Optimization of Culture Conditions for Bacteriocin Production by Pediococcus Acidilactici CCFM18 and Characterization of Its Biological Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Media
2.2. Detection of Antibacterial Activity of Bacteriocin
2.3. Optimization of Culture Conditions for Bacteriocin Production
2.3.1. Optimization of Initial pH for Bacteriocin Production
2.3.2. Optimization of Culture Time for Bacteriocin Production
2.3.3. Optimization of Culture Temperature for Bacteriocin Production
2.3.4. Experimental Design of RSM
2.3.5. Model Validation
2.4. Biochemical Characterization of Bacteriocin
2.4.1. Protease Sensitivity
2.4.2. pH Stability
2.4.3. Temperature Stability
2.4.4. Antibacterial Spectrum Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Standard Curve for Bacteriocin Titer
3.2. Optimization of Culture Conditions
3.2.1. Effect of pH on Bacteriocin Production
3.2.2. Effect of Culture Time on Bacteriocin Production
3.2.3. Effect of Culture Temperature on Bacteriocin Production
3.2.4. Establishment and Analysis of the RSM Model
3.2.5. Curve Analysis of RSM
3.2.6. Validation of the Optimal Processes
3.3. Biochemical Characterization of Bacteriocin
3.3.1. Sensitivity to Enzymes
3.3.2. pH Stability of Bacteriocin
3.3.3. Thermal Resistance of Bacteriocin
3.3.4. Antimicrobial Spectrum of Bacteriocin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhuo, Q.; Shi, C.; Geng, Q.; Wang, S.; Wang, B.; Zhang, N.; Yang, K.; Tian, J. Role of mitochondrial farnesyltransferase gene in the prevention of the food spoilage fungi Aspergillus flavus by the antimicrobial natural preservative perillaldehyde. Food Microbiol. 2024, 118, 104422. [Google Scholar] [CrossRef] [PubMed]
- Gokoglu, N. Novel natural food preservatives and applications in seafood preservation: A review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef]
- Johnson, E.M.; Jung, D.Y.G.; Jin, D.Y.Y.; Jayabalan, D.R.; Yang, D.S.H.; Suh, J.W. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit. Rev. Food Sci. Nutr. 2018, 58, 2743–2767. [Google Scholar] [CrossRef]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for food and feed; a bacteriocin perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Multiple bacteriocin production in lactic acid bacteria. J. Biosci. Bioeng. 2022, 134, 277–287. [Google Scholar] [CrossRef]
- Yi, Y.; Li, P.; Zhao, F.; Zhang, T.; Shan, Y.; Wang, X.; Liu, B.; Chen, Y.; Zhao, X.; Lü, X. Current status and potentiality of class II bacteriocins from lactic acid bacteria: Structure, mode of action and applications in the food industry. Trends Food Sci. Technol. 2022, 120, 387–401. [Google Scholar] [CrossRef]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lu, N.; Wang, J.; Chen, Z.; Chen, C.; Mac Regenstein, J.; Zhou, P. Effect of N-terminal modification on the antimicrobial activity of nisin. Food Control 2020, 114, 107227. [Google Scholar] [CrossRef]
- López-Cuellar, M.D.R.; Rodríguez-Hernández, A.I.; Chavarría-Hernández, N. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Equip. 2016, 30, 1039–1050. [Google Scholar] [CrossRef]
- Negash, A.W.; Tsehai, B.A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 2020, 4374891. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.S.R.; Chalón, M.C.; Navarro, S.A.; Bellomio, A. Pediocin-like bacteriocins: New perspectives on mechanism of action and immunity. Curr. Genet. 2018, 64, 345–351. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.S. Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef]
- Abbasiliasi, S.; Tan, J.S.; Ibrahim, T.A.T.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Kareb, O.; Aïder, M. Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: A review. Probiotics Antimicrob. Proteins 2020, 12, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Sidooski, T.; Brandelli, A.; Bertoli, S.L.; Souza, C.K.D.; Carvalho, L.F.D. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria—A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Trinetta, V.; Rollini, M.; Manzoni, M. Development of a low cost culture medium for sakacin A production by L. sakei. Process Biochem. 2008, 43, 1275–1280. [Google Scholar] [CrossRef]
- Chandrika, K.; Sachan, A. Enhanced production of bacteriocin by Bacillus subtilis ZY05. 3 Biotech 2024, 14, 37. [Google Scholar] [CrossRef]
- Kumar, M.; Jain, A.K.; Ghosh, M.; Ganguli, A. Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnol. Bioprocess Eng. 2012, 17, 606–616. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Mustafa, S.; Halim, M.; Ariff, A.B. Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms 2020, 8, 1454. [Google Scholar] [CrossRef]
- Altuntas, E.G.; Cosansu, S.; Ayhan, K. Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int. J. Food Microbiol. 2010, 141, 28–31. [Google Scholar] [CrossRef]
- Qiao, Y.; Tian, F.; Yu, L.; Zhao, J.; Zhai, Q.; Chen, W. Imaging mass spectrometry and genome mining reveal antimicrobial peptides of novel Pediococcus acidilactici CCFM18. Foods 2024, 13, 2213. [Google Scholar] [CrossRef]
- Aktaş, H.M. Bacteriocin characterization of Enterococcus faecium isolates and evaluation of their in situ anti-Listerial activity in Beyaz cheese. Food Biosci. 2024, 61, 104741. [Google Scholar]
- Todorov, D.S.; Dicks, M.L. Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Braz. J. Microbiol. 2007, 38, 166–172. [Google Scholar] [CrossRef]
- Qiao, Z.; Sun, H.; Zhou, Q.; Yi, L.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; Lu, X. Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. Int. J. Biol. Macromol. 2020, 164, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, A.P.M.; Bizani, D.; Cladera-Olivera, F.; Brandelli, A. Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J. 2007, 35, 238–243. [Google Scholar] [CrossRef]
- Mataragas, M.; Metaxopoulos, J.; Galiotou, M.; Drosinos, E.H. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 2003, 64, 265–271. [Google Scholar] [CrossRef]
- Gautam, N.; Sharma, N.; Kumar, S.; Sharma, N. Optimization of Growth conditions for enhanced bacteriocin production from Lactobacillus brevis UN by one variable at a time (OVAT) and response surface methodology (RSM). Indian J. Ecol. 2022, 49, 2167–2173. [Google Scholar]
- Omachi, H.; Terahara, T.; Futami, K.; Kawato, S.; Imada, C.; Kamei, K.; Waku, T.; Kondo, A.; Naganuma, T.; Kobayashi, T. Distribution of class IId bacteriocin-producing Virgibacillus salexigens in various environments. World J. Microbiol. Biotechnol. 2021, 37, 121. [Google Scholar] [CrossRef]
- Samani, M.K.; Noormohammadi, Z.; Fazeli, M.R.; Samadi, N. Bacteriocin activity of various iranian honey-associated bacteria and development of a simple medium for enhanced bacteriocin activity. J. Environ. Health Sci. Eng. 2021, 19, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Ruiz, M.; Daille, L.K.; Machuca, P.; Bittner, M. Antibacterial activity of a complex bacteriocin secreted by Staphylococcus epidermidis against Porphyromonas gingivalis. Arch. Oral Biol. 2023, 152, 105730. [Google Scholar] [CrossRef]
- Kuniyoshi, T.M.; Mendonça, C.M.N.; Vieira, V.B.; Vieira, V.B.; Robl, D.; Franco, B.D.G.D.; Todorov, S.D.; Tome, E.; O’Connor, P.M.; Converti, A.; et al. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresour. Technol. 2021, 338, 125565. [Google Scholar] [CrossRef]
- Garsa, A.K.; Kumariya, R.; Kumar, A.; Lather, P.; Kapila, S.; Sood, S.K. Industrial cheese whey utilization for enhanced production of purified pediocin PA-1. LWT-Food Sci. Technol. 2014, 59, 656–665. [Google Scholar] [CrossRef]
- Turgis, M.; Vu, K.D.; Millette, M.; Dupont, C.; Lacroix, M. Influence of environmental factors on bacteriocin production by human isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics Antimicrob. Proteins 2016, 8, 53–59. [Google Scholar] [CrossRef]
- El-Sharoud, W.M.; Zalma, S.A.; Yousef, A.E. Inducing the production of the bacteriocin paenibacillin by Paenibacillus polymyxa through application of environmental stresses with relevance to milk bio-preservation. Int. J. Food Microbiol. 2022, 371, 109637. [Google Scholar] [CrossRef]
- Qiao, Y.; Qiu, Z.; Tian, F.; Yu, L.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Pediococcus acidilactici strains improve constipation symptoms and regulate intestinal flora in mice. Front. Cell. Infect. Microbiol. 2021, 11, 655258. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Dong, S.; Zhang, Y.; Ismael, M.; Wang, S.; Shi, C.; Yang, J.; Wang, X.; Lü, X. Interaction of Companilactobacillus crustorum MN047-derived bacteriocins with gut microbiota. Food Chem. 2022, 396, 133730. [Google Scholar] [CrossRef] [PubMed]
- Abbasiliasi, S.; Tan, J.S.; Ibrahim, T.A.T.; Ramanan, R.N.; Kadkhodaei, S.; Mustafa, S.; Ariff, A.B. Kinetic modeling of bacteriocin-like inhibitory substance secretion by Pediococcus acidilactici Kp10 and its stability in food manufacturing conditions. J. Food Sci. Technol. 2018, 55, 1270–1284. [Google Scholar] [CrossRef]
- Khorshidian, N.; Khanniri, E.; Mohammadi, M.; Mortazavian, A.M.; Yousefi, M. Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Front. Microbiol. 2021, 12, 709959. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; Wachsman, M.; Tome, E.; Vaz-Velho, M.; Ivanova, I.V. Plasmid-associated bacteriocin produced by Pediococcus pentosaceus isolated from smoked salmon: Partial characterization and some aspects of his mode of action. Probiotics Antimicrob. Proteins 2024, 16, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Thu, N.P.A.; Nghia, N.H.; Thao, D.T.P.; Trinh, N.T.M. Heterologous expression of pediocin PA-1 in Pichia pastoris: Cloning, expression, characterization, and application in pork bologna preservation. Braz. J. Microbiol. 2024, 55, 2169–2177. [Google Scholar] [CrossRef]
- Fimland, G.; Johnsen, L.; Axelsson, L.; Brurberg, M.B.; Nes, I.F.; Eijsink, V.G.; Nissen-Meyer, J. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 2000, 182, 2643–2648. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Qiu, Z.; Tian, F.; Yu, L.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Effect of bacteriocin-producing Pediococcus acidilactici strains on the immune system and intestinal flora of normal mice. Food Sci. Hum. Wellness 2022, 11, 238–246. [Google Scholar] [CrossRef]
- Gravesen, A.; Ramnath, M.; Rechinger, K.B.; Andersen, N.; Jänsch, L.; Héchard, Y.; Knøchel, S. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 2002, 148, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ju, X.; Du, L.; Wang, L.; He, R.; Chen, Z. The Man-PTS subunit IIC is responsible for the sensitivity of Listeria monocytogenes to durancin GL. Food Sci. Nutr. 2020, 8, 150–161. [Google Scholar] [CrossRef] [PubMed]
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Significant Level |
---|---|---|---|---|---|---|
Model | 2.690 × 106 | 9 | 2.989 × 105 | 89.74 | <0.0001 | ** |
A | 1.317 × 105 | 1 | 1.317 × 105 | 39.54 | 0.0004 | ** |
B | 3036.85 | 1 | 3036.85 | 0.91 | 0.3714 | |
C | 72.68 | 1 | 72.68 | 0.022 | 0.8867 | |
AB | 232.72 | 1 | 232.72 | 0.070 | 0.7991 | |
AC | 10,753.79 | 1 | 10,753.79 | 3.23 | 0.1154 | |
BC | 4770.39 | 1 | 4770.39 | 1.43 | 0.2703 | |
A2 | 1.409 × 106 | 1 | 1.409 × 106 | 423.06 | <0.0001 | ** |
B2 | 2.478 × 105 | 1 | 2.478 × 105 | 74.41 | <0.0001 | ** |
C2 | 6.511 × 105 | 1 | 6.511 × 105 | 195.50 | <0.0001 | ** |
Residual error | 23,310.92 | 7 | 3330.13 | |||
Lack of fit | 9451.91 | 3 | 3150.64 | 0.91 | 0.5116 | |
Pure error | 13,859.01 | 4 | 3464.75 | |||
Sum | 2.713 × 106 | 16 | ||||
R2 = 0.9914 |
Protease Type | Bacteriocin Activity (AU/mL) | Remaining Antibacterial Activity (%) |
---|---|---|
Untreated | 1515.92 ± 89.79 | 100 |
Pepsin | 0 | 0 |
Trypsin | 0 | 0 |
Protease K | 0 | 0 |
Papain | 0 | 0 |
Indicator Strains | Bacteriocin Activity (AU/mL) |
---|---|
Lactobacillus helveticus ATCC10797 | - |
Lactobacillus helveticus DSCAB11L3 | - |
Streptococcus thermophilus ATCC19258 | 1189.86 ± 60.78 |
Lactobacillus delbrueckii 837 | - |
Bacillus cereus DL1-3 | - |
Bacillus cereus ATCC11778 | 768.69 ± 39.00 |
Enterococcus faecalis SNSS1133 | 1536.58 ± 88.37 |
Micrococcus luteus SNSS174 | - |
Bacillus coagulans VSDYT1 | 1276.76 ± 47.17 |
Bacillus coagulans VNJBGZ9 | 1328.01 ± 33.97 |
Escherichia coli CMCC44102 | 1146.36 ± 68.36 |
Saccharomyces cerevisiae SNSS176 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Bai, X.; Zheng, Z.; Qiu, Z.; Qiao, X.; Qiao, Y. Optimization of Culture Conditions for Bacteriocin Production by Pediococcus Acidilactici CCFM18 and Characterization of Its Biological Properties. Fermentation 2025, 11, 470. https://doi.org/10.3390/fermentation11080470
Guo X, Bai X, Zheng Z, Qiu Z, Qiao X, Qiao Y. Optimization of Culture Conditions for Bacteriocin Production by Pediococcus Acidilactici CCFM18 and Characterization of Its Biological Properties. Fermentation. 2025; 11(8):470. https://doi.org/10.3390/fermentation11080470
Chicago/Turabian StyleGuo, Xiaojing, Xinyan Bai, Zhenjia Zheng, Zhichang Qiu, Xuguang Qiao, and Yiteng Qiao. 2025. "Optimization of Culture Conditions for Bacteriocin Production by Pediococcus Acidilactici CCFM18 and Characterization of Its Biological Properties" Fermentation 11, no. 8: 470. https://doi.org/10.3390/fermentation11080470
APA StyleGuo, X., Bai, X., Zheng, Z., Qiu, Z., Qiao, X., & Qiao, Y. (2025). Optimization of Culture Conditions for Bacteriocin Production by Pediococcus Acidilactici CCFM18 and Characterization of Its Biological Properties. Fermentation, 11(8), 470. https://doi.org/10.3390/fermentation11080470