In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Isolation
2.3. Evaluation of Hydrophobicity and Auto-Aggregation
2.4. Adhesion to Caco-2 and HT-29-MTX Cell Lines
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotics. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, G.; Gadir, A.A.; Dhir, R. Probiotics: Reiterating what they are and what they are not. Front. Microbiol. 2019, 10, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An overview of beneficial effects. Lact. Acid Bact. 2002, 82, 279–289. [Google Scholar]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Falah, F.; Vasiee, A.; Behbahani, B.A.; Xazdi, F.T.; Moradi, S.; Mortazavi, S.A.; Roshanak, S. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4–17 against Escherichia coli causing urinary tract infection in humans. Microb. Pathog. 2019, 131, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Okochi, M.; Sugita, T.; Asai, Y.; Tanaka, M.; Honda, H. Screening of peptides associated with adhesion and aggregation of Lactobacillus rhamnosus GG in vitro. Biochem. Eng. J. 2017, 128, 178–185. [Google Scholar] [CrossRef]
- Zuo, F.; Yu, R.; Feng, X.; Chen, L.; Zeng, Z.; Khaskheli, G.B.; Ma, H.; Chen, S. Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. Ann. Microbiol. 2016, 66, 1027–1037. [Google Scholar] [CrossRef]
- Andriantsoanirina, V.; Teolis, A.C.; Xin, L.X.; Butel, M.J.; Aires, J. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: Comparison of cell surface properties. Anaerobe 2014, 28, 212–215. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Falah, F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb. Pathog. 2019, 136, 103677. [Google Scholar] [CrossRef]
- Davoodabadi, A.; Dallal, M.M.S.; Foroushani, A.R.; Douraghi, M.; Harati, F.A. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria. Anaerobe 2015, 34, 53–58. [Google Scholar]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; de Cadinanos, L.P.G.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. Int. 2014, 57, 44–50. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaffanel, F.; Charron-Bourgoin, F.; Soligot, C.; Kebouchi, M.; Bertin, S.; Payot, S.; Le Roux, Y.; Leblond-Bourget, N. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl. Microbiol. Cell Physiol. 2018, 102, 2851–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesuffleur, T.; Barbat, A.; Dussaulx, E.; Zweibaum, A. Growth adaptation to methotrexate of HT-29 human colon-carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990, 50, 6334–6343. [Google Scholar]
- Haddaji, N.; Mahdhi, A.K.; Krifi, B.; Ismail, M.B.; Bakhrouf, A. Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiol. Lett. 2015, 362. [Google Scholar] [CrossRef] [Green Version]
- Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. A comprehensive guide to pilus biogenesis in gram-negative bacteria. Nat. Rev. Microbiol. 2017, 15, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, E.Z. Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J. Gen. Appl. Microbiol. 2013, 59, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Tomita, S.; Nakamura, T. Aggregation of Lactobacillus brevis associated with decrease in pH by glucose fermentation. Biosci. Biotechnol. Biochem. 2019, 83, 1523–1529. [Google Scholar] [CrossRef]
- De Souza, B.M.S.; Borgonovi, T.F.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: Probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tractconditions. Probiotics Antimicrob. Proteins 2018, 11, 382–396. [Google Scholar] [CrossRef]
- Pan, M.; Kumaree, K.K.; Shah, N.P. Physiological changes of surface membrane in Lactobacillus with prebiotics. J. Food Sci. 2017, 82, 744–750. [Google Scholar] [CrossRef]
- Vlková, E.; Salmonova, H.; Bunesova, V.; Geigerova, M.; Rada, V.; Musilova, S. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacterial. Anaerobe 2015, 34, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.; Medici, M.; Perdigon, G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. J. Appl. Microbiol. 2004, 96, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.; Jakubec, M. The effect of prebiotics on adherence of probiotics. J. Dairy Sci. 2014, 97, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R. Microbiology handbook: Dairy products. R. Soc. Chem. 2009, 3, 173. [Google Scholar] [CrossRef]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Chambers, J.V. The microbiology of raw milk. In Dairy Microbiology Handbook: The Mic Robiology of Milk and Milk Products; Robinson, R.K., Ed.; Wiley: Hoboken, NJ, USA, 2002; pp. 39–90. [Google Scholar]
- Kim, J.K.; Shin, E.C.; Park, H.G. Fructooligosaccharides decreased the ability of probiotic Escherichia coli Nissle 1917 to adhere to co-cultures of human intestinal cell lines. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 45–52. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S. In vitro adhesion assays for probiotics and their in vivo relevance: A review. Microb. Ecol. Health Dis. 2003, 15, 175–184. [Google Scholar] [CrossRef]
- Mantzourani, I.; Chondrou, P.; Bontsidis, C.; Karolidou, K.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Galanis, A.; Plessas, S. Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains: Evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Ann. Microbiol. 2019, 69, 751–763. [Google Scholar] [CrossRef]
- Hernandez-Hernandez, O.; Muthaiyan, A.; Moreno, F.J.; Montilla, A.; Sanz, M.L.; Ricke, S.C. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiol. 2012, 30, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Sidira, M.; Kourkoutas, Y.; Kanellaki, M.; Charalampopoulos, D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res. Int. 2015, 76, 532–539. [Google Scholar] [CrossRef]
- Wu, Q.; Shah, N.P. Effects of elaidic acid, a predominant industrial trans fatty acid, on bacterial growth and cell surface hydrophobicity of lactobacilli. J. Food Sci. 2014, 79, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Shakirova, L.; Grube, M.; Gavare, M.; Auzina, L.; Zikmanis, P. Lactobacillus acidophilus La5 and Bifidobacterium lacis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions. J. Nutr. 2013, 40, 85–93. [Google Scholar]
- Martienssen, M.; Reichel, O.; Kohlweyer, U. Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnol. 2001, 21, 207–225. [Google Scholar] [CrossRef]
- Kos, B.; Suskovic, J.; Vukovic, S.; Simpraga, M.; Frece, J.; Matosic, S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophillus M92. J. Appl. Microbiol. 2003, 94, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Sorroche, F.G.; Spesia, M.B.; Zorreguieta, A.; Giordano, W. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl. Environ. Microbiol. 2012, 78, 4092–4101. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 2008, 226, 1065–1073. [Google Scholar] [CrossRef]
- Mohanty, D.; Panda, S.; Kumar, S.; Ray, P. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microb. Pathog. 2019, 126, 212–217. [Google Scholar] [CrossRef]
- Todorov, S.D.; Dicks, L.M.T. Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann. Microbiol. 2008, 58, 661–670. [Google Scholar] [CrossRef]
- Pisano, M.B.; Casula, M.; Corda, A.; Fadda, M.E.; Deplano, M.; Cosentino, S. In vitro probiotic characteristics of Lactobacillus strains isolated from Fiore Sardo cheese. Ital. J. Food Sci. 2008, 20, 505–516. [Google Scholar]
- Mackenzie, D.A.; Jeffers, F.; Parker, M.L.; Vibert-Vallet, A.; Bongaerts, R.J.; Roos, S.; Walter, J.; Juge, N. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 2010, 156, 3368–3378. [Google Scholar] [CrossRef] [Green Version]
Strain | Origin | Identification |
---|---|---|
E4MA | infant feces | L. reuteri |
E2MD | infant feces | L. reuteri |
E3TA | infant feces | L. casei subsp. paracasei |
E1M1C | infant feces | L. reuteri |
E3TD | infant feces | L. casei subsp. paracasei |
E3M2 | infant feces | L. reuteri |
Z1 | infant feces | L. casei subsp. paracasei |
Z17 | infant feces | L. casei subsp. paracasei |
Z9 | infant feces | L. casei subsp. paracasei |
K18 | cow colostrum | L. reuteri |
K7 | cow colostrum | L. reuteri |
K14 | cow colostrum | L. reuteri |
K10B | cow colostrum | L. brevis |
S 3A | feces of piglets | B. pseudolongum |
S 4B | feces of piglets | B. thermophilum |
T 11B | feces of calves | B. thermophilum |
T 12B | feces of calves | B. thermophilum |
T 1C | feces of calves | B. thermophilum |
SL5B | saliva of calves | B. longum |
TS 1C | saliva of calves | L. reuteri |
Strain | Hydrophobicity(%) |
---|---|
L. reuteri E4MA | 7.6 ± 1.4 a,b |
L. casei subsp. paracasei E3TD | 11.3 ± 1.5 a,b,c,d |
L. reuteri E2MD | 8.6 ± 0.6 a,b,c |
L. reuteri E1M1C | 6.1 ± 2.4 a |
L. casei subsp. paracasei E3TA | 16.2 ± 2.4 b,c,d,e |
L. reuteri E3M2 | 9.1 ± 3.0 a,b,c |
L. casei subsp. paracasei Z1 | 52.2 ± 3.9 h |
L. casei subsp. paracasei Z17 | 60.7 ± 1.5 h,i |
L. casei subsp. paracasei Z9 | 52.2 ± 2.0 h |
L. reuteri K18 | 76.0 ± 2.5 j |
L. amylovorus K7 | 30.6 ± 11.2 f,g |
L. reuteri K14 | 34.3 ± 9.9 g |
L. reuteri K10B | 37.9 ± 1.8 g |
B. pseudolongum S3A | 63.4 ± 4.1 i |
B. thermophilum S4B | 78.2 ± 10.5 j |
B. thermophilum T11B | 87.4 ± 1.5 k |
B. thermophilum T12B | 20.4 ± 0.8 d,e |
B. thermophilum T1C | 24.6 ± 1.2 e,f |
B. longum SL5B | 39.2 ± 13.5 g |
L. reuteri TS1C | 17.4 ± 3.5 c,d,e |
Auto-Aggregation (%) | ||||
---|---|---|---|---|
Origin | Strain | 3 h | 6 h | 24 h |
Infant feces | E4MA | 12.8 ± 3.8 a,b,c | 19.1 ± 3.6 a,b,c,d | 56.6 ± 0.6 e,f,g,h,i |
E3TD | 7.9 ± 1.5 a,b,c | 17.3 ± 1.3 a,b,c | 50.6 ± 2.0 d,e,f,g | |
E2MD | 9.3 ± 0.9 a,b,c | 15.9 ± 2.5 a,b | 50.2 ± 4.1 d,e,f,g | |
E3TA | 11.7 ± 1.4 a,b,c | 18.2 ± 1.2 a,b,c | 35.7 ± 16.1 a,b,c | |
E1M1C | 11.3 ± 1.0 a,b,c | 17.2 ± 0.1 a,b,c | 46.3 ± 6.3 c,d,e,f | |
E3M2 | 6.3 ± 2.1 a,b | 16.4 ± 1.4 a,b,c | 55.1 ± 1.7 e,f,g,h | |
Z1 | 6.8 ± 1.1 a,b | 16.6 ± 0.9 a,b,c | 59.0 ± 13.8 f,g,h,i | |
Z9 | 5.8 ± 3.8 a | 11.6 ± 0.2 a | 57.7 ± 5.6 e,f,g,h,i | |
Z17 | 11.9 ± 2.2 a,b,c | 18.4 ± 6.0 a,b,c | 63.6 ± 19.3 g,h,i | |
Colostrum | K7 | 14.7 ± 2.3 c | 20.9 ± 3.3 b,c,d,e | 65.4 ± 14.2 h,i |
K10B | 13.3 ± 0.4 a,b,c | 14.4 ± 11.4 a,b | 64.4 ± 1.6 g,h,i | |
K14 | 9.2 ± 5.9 a,b,c | 16.3 ± 8.6 a,b | 44.4 ± 4.5 c,d,e | |
K18 | 12.3 ± 1.2 a,b,c | 20.8 ± 7.0 b,c,d,e | 66.6 ± 6.5 h,i | |
Calves | T11B | 10.7 ± 3.3 a,b,c | 15.8 ± 2.5 a,b | 27.9 ± 3.6 a,b |
T1C | 6.7 ± 1.3 a,b | 15.0 ± 0.5 a,b | 37.9 ± 8.1 b,c,d | |
T12B | 9.0 ± 0.1 a,b,c | 12.8 ± 0.3 a,b | 21.7 ± 7.4 a | |
TS1C | 24.0 ± 16.7 d | 29.0 ± 16.4 e | 48.8 ± 10.8 c,d,e,f | |
SL5B | 12.0 ± 2.6 a,b,c | 27.8 ± 3.0 d,e | 60.1 ± 4.1 f,g,h,i | |
Piglets | S3A | 13.9 ± 1.5 b,c | 25.4 ± 1.6 c,d,e | 69.7 ± 5.1 i |
S4B | 8.1 ± 5.9 a,b,c | 11.5 ± 0.6 a | 39.8 ± 8.6 b,c,d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, 5, 100. https://doi.org/10.3390/fermentation5040100
Krausova G, Hyrslova I, Hynstova I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation. 2019; 5(4):100. https://doi.org/10.3390/fermentation5040100
Chicago/Turabian StyleKrausova, Gabriela, Ivana Hyrslova, and Iveta Hynstova. 2019. "In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains" Fermentation 5, no. 4: 100. https://doi.org/10.3390/fermentation5040100
APA StyleKrausova, G., Hyrslova, I., & Hynstova, I. (2019). In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation, 5(4), 100. https://doi.org/10.3390/fermentation5040100