Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use
Abstract
1. Introduction
2. Biomass for Biohydrogen Production and Enhancement with Additives
3. Materials and Methods
3.1. OFMSW Substrate and Inoculum Preparation
3.1.1. Dark Fermentation
3.1.2. Photofermentation
3.2. Construction of Biodigesters (Reactors)
3.2.1. Dark Fermentation
3.2.2. Photo Fermentation
3.3. Physicochemical Analyses of the Substrate, Digestate, and Inoculum
3.4. Biogas Quality and Quantity
- VCNTP = corrected volume (m3) for STP;
- pCNTP = corrected biogas pressure for 1 atm—10,332.72 mm H2O;
- TCNTP = corrected biogas temperature for 20 °C—293.15 K;
- V1 = biogas volume in the gasometer;
- p1 = pressure of the biogas at the time of measurement in the reactors, which consists of the average atmospheric pressure at Itajubá-MG on the day of measurement, in addition to the pressure added by the gasometer, measured by the Geotech© Biogas 5000© equipment; and
- T1 = biogas temperature at the time of measurement, temperature in mesophilic conditions, 308 K.
3.5. Economic Analysis—LOCH
- LCOH = the levelized cost of H2 (USD/kg);
- = the sum of associated costs to produce H2 (sum of CAPEX and OPEX about the purification of biogas into H2, according to Nemestóthy et al. [31]);
- = H2 flow generated during the period of analysis.
4. Results
4.1. Biogas Quantity and Quality
4.1.1. Dark Fermentation
4.1.2. In Photofermentation
4.2. Physical–Chemical Analysis Results
4.2.1. The Dark Fermentation Process
4.2.2. The PhotoFermentation Process
4.3. Hydrogen Production Results in the Dark Fermentation Process
4.4. Economic Analysis for Biohydrogen Production
5. Discussion
5.1. Biogas Quantity and Quality
5.1.1. Dark Fermentation
5.1.2. In PhotoFermentation
5.2. Physical–Chemical Analysis Results
5.2.1. The Dark Fermentation Process
5.2.2. The PhotoFermentation Process
5.3. Hydrogen Production Results
5.4. LCOH
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
APHA | American Public Health Association |
BCB | Brazilian Central Bank |
CAPEX | Capital Expenditure |
CH4 | Methane |
CO2 | Carbon Dioxide |
COD | Chemical Oxygen Demand |
Fe2+ | Ferrous Ion |
Fe3+ | Ferric Ion |
FSs | Fixed Solids |
GHG | Greenhouse Gas |
H2S | Hydrogen Sulfide |
iNDC | Intended Nationally Determined Contribution |
LCOH | Levelized Cost of Hydrogen |
NDC | Nationally Determined Contribution |
NPs | Nanoparticles |
NPV | Net Present Value |
OFMSW | Organic Fraction of Municipal Solid Waste |
OPEX | Operating Expenses |
PNH2 | National Hydrogen Program |
STP | Standard Temperature and Pressure |
TSs | Total Solids |
UASB | Upflow Anaerobic Sludge Blanket |
VFAs | Volatile Fatty Acids |
VSs | Volatile Solids |
References
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- United Nations. Framework Convention on Climate Change: Adoption of the Paris Agreement—FCCC/CP/2015/L.9/Rev.1. UNFCCC. 12 December 2015. Available online: http://unfccc.int/files/bodies/awg/application/pdf/draft_paris_agreement_5dec15.pdf (accessed on 31 December 2024).
- Brazil. Intended Nationally Determined Contribution Towards the Achievement of the United Nations Framework Convention on Climate Change. Available online: https://antigo.mma.gov.br/images/arquivos/clima/convencao/indc/BRASIL_iNDC_portugues.pdf (accessed on 8 June 2023).
- Brazil. Ministry of Mines and Energy—MME. National Hydrogen Program—PNH2. Available online: https://www.gov.br/mme/pt-br/programa-nacional-do-hidrogenio-1 (accessed on 31 December 2024).
- Brazil. Ministry of Mines and Energy—MME. Proposed Guidelines for the National Hydrogen Program—PNH2. 2021. Available online: https://www.gov.br/mme/pt-br/assuntos/noticias/mme-apresenta-ao-cnpe-proposta-de-diretrizes-para-o-programa-nacional-do-hidrogenio-pnh2/HidrognioRelatriodiretrizes.pdf (accessed on 31 December 2024).
- Brazil. Law N°. 14,948 of 2 August 2024. Institutes the Legal Framework for Low-Carbon Hydrogen; Provides for the National Policy for Low-Carbon Hydrogen; Institutes Incentives for the Low-Carbon Hydrogen Industry; Institutes the Special Incentive Regime for the Production of Low-Carbon Hydrogen (Rehidro); Creates the Low-Carbon Hydrogen Development Program (PHBC); and Amends Laws No. 9427 of 26 December 1996, and 9478 of 6 August 1997. Federal Official Gazette. 02/08/2024—Extra Edition. Available online: https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/lei/l14948.htm (accessed on 2 September 2024).
- Abrelpe. Panorama of Solid Waste in Brazil—2020. 2020. Available online: https://abrelpe.org.br/panorama-2020/ (accessed on 21 August 2023).
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Levin, D.B.; Pitt, L.; Love, M. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrogen Energy 2004, 29, 173–185. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A comprehensive review on biological hydrogen production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- García-Depraect, O.; Vargas-Estrada, L.; Muñoz, R.; Castro-Muñoz, R. Membrane-Assisted Dark Fermentation for Integrated Biohydrogen Production and Purification: A Comprehensive Review. Fermentation 2025, 11, 19. [Google Scholar] [CrossRef]
- Han, S.-K.; Shin, H.-S. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manag. Assoc. 2004, 54, 242–249. [Google Scholar] [CrossRef]
- Taherdanak, M.; Zilouei, H.; Karimi, K. The effects of Fe° and Ni° nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. Int. J. Hydrogen Energy 2016, 41, 167–173. [Google Scholar] [CrossRef]
- Beckers, L.; Hiligsmann, S.; Lambert, S.D.; Heinrichs, B.; Thonart, P. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour. Technol. 2013, 133, 109–117. [Google Scholar] [CrossRef]
- Reddy, K.; Nasr, M.; Kumari, S.; Kumar, S.; Gupta, S.K.; Enitan, A.M.; Bux, F. Biohydrogen production from sugarcane bagasse hydrolysate: Effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 8790–8804. [Google Scholar] [CrossRef]
- Pérez-Barragán, J.; Martínez-Fraile, C.; Muñoz, R.; Vargas-Estrada, L.; Maya-Yescas, R.; León-Becerril, E.; Castro-Muñoz, R.; García-Depraect, O. Iron (Magnetite) Nanoparticle-Assisted Dark Fermentation Process for Continuous Hydrogen Production from Rice Straw Hydrolysate. Appl. Sci. 2024, 14, 9660. [Google Scholar] [CrossRef]
- Sarkar, O.; Modestra, J.A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Waste-Derived Renewable Hydrogen and Methane: Towards a Potential Energy Transition Solution. Fermentation 2023, 9, 368. [Google Scholar] [CrossRef]
- Jariyaboon, R.; Hayeeyunu, S.; Usmanbaha, N.; Ismail, S.B.; O-Thong, S.; Mamimin, C.; Kongjan, P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation 2023, 9, 636. [Google Scholar] [CrossRef]
- Barros, R.M.; Tiago Filho, G.L.; Moura, J.S.; Pieroni, M.F.; Vieira, F.C.; Lage, L.R.; Mohor, G.S.; Bastos, A.S. Design and Implementation Study of a Permanent Selective Collection Program (PSCP) on a University campus in Brazil. Resour. Conserv. Recycl. 2013, 80, 97–106. [Google Scholar] [CrossRef]
- Da Cruz, H.M.; Barros, R.M.; Dos Santos, I.F.S.; Tiago Filho, G.L. Estudo do potencial de geração de energia elétrica a partir do biogás de digestão anaeróbia de resíduos alimentares. Res. Soc. Dev. 2019, 8, 3785811. [Google Scholar] [CrossRef]
- Barros, R.M.; Tiago Filho, G.L.; Santos, A.H.M.; Ferreira, C.H.; Pieroni, M.F.; Moura, J.S.; Abe, H.S.D.S.; Brito, L.M.; Santos, I.F.S.D.; Ribeiro, E.M.; et al. A potential of the biogas generating and energy recovering from municipal solid waste. Renew. Energy Focus 2018, 25, 4–16. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Zhang, B.; Sun, H.; Wang, N.; Wang, L.; Zhang, J.; Xue, R. Comparison of magnetite/reduced graphene oxide nanocomposites and magnetite nanoparticles on enhancing hydrogen production in dark fermentation. Int. J. Hydrogen Energy. 2022, 47, 22359–22370. [Google Scholar] [CrossRef]
- Cañote, S.J.B.; Barros, R.M.; Lora, E.E.S.; del Olmo, O.A.; dos Santos, I.F.S.; Piñas, J.A.V.; Ribeiro, E.M.; de Freitas, J.V.R.; de Castro e Silva, H.L. Energy and Economic Evaluation of the Production of Biogas from Anaerobic and Aerobic Sludge in Brazil. Waste Biomass Valor 2021, 12, 947–969. [Google Scholar] [CrossRef]
- De Castro e Silva, H.L.; Silva, A.M.L.; Barros, R.M.; Dos Santos, I.F.S.; De Freitas, J.V.R. Addition of iron ore tailings to increase the efficiency of anaerobic digestion of pig manure: A technical and economic analysis. Biomass Bioenergy 2021, 148, 106013. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA: Washington, DC, USA, 2022. [Google Scholar]
- Ribeiro, E.M.; Barros, R.M.; Tiago Filho, G.L.; Santos, I.F.S.; Sampaio, L.C.; dos Santos, T.V.; Da Silva, F.d.G.B.; Silva, A.P.M.; De Freitas, J.V.R. Feasibility of biogas and energy generation from poultry manure in Brazil. Waste Manag. Res. 2018, 36, 221–235. [Google Scholar] [CrossRef]
- Cormos, C.-C. Techno-economic and environmental assessment of green hydrogen production via biogas reforming with membrane-based CO2 capture. Int. J. Hydrogen Energy 2025, 101, 702–711. [Google Scholar] [CrossRef]
- Tahir, M.M.; Abbas, A.; Dickson, R. Green hydrogen and chemical production from solar energy in Pakistan: A geospatial, techno-economic, and environmental assessment. Int. J. Hydrogen Energy 2025, 116, 613–626. [Google Scholar] [CrossRef]
- Crispim, A.M.D.C.; Barros, R.M.; Tiago Filho, G.L.; Dos Santos, I.F.S. An economic study of hydrogen and ammonia generation from the reforming of biogas from co-digestion of municipal solid waste and wastewater sludge in a Brazilian state. Int. J. Hydrogen Energy 2024, 67, 312–326. [Google Scholar] [CrossRef]
- Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P. Enhancement of dark fermentative H2 production by gas separation membranes: A review. Bioresour. Technol. 2020, 302, 122828. [Google Scholar] [CrossRef] [PubMed]
- Brazil. Ministry of Mines and Energy, Energy Research CompanyTen-Year Energy Expansion Plan 2034/Ministry of Mines and Energy. Energy Research Company. Brasília: MME/EPE. 2024. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-804/topico-758/PDE2034_Aprovado.pdf (accessed on 2 September 2024).
- Brazilian Central Bank BCB. Currency Converter. Available online: https://www.bcb.gov.br/conversao (accessed on 28 July 2025).
- Ren, Y.; Si, B.; Liu, Z.; Jiang, W.; Zhang, Y. Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives. Int. J. Hydrogen Energy 2022, 47, 1499–1515. [Google Scholar] [CrossRef]
- Jayalakshmi, S.; Joseph, K.; Sukumaran, V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 2009, 34, 8854–8858. [Google Scholar] [CrossRef]
- Su, H.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int. J. Hydrogen Energy 2009, 34, 1780–1786. [Google Scholar] [CrossRef]
- Androga, D.D.; Ozgur, E.; Gunduz, U.; Yucel, M.; Eroglu, I. Factors affecting the longterm stability of biomass and hydrogen productivity in outdoor photofermentation. Int. J. Hydrogen Energy 2011, 36, 11369–11378. [Google Scholar] [CrossRef]
- Putatunda, C.; Behl, M.; Solanki, P.; Sharma, S.; Bhatia, S.K.; Walia, A.; Bhatia, R.K. Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. Int. J. Hydrogen Energy 2023, 48, 21088–21109. [Google Scholar] [CrossRef]
- Lay, J.; Fan, K.; Hwang, J.; Chang, J.; Hsu, P. Factors Affecting hydrogen production from food wastes by Clostridium-Rich Composts. J. Environ. Eng. 2005, 131, 595–602. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J. Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. Bioresour. Technol. 2019, 282, 110–117. [Google Scholar] [CrossRef]
- Camacho, C.E.G.; Romano, F.I.; Ruggeri, B. Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe degrees. Energy 2018, 159, 525–533. [Google Scholar] [CrossRef]
- Regueira-Marcos, L.; García-Depraect, O.; Muñoz, R. Elucidating the role of pH and total solids content in the co-production of biohydrogen and carboxylic acids from food waste via lactate-driven dark fermentation. Fuel 2023, 338, 127238. [Google Scholar] [CrossRef]
- Castagnoli, A.; Falcioni, S.; Touloupakis, E.; Pasciucco, F.; Pasciucco, E.; Michelotti, A.; Iannelli, R.; Pecorini, I. Influence of Aeration Rate on Uncoupled Fed Mixed Microbial Cultures for Polyhydroxybutyrate Production. Sustainability 2024, 16, 2961. [Google Scholar] [CrossRef]
Reactor | Date | H2 (mL/gVS) | CH4 (%) | CO2 (%) | O2 (%) | H2S (ppm) | Bal |
---|---|---|---|---|---|---|---|
Jun/23 | 0.05 | 1.00 | 40.30 | 3.50 | >0.5 | 55.20 | |
Blank 1 | Jul/23 | >0.22 | 1.10 | 70.80 | 0.80 | >0.5 | 27.30 |
Aug/23 | >0.18 | 0.70 | 74.10 | 0.70 | 0.13 | 24.40 | |
Sept/23 | >0.18 | 0.00 | 1.40 | 18.40 | 0.009 | 0.00 | |
Jun/23 | 0.11 | 0.00 | 37.30 | 4.10 | 0.40 | 57.80 | |
Blank 2 | Jul/23 | >0.22 | 0.60 | 80.10 | 1.20 | 0.27 | 18.10 |
Aug/23 | >0.18 | 0.40 | 60.30 | 4.10 | 0.01 | 35.30 | |
Sept/23 | >0.18 | 0.00 | 0.90 | 18.80 | 0.007 | 80.30 | |
Jun/23 | 0.14 | 0.00 | 34.20 | 3.40 | 0.36 | 0.00 | |
Blank 3 | Jul/23 | >0.22 | 0.00 | 81.15 | 20.40 | 0.04 | 79.80 |
Aug/23 | >0.18 | 0.00 | 74.40 | 2.80 | 0.01 | 22.80 | |
Sept/23 | >0.18 | 0.00 | 1.20 | 18.60 | 0.008 | 78.00 | |
Magnetite 100 mg/L (1) | Jun/23 | 0.16 | 0.00 | 24.70 | 9.00 | 0.25 | 0.00 |
Jul/23 | >0.22 | 1.00 | 82.20 | 0.30 | 0.49 | 16.40 | |
Aug/23 | >0.18 | 0.40 | 62.20 | 1.50 | 0.02 | 35.90 | |
Sept/23 | >0.18 | 1.90 | 0.80 | 19.30 | 0.008 | 78.00 | |
Magnetite 100 mg/L (2) | Jun/23 | 0.16 | 0.00 | 26.20 | 8.20 | 0.32 | 0.00 |
Jul/23 | >0.22 | 0.20 | 71.20 | 0.20 | 0.43 | 28.40 | |
Aug/23 | >0.18 | 0.80 | 74.90 | 0.20 | 0.31 | 24.10 | |
Sept/23 | >0.18 | 2.30 | 5.20 | 17.50 | 0.010 | 74.90 | |
Magnetite 100 mg/L (3) | Jun/23 | >0.18 | 0.00 | 27.60 | 6.70 | 0.34 | 65.70 |
Jul/23 | >0.22 | 1.10 | 71.00 | 0.30 | >5000 ppm | 27.70 | |
Aug/23 | >0.18 | 0.80 | 74.40 | 0.30 | 0.04 | 24.50 | |
Sept/23 | >0.18 | 2.50 | 15.60 | 14.80 | 0.009 | 67.10 | |
Magnetite 200 mg/L (1) | Jun/23 | 0.14 | 0.00 | 29.00 | 8.30 | 0.42 | 0.00 |
Jul/23 | >0.22 | 0.60 | 83.90 | 0.40 | >5000 ppm | 15.10 | |
Aug/23 | >0.18 | 0.40 | 69.50 | 2.10 | 0.02 | 27.90 | |
Sept/23 | >0.18 | 2.30 | 5.30 | 17.80 | 0.008 | 74.70 | |
Magnetite 200 mg/L (2) | Jun/23 | 0.16 | 0.00 | 31.20 | 7.40 | 0.41 | 0.00 |
Jul/23 | >0.22 | 0.80 | 83.50 | 0.40 | 0.36 | 15.30 | |
Aug/23 | >0.18 | 0.30 | 72.60 | 0.50 | 0.03 | 26.60 | |
Sept/23 | >0.18 | 2.40 | 4.00 | 17.60 | 0.01 | 76.00 | |
Magnetite 200 mg/L (3) | Jun/23 | 0.16 | 0.00 | 29.00 | 8.20 | 0.37 | 0.00 |
Jul/23 | >0.22 | 0.90 | 82.70 | 0.40 | >5000 ppm | 16.00 | |
Aug/23 | >0.18 | 0.60 | 74.90 | 0.60 | 0.04 | 23.80 | |
Sept/23 | >0.18 | 2.50 | 3.30 | 17.60 | 0.017 | 76.60 |
Reactor | H2 (%) | Volume H2 CNTP (L) |
---|---|---|
Blank (1) | 0.05 | 0.00080 |
Blank (2) | 0.10 | 0.00160 |
Blank (3) | 0.10 | 0.00160 |
Magnetite 100 mg/L (1) | 1.30 | 0.02080 |
Magnetite 100 mg/L (2) | 1.30 | 0.02080 |
Magnetite 100 mg/L (3) | 1.30 | 0.02080 |
Magnetite 200 mg/L (1) | 2.60 | 0.04160 |
Magnetite 200 mg/L (2) | 2.00 | 0.03200 |
Magnetite 200 mg/L (3) | 2.10 | 0.03360 |
Reactor | Date | H2 (mL/gVS) | CH4 (%) | CO2 (%) | O2 (%) | H2S (ppm) | Bal |
---|---|---|---|---|---|---|---|
Blank 1 | Dec/24 | >0.22 | 0.00 | 7.4 | 18.5 | 7.0 | 74.1 |
Blank 2 | Dec/24 | 0.03 | 0.00 | 4.0 | 19.2 | 8.0 | 68.4 |
Blank 3 | Dec/24 | 0.02 | 0.00 | 2.5 | 19.7 | 5.0 | 72.3 |
Blank 1 | Apr/24 | >0.22 | 0.20 | 7.1 | 9.1 | 150 | 83.6 |
Blank 2 | Apr/24 | 0.03 | 0.00 | 0.0 | 20.4 | 11.0 | 79.5 |
Blank 3 | Apr/24 | 0.06 | 0.00 | 3.6 | 13.5 | 45.0 | 82.9 |
Magnetite 100 mg/L (1) | Dec/24 | 0.02 | 0.00 | 8.4 | 18.3 | 7.0 | 73.3 |
Magnetite 100 mg/L (2) | Dec/24 | 0.03 | 0.00 | 15.7 | 15.9 | 5.0 | 68.4 |
Magnetite 100 mg/L (3) | Dec/24 | 0.03 | 0.10 | 9.7 | 18.0 | 6.0 | 72.3 |
Magnetite 100 mg/L (1) | Apr/24 | 0.10 | 0.20 | 6.6 | 13.1 | 89 | 80.1 |
Magnetite 100 mg/L (2) | Apr/24 | 0.14 | 0.00 | 11.0 | 9.6 | 89 | 79.4 |
Magnetite 100 mg/L (3) | Apr/24 | 0.08 | 0.10 | 2.2 | 17.7 | 51 | 79.9 |
Magnetite 120 mg/L (1) | Dec/24 | 0.04 | 0.0 | 8.0 | 18.3 | 6.0 | 73.7 |
Magnetite 120 mg/L (2) | Dec/24 | 0.05 | 0.4 | 4.6 | 19.2 | 9.0 | 75.8 |
Magnetite 120 mg/L (3) | Dec/24 | 0.05 | 0.6 | 11.0 | 17.6 | 12.0 | 70.8 |
Magnetite 120 mg/L (1) | Apr/24 | 0.12 | 0.3 | 8.3 | 10.1 | 108.0 | 81.3 |
Magnetite 120 mg/L (2) | Apr/24 | 0.04 | Non detectable | 0.1 | 20.7 | 8.0 | Non detectable |
Magnetite 120 mg/L (3) | Apr/24 | 0.1 | 0.0 | 7.6 | 11.9 | 78.0 | 80.5 |
Parameter | WWTP Sludge (Inoculum) | Substrate | Total (Input) |
---|---|---|---|
TS (mg/L) | 29,318 | 158,809 | 188,127 |
FS (mg/L) | 6831 | 19,130 | 25,961 |
VS (mg/L) | 22,487 | 139,679 | 162,166 |
COD (mg/L) | 9540 | 115,100 | 124,640 |
pH | 6.7 | 5.5 | - |
Reactor | Volume H2 CNTP (L) | VSadded (mg/L) | Volume H2 CNTP per VS added (mL H2/g VS) | Average H2 CNTP per VS added (mL H2/g VS) | Mass H2 CNTP per VS added (mg H2/g VS) |
---|---|---|---|---|---|
Blank 1 | 0.00080 ± 0.00046 | 8.11 | 0.099 ± 0.057 | 0.197 | 0.008 ± 0.005 |
Blank 2 | 0.00160 ± 0.0004 | 8.11 | 0.197 ± 0.057 | 0.016 ± 0.005 | |
Blank 3 | 0.00160 ± 0.0004 | 8.11 | 0.197 ± 0.057 | 0.016 ± 0.005 | |
Magnetite 100 mg/L (1) | 0.02080 ± 0.00 | 8.11 | 5.565 ± 1.529 | 2.565 | 0.211 ± 0.047 |
Magnetite 100 mg/L (2) | 0.02080 ± 0.00 | 8.11 | 2.565 ± 1.529 | 0.211 ± 0.047 | |
Magnetite 100 mg/L (3) | 0.02080 ± 0.00 | 8.11 | 3.552 ± 1.529 | 0.293 ± 0.047 | |
Magnetite 120 mg/L (1) | 0.04160 ± 0.00514 | 8.11 | 5.131 ± 0.634 | 4.144 | 0.423 ± 0.053 |
Magnetite 120 mg/L (1) | 0.03200 ± 0.00514 | 8.11 | 3.947 ± 0.634 | 0.325± 0.053 | |
Magnetite 120 mg/L (1) | 0.03360 ± 0.00514 | 8.11 | 4.144 ± 0.634 | 0.341 ± 0.053 |
Costs Type | Equipment and Services | Value (USD) |
---|---|---|
Investment | Reactor (30 m3) | 7189.3 |
Cylinder for storage (1000 L) | 3837.5 | |
Total investment | 11,026.8 | |
O&M | Years 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, and 20 | 438.9/year |
Years 1 and 11 | 4917.5/year | |
Years 6 and 16 | 845.14/year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, G.C.; Souza, J.S.; Silva, I.F.; Barros, R.M.; Filho, G.L.T.; Santos, I.F.S.d.; Maya, D.M.Y.; Lora, E.E.S.; da Silva Capaz, R.; de Freitas, J.V.R.; et al. Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use. Fermentation 2025, 11, 516. https://doi.org/10.3390/fermentation11090516
de Souza GC, Souza JS, Silva IF, Barros RM, Filho GLT, Santos IFSd, Maya DMY, Lora EES, da Silva Capaz R, de Freitas JVR, et al. Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use. Fermentation. 2025; 11(9):516. https://doi.org/10.3390/fermentation11090516
Chicago/Turabian Stylede Souza, Gabriela Cadete, Jessica Silva Souza, Isabela Faria Silva, Regina Mambeli Barros, Geraldo Lúcio Tiago Filho, Ivan Felipe Silva dos Santos, Diego Mauricio Yepes Maya, Electo Eduardo Silva Lora, Rafael da Silva Capaz, João Victor Rocha de Freitas, and et al. 2025. "Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use" Fermentation 11, no. 9: 516. https://doi.org/10.3390/fermentation11090516
APA Stylede Souza, G. C., Souza, J. S., Silva, I. F., Barros, R. M., Filho, G. L. T., Santos, I. F. S. d., Maya, D. M. Y., Lora, E. E. S., da Silva Capaz, R., de Freitas, J. V. R., & Pontes, A. J. M. d. O. (2025). Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use. Fermentation, 11(9), 516. https://doi.org/10.3390/fermentation11090516