13 a | 361.78 ± 1.75 a | 96.62 ± 82.42 b |
2-Methylpropionic acid | 1168.90 ± 0.54 b | 1281.00 ± 0.64 a | 975.71 ± 0.74 a | 929.75 ± 1.13 b | 2050.21 ± 1.27 b | 5175.83 ± 52.74 a | 704.78 ± 72.86 b | 2457.96 ± 145.03 a | ||
Ʃ | 4226,30 b | 4368.78 a | 2210.54 a | 2231.17 a | 3568.59 b | 6344.59 a | 4833.16 a | 5258.74 a | ||
Other alcohols | ||||||||||
1,4-Butanediol | 1.03 ± 0.03 a | 3.33 ± 0.03 a | 0.52 ± 0.05 a | 0.55 ± 0.01 a | 0.36 ± 0.03 b | 29.22 ± 14.21 a | 1.31 ± 0.13 b | 2.91 ± 0.33 a | ||
4-Ethylcyclohexanol | 3.13 ± 0.18 a | 1.98 ± 0.01 b | 4.38 ± 0.01 a | 3.67 ± 0.01 b | 1.60 ± 0.11 a | 0.97 ± 0.04 b | 7.30 ± 0.26 a | 5.19 ± 0.83 b | ||
4-Methyl-1-pentanol | 50,000 [57] | Almond, toasted [47] | 32.27 ± 1.38 a | 38.05 ± 1.42 a | 32.67 ± 0.74 a | 30.85 ± 0.47 a | 82.99 ± 0.48 a | 35.19 ± 0.40 b | 23.06 ± 0.67 b | 32.45 ± 4.95 a |
Furfuryl alcohol | 15,000 [57] | Sweet, nutty [59] | 1.52 ± 0.37 a | 1.94 ± 0.02 b | 0.99 ± 0.08 a | 0.92 ± 0.04 a | 1.32 ± 0.01 a | 0.61 ± 0.04 b | 5.45 ± 0.43 a | 1.91 ± 0.48 b |
Benzylalcohol | 10,000 [63] | Roasted, toasted, sweet, fruity [43] | 17.25 ± 0.63 b | 20.65 ± 0.61 a | 8.73 ± 0.01 b | 9.22 ± 0.09 a | 48.97 ± 0.12 a | 50.62 ± 0.56 a | 16.61 ± 1.34 a | 14.52 ± 2.03 a |
Ʃ | 55.20 b | 65.95 a | 47.29 a | 45.21 a | 135.24 a | 116.31 a | 53.73 a | 56.98 a | ||
Other compounds | ||||||||||
Acetoin | 150,000 [54] | Buttery, creamy [57] | 17.26 ± 0.82 b | 71.91 ± 0.33 a | 63.05 ± 0.19 a | 65.95 ± 0.95 a | 13.57 ± 1.66 b | 21.02 ± 1.17 a | 41.39 ± 1.36 a | 30.82 ± 4.74 a |
Acetylfurane | 0.56 ± 0.01 b | 0.85 ± 0.05 a | 1.82 ± 0.05 a | 1.55 ± 0.21 a | 1.28 ± 0.07 a | 1.57 ± 0.03 a | 0.77 ± 0.67 a | 0.85 ± 0.40 a | ||
2H-Pyran-2,6(3H)-dione | 59.45 ± 0.77 b | 71.65 ± 0.91 a | 46.21 ± 0.52 a | 37.07 ± 1.00 b | 70.63 ± 0.59 a | 62.16 ± 1.32 b | 58.86 ± 1.95 a | 38.03 ± 6.98 b | ||
2-Pentylfuran | 2000 [64] | 260.59 ± 1.61 b | 329.93 ± 0.34 a | 243.75 ± 2.16 a | 247.47 ± 1.10 a | 355.53 ± 1.60 a | 358.77 ± 0.48 a | 285.39 ± 3.23 a | 251.00 ± 5.41 a | |
Ʃ | 337.86 b | 474.34 a | 354.83 a | 352.04 a | 441.01 a | 443.52 a | 386.41 a | 320.70 b | ||
ODT—odor detection threshold |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korenika, A.-M.J.; Tomaz, I.; Preiner, D.; Lavrić, M.; Šimić, B.; Jeromel, A. Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka). Fermentation 2021, 7, 4. https://doi.org/10.3390/fermentation7010004
Korenika A-MJ, Tomaz I, Preiner D, Lavrić M, Šimić B, Jeromel A. Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka). Fermentation. 2021; 7(1):4. https://doi.org/10.3390/fermentation7010004
Chicago/Turabian StyleKorenika, Ana-Marija Jagatić, Ivana Tomaz, Darko Preiner, Marina Lavrić, Branimir Šimić, and Ana Jeromel. 2021. "Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka)" Fermentation 7, no. 1: 4. https://doi.org/10.3390/fermentation7010004
APA StyleKorenika, A. -M. J., Tomaz, I., Preiner, D., Lavrić, M., Šimić, B., & Jeromel, A. (2021). Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka). Fermentation, 7(1), 4. https://doi.org/10.3390/fermentation7010004