Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Cultivation
2.2. Media and Fermentations
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
3.1. Ethanol Production of the Batch Culture with 4–10% Glucose
3.2. Ethanol Production of the Batch Culture with High Concentrations (15–26%) of Glucose
3.3. Ethanol Production at High Glucose Concentration in the Fed-Batch Culture
3.4. Comparison of Batch and Fed-Batch Culture for Ethanol Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, B.K. Performance of ethanol as a transportation fuel. In Handbook on Bioethanol: Production and Utilization; Wayman, C.E., Ed.; Taylor & Francis: Washington, DC, USA, 1996; pp. 37–60. [Google Scholar]
- Prasertwasu, S.; Khumsupan, D.; Komolwanich, T.; Chaisuwan, T.; Luengnaruemitchai, A.; Wongkasemjit, S. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresour. Technol. 2014, 163, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 2012, 47, 395–401. [Google Scholar] [CrossRef]
- Morales, P.; Rojas, V.; Quirós, M.; Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Cell Physiol. 2015, 99, 3993–4003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 2008, 45, 267–275. [Google Scholar] [CrossRef]
- Djekrif-Dakhmouche, S.; Gheribi-Aoulmi, Z.; Meraihi, Z.; Bennamoun, L. Application of a statistical design to the optimization of culture medium for alpha-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J. Food Eng. 2006, 73, 190–197. [Google Scholar] [CrossRef]
- Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K.M.; Sukumaran, R.K.; Pandey, A. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour. Technol. 2008, 99, 4597–4602. [Google Scholar] [CrossRef] [PubMed]
- Ingledew, W.M. Alcohol Production by Saccharomyces Cerevisiae: A Yeast Primer, in the Alcohol Textbook, 3rd ed.; Nottingham University Press: Nottingham, UK, 1999. [Google Scholar]
- Bafrnacová, P.; Smogrovicova, D.; Slavikova, I.; Atkova, J.; Domeny, Z. Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae. Biotechnol. Lett. 1999, 21, 337–341. [Google Scholar] [CrossRef]
- Casey, G.P.; Ingledew, W.M. Ethanol tolerance in yeast. Crit. Rev. Microbiol. 1986, 13, 219–280. [Google Scholar] [CrossRef] [PubMed]
- Ivorra, C.; Pérez-Ortin, J.; Del Olmo, M. An inverse correlation between stress resistance and stuck fermentation in wine yeast: A molecular study. Biotechnol. Bioeng. 1999, 64, 698–708. [Google Scholar] [CrossRef]
- Xu, P.; Thomas, A.; Gilson, C.D. Combined use of three methods for high concentration ethanol production by Saccharomyces cerevisiae. Biotechnol. Lett. 1996, 18, 1439–1440. [Google Scholar] [CrossRef]
- Yamaoka, C.; Kurita, O.; Kubo, T. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol. Res. 2014, 169, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, W.; Zhang, C.; Yan, P.; Jia, S.; Xu, Z.; Zhang, C. Vitalized yeast with high ethanol productivity. RSC Adv. 2014, 4, 52299–52306. [Google Scholar] [CrossRef]
- Thomas, K.; Hynes, S.H.; Ingledew, W.M. Effect of nitrogen limitation on synthesis of enzymes in Saccharomyces cerevisiae during fermentation of high concentration of carbohydrates. Biotechnol. Lett. 1996, 18, 1165–1168. [Google Scholar] [CrossRef]
- Mauricio, J.C.; Salmon, J.M. Apparent loss of sugar transport activity in Saccharomyces cerevisiae may mainly account for maximum ethanol production during alcoholic fermentation. Biotechnol. Lett. 1992, 14, 577–582. [Google Scholar] [CrossRef]
- Salmon, J.M.; Vincent, O.; Mauricio, J.M.; Bely, M.; Barre, P. Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. Am. J. Enol. Vitic. 1993, 44, 56–64. [Google Scholar]
- Ciriacy, M.; Reifenberger, M. Hexose transport. In Yeast Sugar Metabolism; Zimmermann, F.K., Entian, K., Eds.; Technomic Publishing Company: Lancaster, PA, USA, 1997. [Google Scholar]
- Bisson, L.F.; Neigeborn, L.; Carlson, M.; Fraenkel, D.G. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J. Bacteriol. 1987, 169, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Caylak, B.; Vardar, S.F. Comparison of different production processes for bioethanol. Turk. J. Chem. 1996, 22, 351–359. [Google Scholar]
- Alfenore, S.; Molina-Jouve, C.; Guillouet, S.E.; Uribelarrea, J.L.; Goma, G.; Benbadis, L. Improving ethanol production and viability of Saccharomyces cerevisiae by vitamin feeding strategy during fed batch process. Appl. Environ. Microbiol. 2002, 60, 67–72. [Google Scholar]
- Stanbury, P.F.; Whitaker, A.; Hall, S.J. Principles of Fermentation Technology, 2nd ed.; Pergamon Press: Oxford, UK, 1995. [Google Scholar]
- Alfenore, S.; Cameleyre, X.; Benbadis, L.; Bideaux, C.; Uribelarrea, J.L.; Goma, G.; Molina-Jourve, C.; Guillouet, S.E. Aeration strategy: A need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 2004, 63, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Chang, K.S.; Huang, C.W.; Hsu, C.L.; Jang, H.D. Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production. Fuel 2012, 97, 166–173. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Govindaswamy, S.; Vane, L.M. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424S. Bioresour. Technol. 2010, 101, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Shankar, T.; Anandapandian, K.T.K. Characterization of alcohol resistant yeast Saccharomyces cerevisiae isolated from Toddy. Int. Res. J. Microbiol. 2011, 2, 339–405. [Google Scholar]
- Cheng, N.G.; Hasan, M.; Kumoro, A.C.; Ling, C.F.; Tham, M. Production of ethanol by fed-batch fermentation. Pertanika J. Sci. Technol. 2009, 17, 399–408. [Google Scholar]
- Bonin, S.; Skwira, J. Effect of continuous fermentation of high-sugar fruit must on the viability and morphology of immobilized yeast on white foam glass. Food Technol. Biotechnol. 2008, 46, 164–170. [Google Scholar]
Fermentation Type | Glucose Concentration (g/L) | Glucose Consumption Rate (g/L/h) | Volumetric Cell Mass Production Rate (g/L/h) | Specific Growth Rate (/h) | Ethanol Production Rate (g/L/h) |
---|---|---|---|---|---|
Batch fermentation | 10 | 0.71 | 0.04 | 0.01 | 1.02 |
40 | 1.99 | 0.09 | 0.05 | 1.12 | |
100 | 3.06 | 0.17 | 0.18 | 1.62 | |
150 | 3.13 | 0.12 | 0.14 | 1.61 | |
180 | 2.5 | 0.10 | 0.09 | 1.25 | |
200 | 2.08 | 0.07 | 0.07 | 1.08 | |
260 | 2.09 | 0.05 | 0.04 | 0.96 | |
Fed-batch fermentation | 180 + 80 | 2.17 | 0.07 | 0.07 | 1.08 |
Fermentation Type | Glucose Concentration (g/L) | Residual Glucose Concentration (g/L) | Maximal Cell Biomass (g/L) | Ethanol Concentration (g/L) | Theoretical Ethanol Yield (%) |
---|---|---|---|---|---|
Batch fermentation | 10 | ND | 0.2 ± 0.0 | 5.1 ± 0.0 | 98.4 ± 0.1 |
40 | ND | 1.7 ± 0.1 | 20.1 ± 0.6 | 98.2 ± 0.2 | |
100 | ND | 5.1 ± 0.2 | 48.7 ± 0.1 | 99.6 ± 0.4 | |
150 | ND | 7.0 ± 0.4 | 77.5 ± 0.2 | 100.0 ± 0.4 | |
180 | 0.2 ± 0.0 | 6.9 ± 0.4 | 90.3 ± 0.1 | 98.2 ± 0.3 | |
200 | 0.2 ± 0.0 | 7.0 ± 0.5 | 101 ± 0.1 | 97.6 ± 0.4 | |
260 | 9.1 ± 0.1 | 5.6 ± 0.2 | 115 ± 0.5 | 87.6 ± 0.6 | |
Fed-batch fermentation | 180 + 80 | ND | 8.3 ± 0.8 | 130 ± 0.1 | 100.0 ± 0.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-H.; Chang, K.-S.; Chen, C.-Y.; Hsu, C.-L.; Chang, T.-C.; Jang, H.-D. Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation 2018, 4, 45. https://doi.org/10.3390/fermentation4020045
Chang Y-H, Chang K-S, Chen C-Y, Hsu C-L, Chang T-C, Jang H-D. Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation. 2018; 4(2):45. https://doi.org/10.3390/fermentation4020045
Chicago/Turabian StyleChang, Yi-Huang, Ku-Shang Chang, Chien-Yu Chen, Chuan-Liang Hsu, Tsan-Chang Chang, and Hung-Der Jang. 2018. "Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration" Fermentation 4, no. 2: 45. https://doi.org/10.3390/fermentation4020045
APA StyleChang, Y. -H., Chang, K. -S., Chen, C. -Y., Hsu, C. -L., Chang, T. -C., & Jang, H. -D. (2018). Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation, 4(2), 45. https://doi.org/10.3390/fermentation4020045