Fermentation Performance of Epigenetically Modified Yeast
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture Preparation and Pitching of Wort
2.2. Fermentation and Monitoring
2.3. Sensory Analysis
2.4. Ethanol and Higher Alcohol Analysis
2.4.1. Sample Preparation
2.4.2. Preparation of Working Standards
2.4.3. GC-MS Instrumentation
2.5. Determination of Glycerol Concentration
2.6. Determination of Residual Sugar Concentration
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sensory
3.2. Ethanol and Higher Alcohol Anaysis
3.3. Glycerol
3.4. Residual Sugars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajbouj, K.; Al-Ali, A.; Ramakrishnan, R.K.; Saber-Ayad, M.; Hamid, Q. Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int. J. Mol. Sci. 2021, 22, 11701. [Google Scholar] [CrossRef] [PubMed]
- Barre, P.; Vezinhet, F.; Dequin, S.; Blondin, B. Genetic improvement of wine yeasts. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Taylor & Francis: London, UK, 1993; Volume 1, pp. 265–288. [Google Scholar]
- Butler, L.M.; Zhou, X.; Xu, W.-S.; Scher, H.I.; Rifkind, R.A.; Marks, P.A.; Richon, V.M. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl. Acad. Sci. USA 2002, 99, 11700–11705. [Google Scholar] [CrossRef] [PubMed]
- Carmen, A.A.; Rundlett, S.E.; Grunstein, M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 1996, 271, 15837–15844. [Google Scholar] [CrossRef] [PubMed]
- González-Becerra, K.; Ramos-López, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.; Martínez-López, E.; Martínez, J. Fatty acids, epigenetic mechanisms and chronic diseases: A systematic review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [PubMed]
- de Clercq, N.C.; Groen, A.K.; Romijn, J.A.; Nieuwdorp, M. Gut microbiota in obesity and undernutrition. Adv. Nutr. 2016, 7, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, H.N.; Moroney, J.B.; Gan, H.; Shen, T.; Im, J.L.; Li, T.; Taylor, J.R.; Zan, H.; Casali, P. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun. 2020, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Olejar, K.J.; On, S.L.; Winefield, C.; Wescombe, P.A.; Brennan, C.S.; Hider, R.N.; Chelikani, V. Epigenetic changes in Saccharomyces cerevisiae alters the aromatic profile in alcoholic fermentation. Appl. Environ. Microbiol. 2022, 88, e0152822. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gao, J.; Liu, H.; Liu, J.; Jin, T.; Qin, N.; Ren, X. Antibiofilm effect of sodium butyrate against Vibrio parahaemolyticus. Food Control 2022, 131, 108422. [Google Scholar] [CrossRef]
- Jagannathan, R.; Abraham, P.M.; Poddar, P. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: A mechanistic study of its solubility and stability. J. Phys. Chem. B 2012, 116, 14533–14540. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Beer Market Size, Share & Trends Analysis Report by Product (Lager, Ale, Stout), by Packaging (Bottles, Cans), by Production (Macro, Micro, Craft), by Distribution Channel (On-Trade, Off-Trade), by Region, and Segment Forecasts, 2025–2030. Available online: https://www.grandviewresearch.com/industry-analysis/beer-market (accessed on 4 July 2025).
- Tomasino, E.; Harrison, R.; Breitmeyer, J.; Sedcole, R.; Sherlock, R.; Frost, A. Aroma composition of 2-year-old New Zealand Pinot noir wine and its relationship to sensory characteristics using canonical correlation analysis and addition/omission tests. Aust. J. Grape Wine Res. 2015, 21, 376–388. [Google Scholar] [CrossRef]
- Terova, G.; Díaz, N.; Rimoldi, S.; Ceccotti, C.; Gliozheni, E.; Piferrer, F. Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in European sea bass (Dicentrarchus labrax) fed a plant-based diet. PLoS ONE 2016, 11, e0160332. [Google Scholar] [CrossRef] [PubMed]
- Mattace Raso, G.; Simeoli, R.; Russo, R.; Iacono, A.; Santoro, A.; Paciello, O.; Ferrante, M.C.; Canani, R.B.; Calignano, A.; Meli, R. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS ONE 2013, 8, e68626. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Li, B.; Hayes, J.E.; Ziegler, G.R. Just-about-right and ideal scaling provide similar insights into the influence of sensory attributes on liking. Food Qual. Prefer. 2014, 37, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, K.; Żyła, K.; Tuszyński, T. Volatile esters and fusel alcohol concentrations in beer optimized by modulation of main fermentation parameters in an industrial plant. Processes 2020, 8, 769. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquie-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma-a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Liu, L.; Wang, X.-S.; Hong, K.-Q.; Zhang, L.-H.; Sun, Z.-G.; Xiao, D.-G. GAT1 gene, the GATA transcription activator, regulates the production of higher alcohol during Wheat beer fermentation by Saccharomyces cerevisiae. Bioengineering 2021, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Adejoro, D.O.; Wescombe, W.A.; Winefield, C.; On, S.L.W.; Mitchell, N.L.; Subbaraj, A.; Saunders, A.; Maes, E.; Chelikani, V. Dietary bioactive compounds trigger distinct epigenetic and metabolic reprogramming in Lactobacillus acidophilus. bioRxiv 2024. [Google Scholar] [CrossRef]
Code * | Strain | Pretreatment | Fermentation Treatment |
---|---|---|---|
WT W/O | wild type S. cerevisiae | None | No sodium butyrate |
WT SB | wild type S. cerevisiae | None | 500 µM sodium butyrate |
SS W/O | S. cerevisiae | 5 mM sodium butyrate for 100 h/ subculture every 20 h | No sodium butyrate |
SS SB | S. cerevisiae | 5 mM sodium butyrate for 100 h/ subculture every 20 h | 500 µM sodium butyrate |
1G W/O | S. cerevisiae | 5 mM sodium butyrate for 100 h/ subculture every 20 h and 20 h with no sodium butyrate | No sodium butyrate |
Treatments ** | Sensory Attributes | |||||
---|---|---|---|---|---|---|
Taste | Aroma | Flavour | Smoothness | Creaminess | Overall Liking | |
WT W/O | 4.44 ± 0.48 ab | 5.00 ± 0.69 a | 4.56 ± 0.50 ab | 5.56 ± 0.63 a | 5.56 ± 0.53 a | 4.89 ± 0.63 a |
WT SB | 5.11 ± 0.56 ab | 4.67 ± 0.60 a | 5.22 ± 0.49 ab | 5.56 ± 0.34 a | 5.22 ± 0.32 a | 5.00 ± 0.58 a |
SS W/O | 5.67 ± 0.29 a | 5.78 ± 0.40 a | 5.56 ± 0.24 ab | 5.67 ± 0.29 a | 5.44 ± 0.34 a | 5.89 ± 0.31 a |
SS SB | 3.56 ± 0.44 b | 3.67 ± 0.58 a | 4.11 ±0.56 b | 4.67 ± 0.44 a | 4.56 ± 0.41 a | 3.89 ± 0.59 a |
1G W/O | 5.78 ± 0.57 a | 5.89 ± 0.63 a | 6.11 ± 0.59 a | 6.33 ± 0.44 a | 5.89 ± 0.42 a | 5.67 ± 0.47 a |
Treatment ** | Ethanol Content (%) |
---|---|
WT W/O | 6.15 ± 0.43 |
WT SB | 5.93 ± 0.35 |
SS W/O | 6.03 ± 0.20 |
SS SB | 6.16 ± 0.40 |
1G W/O | 5.98 ± 0.25 |
Compounds | Treatments ** | ||||
---|---|---|---|---|---|
WT W/O | WT SB | SS W/O | SS SB | 1G W/O | |
Isobutanol | 9638 ± 516.36 a | 7583 ± 262.88 a | 9210 ± 61.36 a | 10,387 ± 2352.95 a | 9497 ± 122.34 a |
Isoamyl alcohol | 55,924 ± 2757 a | 44,959 ± 1188 a | 51,840 ± 61 a | 54,649 ± 5325 a | 53,641 ± 111 a |
Hexanol | 57.7 ± 2.69 a | 44.2 ± 0.60 a | 44.9 ± 0.98 a | 57.0 ± 3.22 a | 45.9 ± 3.41 a |
cis-3-Hexenol | 4.73 ± 0.22 a | 4.57 ± 0.34 a | 5.11 ± 0.00 a | 4.68 ± 0.30 a | 5.22 ± 0.02 a |
1-Heptanol | 6.42 ± 0.57 a | 4.76 ± 0.52 a | 4.35 ± 0.05 a | 5.92 ± 1.21 a | 4.50 ± 0.32 a |
Benzaldehyde | 11.02 ± 1.07 a | 6.81 ± 0.06 ab | 5.57 ± 0.33 ab | 8.90 ± 0.98 ab | 10.09 ± 1.19 b |
Phenylethyl alcohol | 16,598 ± 368 a | 13,116 ± 8 a | 13,451 ± 181 a | 18,653 ± 3169 a | 13,233 ± 392 a |
Treatment ** | Glycerol (g/L) |
---|---|
WT W/O | 1.74 ± 0.11 |
WT SB | 1.81 ± 0.14 |
SS W/O | 1.70 ± 0.09 |
SS SB | 1.83 ± 0.15 |
1G W/O | 1.74 ± 0.14 |
Treatment ** | D-Glucose | D-Fructose | Total Residual Sugar |
---|---|---|---|
WT W/O | 0.027 ± 0.0031 | 0.059 ± 0.0160 | 0.086 ± 0.005 |
WT SB | 0.028 ± 0.0013 | 0.164 ± 0.0141 | 0.192 ± 0.015 |
SS W/O | 0.025 ± 0.0024 | 0.140 ± 0.0332 | 0.165 ± 0.015 |
SS SB | 0.035 ± 0.0006 | 0.041 ± 0.0012 | 0.076 ± 0.005 |
1G W/O | 0.026 ± 0.0030 | 0.141 ± 0.0436 | 0.167 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Palihakkara, S.; Vanhanen, L.; Chelikani, V. Fermentation Performance of Epigenetically Modified Yeast. Fermentation 2025, 11, 515. https://doi.org/10.3390/fermentation11090515
Kong Y, Palihakkara S, Vanhanen L, Chelikani V. Fermentation Performance of Epigenetically Modified Yeast. Fermentation. 2025; 11(9):515. https://doi.org/10.3390/fermentation11090515
Chicago/Turabian StyleKong, Yanzhuo, Suhasna Palihakkara, Leo Vanhanen, and Venkata Chelikani. 2025. "Fermentation Performance of Epigenetically Modified Yeast" Fermentation 11, no. 9: 515. https://doi.org/10.3390/fermentation11090515
APA StyleKong, Y., Palihakkara, S., Vanhanen, L., & Chelikani, V. (2025). Fermentation Performance of Epigenetically Modified Yeast. Fermentation, 11(9), 515. https://doi.org/10.3390/fermentation11090515