Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Culture Media
2.3. Chemicals
2.4. Strains Isolation
2.5. Physiological and Biochemical Identification
2.6. Phylogenetic Tree Analysis
2.7. Determination of Growth Curve
2.8. NK Activity Measurement
2.9. Single-Factor Experiment to Optimize Fermentation Condition
2.10. Orthogonal Test to Optimize Fermentation Condition
2.11. Data Analysis
3. Results and Discussion
3.1. Isolation and Morphological Characteristics of the WTC016
3.2. Molecular Identification of WTC016 Based on Phylogenetic Analysis of 16S rRNA and gyrA Genes
3.3. Physiological and Biochemical Identification of WTC016
3.4. Determination of the Growth Curve and NK Yield of WTC016
3.5. Single-Factor Experiment to Optimize Fermentation Conditions for NK Production
3.6. Orthogonal Array Test to Optimize Fermentation Conditions for NK Production
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sumi, H.; Imai, M.; Naito, S.; Yatagai, C.; Yanagisawa, Y.; Yoshida, E. Nattokinase as thermally stable and broad spectrum enzyme. J. Thromb. Haemost. 2010, 8, 62. [Google Scholar]
- Unrean, P.; Nguyen, N.H.A. Metabolic pathway analysis and kinetic studies for production of nattokinase in bacillus subtilis. Bioproc. Biosyst. Eng. 2013, 36, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Furie, B.; Furie, B.C. Mechanisms of disease: Mechanisms of thrombus formation. N. Engl. J. Med. 2008, 359, 938–949. [Google Scholar] [CrossRef]
- Fujita, M.; Ito, Y.; Hong, K.; Nishimuro, S. Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis 1995, 9, 157–164. [Google Scholar] [CrossRef]
- Ku, T.W.; Tsai, R.L.; Pan, T.M. A simple and cost-saving approach to optimize the production of subtilisin nat by submerged cultivation of bacillus subtilis natto. J. Agric. Food Chem. 2009, 57, 292–296. [Google Scholar] [CrossRef]
- Urano, T.; Ihara, H.; Umemura, K.; Suzuki, Y.; Oike, M.; Akita, S.; Tsukamoto, Y.; Suzuki, I.; Takada, A. The profibrinolytic enzyme subtilisin nat purified from bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J. Biol. Chem. 2001, 276, 24690–24696. [Google Scholar] [CrossRef] [PubMed]
- Sumi, H.; Hamada, H.; Nakanishi, K.; Hiratani, H. Enhancement of the fibrinolytic-activity in plasma by oral-administration of nattokinase. Acta Haematol. Basel 1990, 84, 139–143. [Google Scholar] [CrossRef]
- Dabbagh, F.; Negahdaripour, M.; Berenjian, A.; Behfar, A.; Mohammadi, F.; Zamani, M.; Irajie, C.; Ghasemi, Y. Nattokinase: Production and application. Appl. Microbiol. Biotechnol. 2014, 98, 9199–9206. [Google Scholar] [CrossRef]
- Wan, R.; Hong, T.; Tariq, Y.; Chang, A. Pharmacotherapy of vitreomacular traction. Curr. Pharm. Des. 2018, 24, 4874–4881. [Google Scholar] [CrossRef]
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M.; et al. Thrombosis a major contributor to global disease burden. Arterioscl. Throm. Vas. 2014, 34, 2363–2371. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, X.J.; Zhang, Y.Z. Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 2005, 69, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.Q.; Yao, J.; Sparks, S.; Wang, K.Y. Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 2017, 18, 523. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.T.; Luo, M.F.; Xie, Y.C.; Yang, L.R.; Li, H.J.; Xu, L.; Liu, H.Z. Strain screening, fermentation, separation, and encapsulation for production of nattokinase functional food. Appl. Biochem. Biotechnol. 2012, 168, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Inatsu, Y.; Nakamura, N.; Yuriko, Y.; Fushimi, T.; Watanasiritum, L.; Kawamoto, S. Characterization of bacillus subtilis strains in thua nao, a traditional fermented soybean food in northern thailand. Lett. Appl. Microbiol. 2006, 43, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Huang, Q.; Zhang, R.H.; Zhang, Y.Z. Purification and characterization of a fibrinolytic enzyme produced by bacillus amyloliquefaciens dc-4 screened from douchi, a traditional chinese soybean food. Comp. Biochem. Phys. B 2003, 134, 45–52. [Google Scholar] [CrossRef]
- Kim, W.; Choi, K.; Kim, Y.; Park, H.; Choi, J.; Lee, Y.; Oh, H.; Kwon, I.; Lee, S. Purification and characterization of a fibrinolytic enzyme produced from bacillus sp strain ck 11-4 screened from chungkook-jang. Appl. Environ. Microbiol. 1996, 62, 2482–2488. [Google Scholar]
- Yao, Z.; Liu, X.M.; Shim, J.M.; Lee, K.W.; Kim, H.J.; Kim, J.H. Properties of a fibrinolytic enzyme secreted by bacillus amyloliquefaciens rsb34, isolated from doenjang. J. Microbiol. Biotechnol. 2017, 27, 9–18. [Google Scholar] [CrossRef]
- Suwanmanon, K.; Hsieh, P.C. Isolating bacillus subtilis and optimizing its fermentative medium for gaba and nattokinase production. Cyta-J. Food 2014, 12, 282–290. [Google Scholar] [CrossRef]
- Mahajan, P.M.; Gokhale, S.V.; Lele, S.S. Production of nattokinase using bacillus natto nrrl 3666: Media optimization, scale up, and kinetic modeling. Food Sci. Biotechnol. 2010, 19, 1593–1603. [Google Scholar] [CrossRef]
- Chang, C.T.; Fan, M.H.; Kuo, F.C.; Sung, H.Y. Potent fibrinolytic enzyme from a mutant of bacillus subtilis imr-nk1. J. Agric. Food Chem. 2000, 48, 3210–3216. [Google Scholar] [CrossRef]
- Agrebi, R.; Haddar, A.; Hmidet, N.; Jellouli, K.; Manni, L.; Nasri, M. Bsf1 fibrinolytic enzyme from a marine bacterium bacillus subtilis a26: Purification, biochemical and molecular characterization. Process Biochem. 2009, 44, 1252–1259. [Google Scholar] [CrossRef]
- Ni, H.; Guo, P.C.; Jiang, W.L.; Fan, X.M.; Luo, X.Y.; Li, H.H. Expression of nattokinase in escherichia coli and renaturation of its inclusion body. J. Biotechnol. 2016, 231, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.T.; Chiang, C.J.; Chao, Y.P. Medium optimization for the production of recombinant nattokinase by bacillus subtilis using response surface methodology. Biotechnol. Prog. 2007, 23, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Xing, J.M.; Chang, T.S.; Ma, Z.Y.; Liu, H.Z. Optimization of nutritional conditions for nattokinase production by bacillus natto nlsse using statistical experimental methods. Process Biochem. 2005, 40, 2757–2762. [Google Scholar] [CrossRef]
- Tan, Y.X.; Mok, W.K.; Lee, J.; Kim, J.; Chen, W.N. Solid state fermentation of brewers’ spent grains for improved nutritional profile using bacillus subtilis wx-17. Fermentation 2019, 5, 52. [Google Scholar] [CrossRef]
- Kuchen, B.; Maturano, Y.P.; Mestre, M.V.; Combina, M.; Toro, M.E.; Vazquez, F. Selection of native non-saccharomyces yeasts with biocontrol activity against spoilage yeasts in order to produce healthy regional wines. Fermentation 2019, 5, 60. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, W.X.; Zhou, Y.; Zhu, C.G.; Sun, M.; Yu, Z.N. Ethanol tolerance, yield of melanin, swarming motility and growth are correlated with the expression levels of aiia gene in bacillus thuringiensis. Enzym. Microb. Technol. 2006, 38, 967–974. [Google Scholar] [CrossRef]
- Li, S.; Du, S.; Li, C. Screening and identification of the antagonistic strain dl-59 of b. Velezensis against a. Brassicae and biocontrol efficiency. Front. Agric.China 2012, 5, 581–587. [Google Scholar] [CrossRef]
- Boone, D.R.; Castenholz, R.W.; Garrity, G.M. Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Kubo, Y.; Rooney, A.P.; Tsukakoshi, Y.; Nakagawa, R.; Hasegawa, H.; Kimura, K. Phylogenetic analysis of bacillus subtilis strains applicable to natto (fermented soybean) production. Appl. Environ. Microbiol. 2011, 77, 6463–6469. [Google Scholar] [CrossRef]
- Mccorkle, G. Molecular-cloning-a laboratory manual-maniatis, t, fritsch, ef, sambrook, j. Am. Sci. 1983, 71, 418. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Wang, Y.P.; Xiao, Y.; Wang, Y.; Wu, J.; Liu, C.B.; Ye, H.H.; Li, F.L.; Yu, H.N.; Lai, R. A bi-functional anti-thrombosis protein containing both direct-acting fibrin(ogen)olytic and plasminogen-activating activities. PLoS ONE 2011, 6, e17519. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Feng, C.; Zhong, J.; Huan, L.D. Roles of s3 site residues of nattokinase on its activity and substrate specificity. J. Biochem. 2007, 142, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Azin, M.; Moravej, R.; Zareh, D. Production of xylanase by trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: Optimization of culture condition by taguchi method. Enzym. Microb. Technol. 2007, 40, 801–805. [Google Scholar] [CrossRef]
- Berendsen, E.M.; Zwietering, M.H.; Kuipers, O.P.; Wells-Bennik, M.H.J. Two distinct groups within the bacillus subtilis group display significantly different spore heat resistance properties. Food Microbiol. 2015, 45, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Peltier, G.L.; Schroeder, F.R. The relation between proteolytic and amylolytic enzyme production by isolates of the bacillus-subtilis group. J. Bacteriol. 1949, 57, 127–130. [Google Scholar] [PubMed]
- Chun, J.; Bae, K.S. Phylogenetic analysis of bacillus subtilis and related taxa based on partial gyra gene sequences. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2000, 78, 123–127. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, N.S. Purification and characterization of subtilisin dj-4 secreted by bacillus sp strain dj-4 screened from doen-jang. Biosci. Biotechnol. Biochem. 2000, 64, 1722–1725. [Google Scholar] [CrossRef]
- Vaithilingam, M.; Chandrasekaran, S.D.; Gupta, S.; Paul, D.; Sahu, P.; Selvaraj, J.N.; Babu, V. Extraction of nattokinase enzyme from bacillus cereus isolated from rust. Natl. Acad. Sci. Lett. India 2016, 39, 263–267. [Google Scholar] [CrossRef]
- Altayar, M.; Sutherland, A.D. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J. Appl. Microbiol. 2006, 100, 7–14. [Google Scholar] [CrossRef]
- Nicholson, W.L. Roles of bacillus endospores in the environment. Cell. Mol. Life Sci. 2002, 59, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Kim, S.; Lee, S.M.; Woo, H.M.; Park, T.H.; Um, Y. Complete genome sequence of bacillus sp 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. J. Biotechnol. 2017, 254, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Raza, M.F.; Zheng, Z.Q.; Zhang, X.H.; Dong, X.X.; Zhang, H.Y. Complete genome sequence of bacillus velezensis zy-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities. 3 Biotech 2018, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.H.; Song, J.Y.; Kim, K.M.; Kim, M.K.; Lee, I.Y.; Kim, S.B.; Kim, H.S.; Han, N.S.; Lee, B.H.; Kim, B.S. Production of nattokinase by batch and fed-batch culture of bacillus subtilis. N. Biotechnol. 2010, 27, 341–346. [Google Scholar] [CrossRef]
- Zheng, Z.L.; Zuo, Z.Y.; Liu, Z.G.; Tsai, K.C.; Liu, A.F.; Zou, G.L. Construction of a 3d model of nattokinase, a novel fibrinolytic enzyme from bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase. A novel nucleophilic catalytic mechanism for nattokinase. J. Mol. Graph. Model. 2005, 23, 373–380. [Google Scholar] [CrossRef]
- Ul Haq, I.; Nawaz, A.; Mukhtar, H.; Asad-Ur-Rehman. Optimization of inoculum volume, fermentation medium and aeration rate for the production of glucose oxidase by uv mutant strain of aspergillus niger an-14. Pak. J. Bot. 2015, 47, 329–332. [Google Scholar]
- Xie, Q.; Guo, Y. The optimization of fermentation conditions of nattokinase. J. South China Univ. Technol. (Nat. Sci.) 1999, 27, 127–131. [Google Scholar]
- Hu, L.L.; Li, J.; Zhang, Y.F.; Yang, W.Z. Optimization of liquid fermentation conditions of nattokinase. Chem. Bioeng. 2011, 28, 42–45. [Google Scholar]
- Berenjian, A.; Mahanama, R.; Kavanagh, J.; Dehghani, F.; Ghasemi, Y. Nattokinase production: Medium components and feeding strategy studies. Chem. Ind. Chem. Eng. Q. 2014, 20, 541–547. [Google Scholar] [CrossRef]
Levels | Factors | |||
---|---|---|---|---|
A: Temperature (°C) | B: Initial pH | C: Inoculum Size (%) | D: Loading Volume (mL) | |
1 | 28 | 7.0 | 1 | 40 |
2 | 30 | 8.0 | 2 | 50 |
3 | 32 | 9.0 | 4 | 60 |
Test or Characteristic | WTC016 | B. subtilis subsp. natto BEST195 | B. subtilis subsp. subtilis 168 |
---|---|---|---|
Gram staining | + | + | + |
Catalase test | + | + | + |
Biotin auxotroph | + | + | − |
Glucose | + | + | + |
Sucrose | − | − | − |
D-xylopyranose | + | + | + |
D-fructose | − | − | − |
Cellobiose | − | − | − |
Arabitol | + | + | + |
D-galactose | − | − | − |
Lactose | + | + | + |
Maltose | + | + | + |
Melitose | + | + | + |
Amylum | + | + | + |
Mannitol | + | + | + |
Xylitol | − | − | − |
Inositol | − | − | − |
Methyl red | + | + | + |
Milk | + | + | + |
Gelatin liquefaction | + | + | + |
Lipase (Tween 60) | + | + | + |
Benzopyrrole | − | − | − |
Nitrate reduction | + | + | + |
Nitrite reduction | + | + | + |
Citrate | + | + | + |
Acetic acid oxidation | + | + | + |
No. | A:Temperature (°C) | B:Initial pH | C:Inoculum Size (%) | D: Liquid Loading Volume (mL/250 mL Flask) | NK Production (IU/mL) |
---|---|---|---|---|---|
1 | 1 (28) | 1 (7) | 1 (1) | 1 (40) | 1246 ± 27 |
2 | 1 (28) | 2 (8) | 2 (2) | 2 (50) | 1573 ± 61 |
3 | 1 (28) | 3 (9) | 3 (4) | 3 (60) | 1976 ± 37 |
4 | 2 (30) | 1 (7) | 2 (2) | 3 (60) | 3015 ± 116 |
5 | 2 (30) | 2 (8) | 3 (4) | 1 (40) | 2078 ± 131 |
6 | 2 (30) | 3 (9) | 1 (1) | 2 (50) | 1876 ± 91 |
7 | 3 (32) | 1 (7) | 3 (4) | 2 (50) | 2130 ± 108 |
8 | 3 (32) | 2 (8) | 1 (1) | 3 (60) | 2017 ± 82 |
9 | 3 (32) | 3 (9) | 2 (2) | 1 (40) | 1972 ± 97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, S.; Cao, Z.; Wong, C.; Liu, Y.; Foda, M.F.; Zhang, Z.; Li, J. Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation 2019, 5, 92. https://doi.org/10.3390/fermentation5040092
Ju S, Cao Z, Wong C, Liu Y, Foda MF, Zhang Z, Li J. Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation. 2019; 5(4):92. https://doi.org/10.3390/fermentation5040092
Chicago/Turabian StyleJu, Shouyong, Zhilin Cao, Christina Wong, Yangyang Liu, Mohamed F. Foda, Zhenyu Zhang, and Jinshan Li. 2019. "Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production" Fermentation 5, no. 4: 92. https://doi.org/10.3390/fermentation5040092
APA StyleJu, S., Cao, Z., Wong, C., Liu, Y., Foda, M. F., Zhang, Z., & Li, J. (2019). Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation, 5(4), 92. https://doi.org/10.3390/fermentation5040092