Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Enumeration of Yeasts and Bacteria
2.2.1. Grewia Flava Fruits
2.2.2. Khadi
2.3. Identification of Yeast and Bacteria Using Polymerase Chain Reaction (PCR)
2.3.1. Yeasts
2.3.2. Bacteria
2.3.3. Phylogenetic Analyses
2.3.4. In Silico PCR-Restriction Fragment Length Polymorphism (RFLP) to Profile Yeasts Driving Khadi Fermentation
2.4. Ethanol Assays
2.5. Statistical Analyses
3. Results and Discussion
3.1. Abundance of Yeasts and Bacteria from Grewia Flava Fruits and Khadi
3.1.1. Grewia Flava Fruits
3.1.2. Khadi
3.2. Diversity of Microbial Isolates from Grewia Flava Fruits
3.2.1. Yeasts
3.2.2. Bacteria
3.3. Diversity of Yeasts from the Fermented Brew, Khadi
3.4. Saccharomyces and Non-Saccharomyces Yeasts Responsible for Fermentation of Khadi
3.5. Variation in Alcohol Content among Khadi Samples
3.6. The pH of Khadi, an Important Factor in Preservation of the Brew
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H. Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits. Int. J. Food Microbiol. 2013, 166, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Nyanga, L.K.; Nout, M.J.R.; Gadaga, T.H.; Theelen, B.; Boekhout, T.; Zwietering, M.H. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe. Int. J. Food Microbiol. 2007, 120, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tishkoff, S.A.; Reed, F.A.; Friedlaender, F.R.; Ranciaro, A.; Froment, A.; Hirbo, J.B.; Awomoyi, A.A.; Bodo, J.; Doumbo, O.; Ibrahim, M.; et al. The Genetic Structure and History of Africans and African Americans. J. Sci. 2009, 324, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlay, J.; Jones, R.K. Alcohol Consumption and the Nature of Alcohol Related Problems in Botswana: A Premiliminary Report; Michigen State University: East Lansing, MI, USA, 1982. [Google Scholar]
- Leger, S. Overview of bushmen’s uses of several plants present at the Kalahari Meerkat Project. In The Hidden Gifts of Nature-A Description of Today’s Use of Plants in West Bushmanland (Namibia); German Development Service: Wächtersbach, Germany, 1997; pp. 2–5. [Google Scholar]
- Van Wyk, B.E.; Gericke, N. People’s plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Johannesburg, South Africa, 2000. [Google Scholar]
- Mapitse, R.; Okatch, H.; Moshoeshoe, E. Analysis of Volatile Compounds in Khadi (an Unrecorded Alcohol Beverage) from Botswana by Gas Chromatography-Flame Ionization Detection (GC-FID). South Afr. J. Chem. 2014, 67, 184–188. [Google Scholar]
- WHO. Global Status Report on Alcohol; World Heal Organization: Geneva, Switzerland, 2004; pp. 4–6. [Google Scholar]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Freire, A.L.; Ramos, C.L.; Schwan, R.F. Microbiological and chemical parameters during cassava based-substrate fermentation using potential starter cultures of lactic acid bacteria and yeast. Food Res. Int. 2015, 76, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Gadaga, T.H.; Mutukumira, A.N.; Narvhus, J.A.; Feresu, S.B. A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Adekoya, I.; Obadina, A.; Adaku, C.C.; De Boevre, M.; Okoth, S.; De Saeger, S.; Njobeh, P. Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int. J. Food Microbiol. 2018, 270, 22–30. [Google Scholar] [CrossRef]
- Lyumugabe, F.; Gros, J.; Nzungize, J.; Bajyana, E.; Thonart, P. Characteristics of African traditional beers brewed with sorghum malt: A review. Biotechnol. Agron. Soc. Environ. 2012, 16, 509–530. [Google Scholar]
- Lee, Y.; Choi, Y.; Lee, S.; Park, J.; Shim, J.; Park, K.; Kim, W. Screening Wild Yeast Strains for Alcohol Fermentation from Various Fruits. Mycobiology 2011, 39, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit ( 26S ) ribosomal DNA partial sequences. Antonie Leeuwenhoek 1998, 98, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Lõoke, M.; Kristjuhan, K.; Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR based applications. Biotechniques 2011, 50, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.I.I.; Diawara, B.; Amoa-Awua, W.K.; Traoré, A.S.; Møller, P.L. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 2004, 90, 197–205. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2018, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts; Elsevier B.V.: Amsterdam, The Netherlands, 2011; Volume 1, pp. 87–110. ISBN 9780444521491. [Google Scholar]
- Fleet, G.H. Yeasts in fruit and fruit products. In Yeasts in Food; B. Behr’s Verlag GmbH & Co.: Heidelberg, Germany, 2003; pp. 267–287. ISBN 9781845698485. [Google Scholar]
- Valente, A.; Sanches-Silva, A.; Albuquerque, T.G.; Costa, H.S.; Transfer, T.; Conference, I.I.; Kozhahmetova, Z.; Kasenova, G.; Sedláček, I.; Nováková, D.; et al. Microbiological and chemical parameters during cassava based-substrate fermentation using potential starter cultures of lactic acid bacteria and yeast. Int. J. Food Microbiol. 2017, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Fotedar, R.; Kolecka, A.; Boekhout, T.; Fell, J.W.; Al-Maliki, A.; Zeyara, A.; Al Marri, M. Fungal diversity of the hypersaline Inland Sea in Qatar. Bot. Mar. 2018, 61, 595–609. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2012, 153, 243–259. [Google Scholar] [CrossRef]
- Moubasher, A.-A.H.; Abdel-Sater, M.A.; Soliman, Z.S.M. Diversity of floricolous yeasts and filamentous fungi of some ornamental and edible fruit plants in assiut area, egypt. Curr. Res. Environ. Appl. Mycol. 2018, 8, 135–161. [Google Scholar] [CrossRef]
- Cousin, F.; Le Guellec, R.; Schlusselhuber, M.; Dalmasso, M.; Laplace, J.-M.; Cretenet, M. Microorganisms in fermented apple beverages: Current Knowledge and Future Directions. Microorganisms 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef]
- Goddard, M.R. Quantifying the complexities of Saccharomyces cerevisiae’s ecosystem engineering via fermentation. Ecol. Soc. Am. 2008, 89, 2077–2082. [Google Scholar]
- Mortimer, R.; Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 1999, 150, 199–204. [Google Scholar] [CrossRef]
- Ponzzes-Gomes, C.M.P.B.S.; De Mélo, D.L.F.M.; Santana, C.A.; Pereira, G.E.; Mendonça, M.O.C.; Gomes, F.C.O.; Oliveira, E.S.; Barbosa, A.M., Jr.; Trindade, R.C.; Rosa, C.A. Saccharomyces cerevisiae and non- Saccharomyces yeasts in grape varieties of the São Francisco Valley. Braz. J. Microbiol. 2014, 45, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Dashko, S.; Zhou, N.; Compagno, C. Why, when and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Bottagisi, S.; Katz, M.; Schacherer, J.; Friedrich, A.; Gojkovic, Z.; Swamy, K.B.S.; Knecht, W.; Compagno, C.; Piškur, J. Yeast-bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri. FEMS Yeast Res. 2017, 17. [Google Scholar] [CrossRef]
- Cortesão, M.; Fuchs, F.M.; Commichau, F.M.; Eichenberger, P.; Schuerger, A.C.; Nicholson, W.L.; Setlow, P.; Moeller, R. Bacillus subtilis spore resistance to simulated mars surface conditions. Front. Microbiol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Regalado, N.G.; Martin, G.; Antony, S.J. Acinetobacter lwoffii: Bacteremia associated with acute gastroenteritis. Travel Med. Infect. Dis. 2009, 7, 316–317. [Google Scholar] [CrossRef]
- Pal Singh, N.; Sagar, T.; Nirmal, K.; Rajender Kaur, I. Pyogenic liver abscess caused by Acinetobacter lwoffii: A case report. J. Clin. Diagn. Res. 2016, 10, DD01–DD02. [Google Scholar] [CrossRef]
- Ugbogu, O.C.; Ogodo, A.C. Microbial Flora, Proximate Composition and Vitamin Content of Juices of Three Fruits Bought from a Local Market in Nigeria. Int. J. Chem. Eng. Appl. 2015, 6, 440–443. [Google Scholar] [CrossRef]
- Rozpedowska, E.; Hellborg, L.; Ishchuk, O.P.; Orhan, F.; Galafassi, S.; Merico, A.; Woolfit, M.; Compagno, C.; Piškur, J. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts. Nat. Commun. 2011, 2, 302. [Google Scholar] [CrossRef]
- Lencioni, L.; Romani, C.; Gobbi, M.; Comitini, F.; Ciani, M.; Domizio, P. Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae. Int. J. Food Microbiol. 2016, 234, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Andorrà, I.; Berradre, M.; Mas, A.; Esteve-Zarzoso, B.; Guillamón, J.M. Effect of mixed culture fermentations on yeast populations and aroma profile. Lwt Food Sci. Technol. 2012, 49, 8–13. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 2009, 10, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashko, S.; Zhou, N.; Tinta, T.; Sivilotti, P.; Lemut, M.S.; Trost, K.; Gamero, A.; Boekhout, T.; Butinar, L.; Vrhovsek, U.; et al. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. J. Ind. Microbiol. Biotechn. 2015, 42, 997–1010. [Google Scholar] [CrossRef]
- Gamero, A.; Quintilla, R.; Groenewald, M.; Alkema, W.; Boekhout, T.; Hazelwood, L. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol. 2016, 60, 147–159. [Google Scholar] [CrossRef]
- Porter, T.J. Biochemical Characterization and Evaluation of the Oenological Attributes of Lachancea Species. MSc Thesis (MScAgric), Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Cordero-Bueso, G.; Esteve-Zarzoso, B.; Cabellos, J.M.; Gil-Diaz, M.; Arroyo, T. Biotechnological potential of non-Saccharomyces yeasts isolated during Biotechnological potential of non- Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). Eur. Food Res. Technol. 2012, 236, 2564–2568. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G.; Domizio, P.; Fatichenti, F. Secondary products formation as a tool for discriminating non- Saccharomyces wine strains Strain diversity in non- Saccharomyces wine yeasts. Antonie Van Leeuwenhoek 1997, 77, 239–242. [Google Scholar] [CrossRef]
- Maturano, Y.P.; Assof, M.; Fabani, M.P.; Nally, M.C.; Jofré, V.; Rodríguez Assaf, L.A.; Toro, M.E.; Castellanos De Figueroa, L.I.; Vazquez, F. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: Relationship with wine volatile composition. Antonie Van Leeuwenhoek 2015, 108, 1239–1256. [Google Scholar] [CrossRef] [PubMed]
- James, S.A.; Stratford, M. Spoilage yeasts with emphasis on the genus Zygosaccharomyces. In Yeasts in Food; B. Behr’s Verlag GmbH & Co.: Heidelberg, Germany, 2003; pp. 171–191. ISBN 9781845698485. [Google Scholar]
- Schifferdecker, A.J.; Siurkus, J.; Andersen, M.R.; Joerck-Ramberg, D.; Ling, Z.; Zhou, N.; Blevins, J.E.; Sibirny, A.A.; Piškur, J.; Ishchuk, O.P. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl. Microbiol. Biotech. 2016, 100, 3219–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Belda, I.; Santos, A.; Navascués, E.; Marquina, D. Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 2015, 51, 129–134. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N. The Influence of <em>Brettanomyces/Dekkera sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am. J. Enol. Vitic. 1995, 46, 463–468. [Google Scholar]
- Licker, J.L.; Acree, T.E.; Henick-Kling, T. What Is “Brett” (Brettanomyces) Flavor?: A Preliminary Investigation. ACS Symp.Ser. 1998, 96–115. [Google Scholar] [CrossRef]
- Hittinger, C.T.; Rokas, A.; Bai, F.Y.; Boekhout, T.; Gonçalves, P.; Jeffries, T.W.; Kominek, J.; Lachance, M.A.; Libkind, D.; Rosa, C.A.; et al. Genomics and the making of yeast biodiversity. Curr. Opin. Genet. Dev. 2015, 35, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and Non-Conventional Yeasts in Beer Production. Fermentation 2018. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhi, Y.; Wu, Q.; Du, R.; Xu, Y. Zygosaccharomyces bailii is a potential producer of various flavor compounds in Chinese Maotai-flavor liquor fermentation. Front. Microbiol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Douglass, A.P.; Offei, B.; Braun-galleani, S.; Coughlan, A.Y.; Ortiz-merino, A.; Byrne, K.P.; Wolfe, K.H.; Martos, A.A.R. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLoS Path. 2018, 14, e1007138. [Google Scholar] [CrossRef]
- Ramos, C.L.; De Sousa, E.S.O.; Ribeiro, J.; Almeida, T.M.M.; Santos, C.C.A.D.A.; Abegg, M.A.; Schwan, R.F. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation. Food Microbiol. 2015, 49, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Piškur, J.; Rozpedowska, E.; Polakova, S.; Merico, A.; Compagno, C. How did Saccharomyces evolve to become a good brewer? Trends Genet. 2006, 22, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, T.; Phaff, H.J. Yeast biodiversity. In Yeasts in Food; B. Behr’s Verlag GmbH & Co.: Heidelberg, Germany, 2003; pp. 1–38. ISBN 9781845698485. [Google Scholar]
- Von Rudloff, A.; Mogkatlhe, L.; Mookodi, G. Botswana: Summary of nationwide research, in International Center for Alcohol Policies (ed.), Producers, Sellers, and Drinkers: Studies of Non-commercial Alcohol in Nine Countries. Glob. Actions Harmful Drink. 2012, 13–18. Available online: http://iardwebprod.azurewebsites.net/getattachment/9725694a-dbdb-4f27-b581-5211004e0b3c/icap-producers-sellers-and-drinkers-noncommercial-alcohol-monograph.pdf (accessed on 8 May 2020).
- Hagman, A.; Sall, T.; Compagno, C.; Piskur, J. Yeast “Make-Accumulate-Consume” Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Dilcher, D.L.; Wang, H.; Chen, Z. A eudicot from the Early Cretaceous of China. Nature 2011, 471, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Baselga, I.; Zafra, O.; Pérez, L.E.; Francisco-Alvarez, R.; Rodriguez-Tarduchy, G.; Santos, C. An AFLP based method for the detection and identification of indigenous yeast in complex must samples without a microbiological culture. Int. J. Food Microbiol. 2017, 241, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces yeasts-From spoilage organisms to valuable contributors to industrial fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Alfeo, V.; Todaro, A.; Migliore, G.; Borsellino, V.; Schimmenti, E. Microbreweries, brewpubs and beerfirms in the Sicilian craft beer industry. Int. J. Wine Bus. Res. 2019, 32, 122–138. [Google Scholar] [CrossRef]
- Callejo, M.J.; González, C.; Morata, A. Use of Non-Saccharomyces Yeasts in Bottle Fermentation of Aged Beers. In Brewing Technology; Intech open: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Iattici, F.; Catallo, M.; Solieri, L. Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. Beverages 2020, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.J.; Wagner, R.S.; Hutzler, M. Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J. Inst. Brew. 2016, 122, 569–587. [Google Scholar] [CrossRef]
- Ravasio, D.; Carlin, S.; Boekhout, T.; Groenewald, M.; Vrhovsek, U.; Walther, A.; Wendland, J. Adding Flavor to Beverages with Non-Conventional Yeasts. Fermentation 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Bamforth, C.W. Nutritional aspects of beer-A review. Nutr. Res. 2002, 22, 227–237. [Google Scholar] [CrossRef]
- Merico, A.; Galafassi, S.; Piškur, J.; Compagno, C. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res. 2009, 9, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Pronk, J.T.; Steensma, H.Y.; Van Dijken, J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12, 1607–1633. [Google Scholar] [CrossRef]
- Jukić, M.; Mastanjević, K.; Lukinac, J.; Vulin, Z.; Mastanjević, K.; Krstanović, V. Beer–The Importance of Colloidal Stability (Non-Biological Haze). Fermentation 2018, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak organic acids: A panoply of effects on bacteria. Sci. Prog. 2003, 86, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, G.H.; Zhang, X.D.; Huang, G.H.; Li, Y. Inhibitory effects of organic acids on bacteria growth during food waste composting. Compos. Sci. Util. 2010, 18, 55–63. [Google Scholar] [CrossRef]
- Chelule, P.; Mokoena, M.; Gqaleni, N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1160–1167. [Google Scholar]
Sample | Log10 CFU/mL | |
---|---|---|
Yeasts | Bacteria | |
Letlhakane | 3.0 | 3.6 |
Maun | 3.0 | 3.5 |
Mmashoro | 0 | 3.6 |
Palapye | 3.3 | 3.3 |
Serowe | 3.0 | 3.6 |
Tonota | 3.0 | 3.6 |
Average | 2.6 | 3.5 |
Species Name | Isolate Number | Collection Number | Accession Number | Identity (%) |
---|---|---|---|---|
Aureobasidium leucospermi | D2 | Palapye | KX893326.1 | 99 |
Aureobasidium melanogenum | D3 | Serowe | MF370933.1 | 99 |
Aureobasidium pullulans | D6 | Tonota | MF979210.1 | 99 |
Aureobasidium spp. | D5 | Maun | KT361586.1 | 99 |
Naganishia diffluens | D4 | Palapye | KU316762.1 | 99 |
Saccharomyces cerevisiae | D7 | Letlhakane | HQ108377.1 | 99 |
Species Name | Isolate Number | Collection Number | Accession Number | Identity (%) |
---|---|---|---|---|
Acinetobacter lwoffii | MMB4 | Mmashoro | KF818633.1 | 99 |
Acinetobacter lwoffii | SB2 | Serowe | KF818633.1 | 99 |
Bacillus amyloliquefaciens | PB1 | Palapye | MG892875.1 | 99 |
Bacillus cereus | TB3 | Tonota | AB523744.1 | 99 |
Bacillus cereus | LB4 | Letlhakane | MG021182.1 | 99 |
Bacillus methylotrophicus | SB1 | Serowe | KM659219.1 | 99 |
Bacillus oleronius | LB1 | Letlhakane | KY773585.1 | 98 |
Bacillus pichinotyi | PB2 | Palapye | MG705701.1 | 98 |
Bacillus amyloliquefaciens subsp. plantarum | MMB2 | Mmashoro | JN661699.1 | 99 |
Bacillus spp. | MAB3 | Maun | KF646681.1 | 99 |
Bacillus spp. | TB4 | Tonota | KT443870.1 | 99 |
Bacillus thuringiensis | SB3 | Serowe | KY910253.1 | 99 |
Bacillus thuringiensis | LB3 | Letlhakane | KY495218.1 | 99 |
Bacillus simplex | LB2 | Letlhakane | AB547125.1 | 99 |
Bacillus subtilis | MMB3 | Mmashoro | MH261154.1 | 99 |
Bacillus subtilis | SB4 | Serowe | MH261154.1 | 98 |
Bacillus subtilis | TB1 | Tonota | MH261154.1 | 99 |
Bacillus velezensis | MMB1 | Mmashoro | MH000677.1 | 99 |
Desemzia incerta | TB2 | Tonota | KF712891.1 | 99 |
Exiguobacterium indicum | MAB1 | Maun | MH819520.1 | 93 |
Staphylococcus saprophyticus | MAB2 | Maun | CP022093.2 | 99 |
Species Name | Isolate Number | Collection Number | Accession Number | Identity (%) |
---|---|---|---|---|
Saccharomyces yeasts | ||||
Saccharomyces cerevisiae | Z2 | Letlhakane 1 | KX428522.1 | 99 |
Saccharomyces cerevisiae | L3 | Letlhakane 1 | MG773372.1 | 99 |
Saccharomyces cerevisiae (2) | L6 and L10 | Letlhakane 2 | MG017580.1 | 99 |
Saccharomyces cerevisiae | L7 | Letlhakane 2 | LC336457.1 | 99 |
Saccharomyces cerevisiae | L8 | Letlhakane 3 | MF979228.1 | 99 |
Saccharomyces cerevisiae | L11 | Letlhakane 3 | HM191639.1 | 99 |
Saccharomyces cerevisiae | LMA1 | Letlhakane 2 | MF979228.1 | 99 |
Saccharomyces cerevisiae | LMA3 | Letlhakane 2 | KY109286.1 | 99 |
Saccharomyces cerevisiae | LMA4 | Letlhakane 1 | CP022977.1 | 99 |
Saccharomyces cerevisiae | LMA5 | Letlhakane 2 | KM234472.1 | 99 |
Saccharomyces cerevisiae | LMB1 | Letlhakane 2 | KX119942.1 | 99 |
Saccharomyces cerevisiae | MA1 | Maun 1 | KX428522.1 | 99 |
Saccharomyces cerevisiae | MA6 | Maun 2 | HM107789.1 | 99 |
Saccharomyces cerevisiae | AC1MIII | Mmashoro 3 | MG641152.1 | 99 |
Saccharomyces cerevisiae (2) | AC2MIII and BC1MII | Mmashoro 3 and 2 | HM101473.1 | 99 |
Saccharomyces cerevisiae | AC3MIII | Mmashoro 3 | MF406146.1 | 99 |
Saccharomyces cerevisiae | AC5MIII | Mmashoro 3 | JN225410.1 | 99 |
Saccharomyces cerevisiae | BC4MII | Mmashoro 2 | JX141335.1 | 99 |
Saccharomyces cerevisiae | MIAC1 | Mmashoro 1 | KM103041.1 | 99 |
Saccharomyces cerevisiae | MIAC3 | Mmashoro 1 | MF406146.1 | 99 |
Saccharomyces cerevisiae | MIAC2 | Mmashoro 1 | KM103042.1 | 99 |
Saccharomyces cerevisiae | MIAC5 | Mmashoro 1 | MK027354.1 | 99 |
Saccharomyces cerevisiae | P10 | Palapye 1 | KY109242.1 | 99 |
Saccharomyces cerevisiae | P11 | Palapye 1 | HQ443692.1 | 99 |
Saccharomyces cerevisiae | P13 | Palapye 3 | HM101472.1 | 99 |
Saccharomyces cerevisiae (2) | P14 and P16 | Palapye 2 | KX098507.1 | 99 |
Saccharomyces cerevisiae | P17 | Palapye 3 | GU080046.1 | 99 |
Saccharomyces cerevisiae (2) | S2 and S7 | Serowe 1 | GU080049.1 | 99 |
Saccharomyces cerevisiae | S6 | Serowe 2 | GU080046.1 | 99 |
Saccharomyces cerevisiae | T5 | Tonota 1 | MF406147.1 | 99 |
Saccharomyces cerevisiae | T6 | Tonota 1 | HM101472.1 | 99 |
Saccharomyces cerevisiae | T8 | Tonota 1 | JX141335.1 | 99 |
Saccharomyces cerevisiae | T9 | Tonota 2 | MK027354.1 | 99 |
Saccharomyces cerevisiae | T11 | Tonota 2 | MF498873.1 | 99 |
Saccharomyces cf. cerevisiae/paradoxus (2) | AC4MIII and MIAC4 | Mmashoro 1 and 3 | KY109333.1 | 99 |
Non-Saccharomyces yeasts | ||||
Brettanomyces bruxellensis | S5 | Serowe 2 | KY107600.1 | 99 |
Candida ethanolica | LMB2 | Letlhakane 3 | KY283163.1 | 99 |
Candida ethanolica (2) | LMB4 and LMC1 | Letlhakane 1 | FM180545.1 | 99 |
Candida ethanolica | LMC4 | Letlhakane 1 | JX880409.1 | 99 |
Candida ethanolica (5) | T10, T14 T15, T17, T18 | Tonota 2 and 3 | JX880409.1 | 99 |
Candida sake (2) | MA2 and MA3 | Maun 1 | JX880410.1 | 99 |
Curvibasidium pallidicorallinum | MA7 | Maun 3 | JX188149.1 | 99 |
Pichia kudriavzevii | L13 | Letlhakane 3 | AY529504.1 | 99 |
Pichia kudriavzevii | S8 | Serowe 3 | AY529504.1 | 91 |
Lachancea fermentati | MA4 | Maun 2 | KY108224.1 | 99 |
Lachancea fermentati | MA8 | Maun 3 | KM234440.1 | 99 |
Lachancea fermentati | P18 | Palapye 3 | KM234440.1 | 99 |
Pichia kudriavzevii | L1 | Letlhakane 1 | KM234442.1 | 99 |
Pichia kudriavzevii (2) | L2 and L4 | Letlhakane 2 | KF214396.1 | 99 |
Pichia manshurica | P15 | Palapye 2 | MK034750.1 | 99 |
Rhodotorula nothofagi | Z1 | Letlhakane 1 | KJ794722.1 | 99 |
Saccharomycodes ludwigii (2) | L9 and L12 | Letlhakane 3 | FM180540.1 | 99 |
Saccharomycodes ludwigii (2) | S1 and S4 | Serowe 1 | FM180540.1 | 99 |
Saccharomycodes ludwigii (4) | T7, T13, T12, T16 | Tonota 1 and 2 | FM180540.1 | 99 |
Schizosaccharomyces pombe | P8 | Palapye 2 | KY296084.1 | 99 |
Zygosaccharomyces bailii | T1 | Tonota 1 | GU080052.1 | 99 |
Zygosaccharomyces bailii | T4 | Tonota 1 | KY296086.1 | 99 |
Species | Number of Isolates Sequenced | % | Letlhakane | Maun | Mmashoro | Palapye | Serowe | Tonota |
---|---|---|---|---|---|---|---|---|
Saccharomyces cerevisiae | 38 | 51.4 | 12 | 2 | 10 | 6 | 3 | 5 |
Candida ethanolica | 9 | 12.2 | 4 | 5 | ||||
Saccharomycodes ludwigii | 8 | 10.8 | 2 | 2 | 4 | |||
Pichia kudriavzevii | 5 | 6.75 | 4 | 1 | ||||
Zygosaccharomyces bailii | 2 | 2.7 | 2 | |||||
Candida sake | 2 | 2.7 | 2 | |||||
Saccharomyces cf. cerevisiae/paradoxus | 2 | 2.7 | 2 | |||||
Lachancea fermentati | 3 | 5.4 | 2 | 1 | ||||
Curvibasidium pallidicorallinum | 1 | 1.4 | 1 | |||||
Schizosaccharomyces pombe | 1 | 1.4 | 1 | |||||
Brettanomyces bruxellensis | 1 | 1.4 | 1 | |||||
Rhodotorula nothofagi | 1 | 1.4 | 1 | |||||
Pichia manshurica | 1 | 1.4 | 1 | |||||
Total | 74 | 100 | 23 | 7 | 12 | 9 | 7 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motlhanka, K.; Lebani, K.; Boekhout, T.; Zhou, N. Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana. Fermentation 2020, 6, 51. https://doi.org/10.3390/fermentation6020051
Motlhanka K, Lebani K, Boekhout T, Zhou N. Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana. Fermentation. 2020; 6(2):51. https://doi.org/10.3390/fermentation6020051
Chicago/Turabian StyleMotlhanka, Koketso, Kebaneilwe Lebani, Teun Boekhout, and Nerve Zhou. 2020. "Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana" Fermentation 6, no. 2: 51. https://doi.org/10.3390/fermentation6020051
APA StyleMotlhanka, K., Lebani, K., Boekhout, T., & Zhou, N. (2020). Fermentative Microbes of Khadi, a Traditional Alcoholic Beverage of Botswana. Fermentation, 6(2), 51. https://doi.org/10.3390/fermentation6020051